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Objectives: To reconstruct the evolutionary history and genomic epidemiology of Staphylococcus aureus ST9
in China.

Methods: Using WGS analysis, we described the phylogeny of 131 S. aureus ST9 isolates collected between 2002
and 2016 from 11 provinces in China, including six clinical samples from Taiwan. We also investigated the com-
plex structure and distribution of the lsa(E)-carrying multiresistance gene cluster, and genotyped prophages in
the genomes of the ST9 isolates.

Results: ST9 was subdivided into one major (n = 122) and one minor (n = 9) clade. Bayesian phylogeny predicted
the divergence of ST9 isolates in pig farming in China as early as 1987, which then evolved rapidly in the following
three decades. ST9 isolates shared similar multiresistance properties, which were likely acquired before the ST9
emergence in China. The accessory genome is highly conserved, and ST9 harboured similar sets of phages, but
lacked certain virulence genes.

Conclusions: Host exchange and regional transmission of ST9 have occurred between pigs and humans. Pig
rearing and trading might have favoured gene exchanges between ST9 isolates. Resistance genes, obtained
from the environment and other isolates, were stably integrated into the chromosomal DNA. The abundance of
resistance genes among ST9 is likely attributed to the extensive use of antimicrobial agents in livestock. Phages
are present in the genomes of ST9 and may play a role in the rapid evolution of this ST. Although human ST9
infections are rare, ST9 isolates may constitute a potential risk to public health as a repository of antimicrobial
resistance genes.

Introduction

Staphylococcus aureus is a major opportunistic pathogen with a
propensity to rapidly develop antimicrobial resistance.1 MRSA is
recognized as a pathogen of global concern,2 which can also cause
diseases in animals.3,4 The epidemiological history of MRSA has
been reshaped since the first report of livestock-associated MRSA
(LA-MRSA) transmission to humans.5 Thus, LA-MRSA has gradually
gained attention as an important zoonotic pathogen. The global
prevalence and spread of LA-MRSA differs geographically. Unlike
the predominance of ST398 in Europe and North America,1,5–8 clo-
nal complex (CC) 9 is the major LA-MRSA CC in Asia, including
China, Malaysia, and Thailand.6,9,10 Recently, cases of human
MRSA ST9 infections have been reported,9,11,12 indicating that ST9

isolates also pose a risk to human health. One study also showed
that some pig-derived MRSA ST9 isolates shared a close phylogen-
etic relationship with human clinical isolates, suggesting that
human- and pig-derived isolates evolved from a common ances-
tor or that ST9 isolates had been exchanged between humans and
animals in either direction.9

Over the last decade, high-resolution WGS analysis has been
applied to unravel the dynamic evolution of S. aureus lineages,
including ST398, ST239, ST22, ST30, ST8, ST80 and USA300.1,13–19

These studies have included a large number of community-
acquired and hospital-acquired MRSA isolates and provided insight
into the evolution, emergence and transmission dynamics of the
respective STs. However in this regard, comparatively little is
known about ST9, which harbours a large repertoire of mobile
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genetic elements (MGEs), including novel staphylococcal cassette
chromosome mec (SCCmec) elements,20–23 S. aureus pathogen-
icity islands (SaPIs), and antimicrobial resistance gene clusters.23 A
study showed that MGEs make up 15%–20% of the S. aureus gen-
ome.24 It is also worth noting that multiresistance gene clusters,
containing the aminoglycoside resistance gene aadE, the amino-
cyclitol resistance gene spw, the lincosamide resistance gene
lnu(B), and the pleuromutilin-lincosamide-streptogramin A (PLSA)
resistance gene lsa(E), are widely present in ST9 isolates.21,25

Using WGS analysis, we aimed at tracking the spread of MRSA
ST9 throughout different areas of China and investigated the evo-
lutionary relationships among isolates. We described the phyl-
ogeny of ST9 isolates using a data set of 131 genomes collected
between 2002 and 2016 from 11 provinces in China, investigated
the novel structure and distribution of the lsa(E)-carrying multire-
sistance gene cluster, and genotyped prophages in the genomes
of the ST9 isolates. Overall, our results showed that: (i) ST9 has
been spreading in China rapidly since 1987; (ii) MGEs have likely
been acquired before ST9 emergence; and (iii) antimicrobial multi-
resistance has stabilized during evolution.

Materials and methods

Bacterial isolates

The data set used in this study comprised 131 ST9 isolates. Among them,
94 MRSA and MSSA isolates collected by our group were selected for
sequencing.21 The sequences of another 24 isolates had been reported in
our previous work.12 Publicly available WGS data for 13 ST9 isolates was
retrieved from the NCBI database (https://trace.ncbi.nih.gov/). The data set
consisted of 114 healthy pig-derived and 17 human-derived isolates from
11 provinces (Table 1 and Figure S1, available as Supplementary data at
JAC Online). All six human clinical isolates were from hospitals in Taiwan
and the remaining 11 human isolates from healthy pig-farmers in main-
land China.26 Detailed information regarding all isolates included in this
study is provided in Table S1.

DNA preparation, WGS, SNPs and core-genome
phylogeny
DNA extraction, library construction, and WGS were carried out as previous-
ly described.27 Two of the genomes were sequenced using the PacBio
RSII sequencer (Bionova Biotech Co.). Trimmomatic,28 Kraken,29 and
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc) were
used for reads quality control. Isolates with low quality reads were excluded
from analyses.

Paired-end reads and assemblies (n = 119 and n = 12, respectively) were
mapped against the reference genome of MRSA isolate QD-CD9 (GenBank
accession no. NZ_CP031838) using Snippy (https://github.com/tseemann/
snippy). The resulting bam files were extracted to filter heterozygous allele
calls and generate the core alignment, from which we removed sites and

ran Gubbins30 using default settings to detect homologous recombination
events. For each SNP that met the criteria in every isolate, consensus allele
calls for SNP loci were extracted from all genomes as described previous-
ly.31 SNPs with confident homozygous allele calls (Phred quality >20) in
>90% of the genomes were merged to produce an alignment of 5075 sites.

Maximum likelihood (ML) trees were constructed using RaxML v8.1.2332

with a general time-reversable (GTR) model and gamma distribution of rate
heterogeneity and were performed five times with 100 bootstrap replicates
for each run. We selected the tree with the highest likelihood score. We con-
structed an additional tree that included seven outgroup genomes in the
same way without Gubbins running to assure the topology was correct
(Figure S2).

Assembly, annotation and pangenome analysis
Unicycler v0.4.4-Beta33 was used to generate SPAdes v3.10.0 assemblies
for the sequences on the Illumina platform and PacBio.34 Assembled reads
were corrected and trimmed using Circlator.35 Prokka v1.14.536 was used to
annotate each assembly, while Roary v3.6.037 was applied for determining
core and accessory genes for all annotated genomes using default param-
eters. Core genes were defined as those present in at least 95% of
genomes.

Detection of resistance/virulence genes and phages
Antimicrobial resistance genes were detected using SRST2 against the
ARGannot database,38 with a cutoff of 90% coverage. The resulting sequen-
ces were subjected to BLAST analysis against the NCBI nucleotide database
to determine the similarity to previously published sequences. Virulence
factors were identified using the VFDB39 with an 80% identity cutoff. All
genomes were screened using PHASTER40 to detect prophages.

Bayesian molecular clock analysis
The temporal signal was investigated in Tempest v1.5.3.41 We subsequent-
ly used BEAST v2.4.742 to estimate a Bayesian phylogeny with divergence
dates using a GTR substitution model. In informal model testing, as the co-
efficient of rate variation parameter was calculated to be 0.91 [95%
Highest Posterior Density (HPD) = 0.81–1.01] and the distribution was not
abutting zero, a relaxed clock model was favoured over a strict clock model.
Notably, the phylogeny generated from this initial analysis showed a differ-
ent topology from that obtained from the outgroup rooted ML tree, with
low posterior probabilities for the deeper nodes, since the maximum clade
credibility (MCC) tree topology was erroneously driven. To overcome this
problem, we fixed the tree topology to that of the outgroup-rooted and
well supported ML tree. BEAST was run with a Markov chain Monte Carlo
length of 3%109, sampling every 3%105 generations, with the first 10% of
the data discarded as burn-in. After comparing the results of different
model combinations obtained using clock models (strict, uncorrelated
relaxed exponential, uncorrelated relaxed lognormal) and demographic
models (coalescent constant and exponential), the relaxed lognormal clock
with coalescent exponential population defined as the best fitting model
priors was used as it produced higher overall likelihoods (Figure S3a, b).
Each model was run three times. Good convergence of chains and effective
sample size values (�200) were inspected using Tracer v1.7.1.43 We con-
ducted date-randomized tests with 20 replications using BEAST and R
package TipDatingBeast (Figure S3c).44

Data availability
All genomic data are available at NCBI Bioproject database under accession
no. PRJNA487590. Additional prophage genomes are available at Genbank
under accession nos. NZ_023500.1 (stauST398-2), NC_009762.3 (tp310-2),
and NC_020199.1 (phi7401PVL). Outgroup isolates used in the context
phylogeny are available from NCBI under accession nos. SAMEA698264

Table 1. Numbers of S. aureus ST9 isolates from pigs and humans

ST9 isolates
Healthy

pig origin

Human (pig farmer) origin

AllHealthy Clinical

MRSA 108 6 (6) 6 (2) 120

MSSA 6 5 (5) 0 (0) 11

All 114 11 (11) 6 (2) 131
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(ST150), SAMEA698556 (ST88), SAMEA698205 (ST109), SAMEA698249
(ST9), SAMEA698727 (ST101), SAMEA698411 (ST101), and SAMEA698577
(ST97).

Results

Test collection

We analysed WGS data of 120 MRSA and 11 MSSA ST9 isolates
from pigs (n = 114) and humans (n = 17), collected in 11 provinces
in China between 2002 and 2016 (Figure S1 and Table S1). Only
one isolate harboured a pseudo-SCCmec XII element,20 while all
remaining MRSA isolates carried an SCCmec XII cassette. Except
for the isolates FJ-M6 (spa type t4358) and TW-TSAR07 (spa type
t4132), all other isolates were assigned to spa type t899, which is
consistent with previous studies.10,21,23,45,46 From the dataset, a
total of 18 182 SNPs were extracted from the non-repetitive core-
genome. Comparative analysis showed low nucleotide divergence
across core-genomes of ST9, with a median pairwise distance of
133 SNPs (range 10–242), and 0.0047% nucleotide divergence
(range 0.000035%–0.0085%).

Population structure of ST9 was divided into two clades

A phylogenetic tree constructed from the core-SNPs showed the
separation of the ST9 isolates into two distinct lineages, ST9-A
(n = 122) and ST9-B (n = 9) (Figure 1a), supported by 100% boot-
strap support of main nodes. The comparison of pairwise SNP dis-
tances within and between ST9-A and ST9-B confirmed the validity
and the genetic variation of them (Figure 1b). Pig- and human-
derived isolates clustered into both sub-clades, while the eight
MSSA isolates and one MRSA isolate representing ST9-B were all
from rural Shandong.12 Despite the observation that the ST9
isolates from different provinces showed variable degrees of differ-
entiation as illustrated by the multiple small branches, they were
in general closely related. In most cases, porcine MRSA ST9 isolates
from the same province or region clustered together (Figure 1a).
However, there were also subclusters that comprised ST9 isolates
from different regions, e.g. Guangdong, Henan, and Shandong.
The observation that there was no significant difference of pair-
wise SNP distribution among provinces may be interpreted as
evidence of isolate exchange (Figure S4).

ST9 emerged around 1987 and evolved at a rapid rate

We detected a strong temporal signal in the alignment (Figure
S3d), sufficient to estimate evolutionary rates and dates for the
most recent common ancestor (MRCA). Hence, we estimated the
divergence date and evolution rates of the ST9 isolates using
BEAST. BEAST analysis suggested an initial divergence of the ST9
population in pig farming in approximately 1987 (Figure 2, 95%
HPD = 1976 to 1997), which is about 20 years earlier than when
ST9 MRSA was first identified among pigs in China.45 The combined
estimate for the substitution rate within the ST9 population
was 2.73%10#6 per site per year (95% HPD = 1.97%10#6 to
3.46%10#6), equivalent to the accumulation of 7.80 SNPs per gen-
ome per year (95% HPD = 5.63 to 9.88). The MRCA for the entire
ST9-A and ST9-B were estimated to be 1992 (95% HPD = 1985 to
1998) and 2007 (95% HPD = 2001 to 2012), respectively.

ST9 isolates shared similar and stable multiresistance
properties

We noted a similar pattern of antimicrobial resistance within the
ST9 lineage. Predicted resistance phenotypes across ST9 isolates
were common for b-lactam (99.2%), aminoglycoside (100%),
aminocyclitol (99.2%), lincosamide (100%), macrolide (64.9%),
tetracycline (99.2%), trimethoprim (100%), florfenicol (93.1%),
and fluoroquinolone resistance (100%), with a corresponding
resistome composed of acquired and chromosomally carried re-
sistance genes and resistance-mediating mutations (Table S1).

Since specific MGEs caused differences between ST9 and other
lineages,23 we examined the involvement of these genomic drivers
in the dissemination of the ST9 isolates. In addition to the SCCmec
XII element, ST9 isolates contained SaPIbov4 (100%), lsa(E)-clus-
ter (100%), the blaZ-carrying b-lactam resistance transposon
Tn552 (100%), the aacA-aphD-carrying aminoglycoside resistance
transposon Tn4001 (70.2%), and the fexA-carrying florfenicol
resistance transposon Tn558 (92.4%). We combined the phylo-
genetic data and the resistance genotype data to speculate about
the timeline of genetic events that accompanied the evolution of
ST9 (Figure 2). The lsa(E)-cluster, SaPI, and egc were present in the
MRCA of all isolates, assuming that they were likely acquired prior
to 1987. Certain MGEs including SCCmec XII, Tn4001, Tn552, SaPI,
and the enterotoxin gene cluster had been acquired before 2002,
whereas the earliest Tn558-harbouring isolate appeared in 2008.
Tn4001 and Tn558 were lost from several clusters, but remained
prevalent in the ST9 isolates. The ST9 population presumably
shared most of these MGEs through vertical inheritance because
they were present in the oldest isolate. Thus we hypothesized the
MGEs most likely stabilized in the genomes of ST9 isolates.

To further test this hypothesis, we investigated the chromo-
somal structure of the 29 kb lsa(E)-cluster in ST9 (Figure 3a).
Compared with previous reports,25,47–49 lsa(E)-clusters in our iso-
lates showed more complex structures. The complete structure of
the lsa(E)-cluster in the genome of NX-T55 consisted of region
A (IS257-repB-aadD-IS257), region B [classical lsa(E)-cluster], and
region C [erm(C)-IS257-Tn4001], and contained seven resistance
genes [aacA-aphD, aadE, aadD, erm(C), tet(L), lsa(E), lnu(B), and
spw]. The conserved region B was observed in all 131 genomes.
Many insertion sequences embedded in the clusters indicated that
horizontal transfer events might have played a role in the forma-
tion of the variants of the lsa(E)-cluster. We observed 7 bp direct
repeats (50-CGGGCCA-300) between truncated-repU and aadD in re-
gion A that were identical to those in plasmid pG38,50 suggesting
gene transfer events from the plasmid to the chromosome
(Figure 3b).

ST9 harboured similar phage structures and lacked
certain virulence genes

The accessory genome can be a major driver of adaptation.51

Therefore, we performed pan-genomic analysis to identify differ-
ences among the acquired gene content of the ST9 isolates (Figure
S5). We identified a total of 2273 core genes and 2271 accessory
genes, with remarkable conservation of the gene content
observed among the ST9 genomes. PHASTER analysis revealed
that the number of phage sequences ranged from 0–2 (Table S1).
We next examined the distribution of seven phage types based on
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Figure 1. The population structure of ST9. (a) A midpoint-rooted maximum likelihood phylogenetic tree of ST9 (n = 131; MRSA = 120, MSSA = 11)
based on 18 182 individual SNPs. Black and grey dots on the nodes indicate bootstrap support higher than 90, and from 80 to 90, respectively.
Coloured circles in the inner ring and outer ring indicate the different provinces from which the isolates were collected, and the MRSA/MSSA isolates,
respectively. The stars represent the sample source. The ST9-A (n = 122) and ST9-B (n = 9) clades are indicated by green and purple bands. (b) Core-
genome pairwise SNP comparisons of within and between ST9-A and ST9-B groups. The groups had smaller within-group diversity than between-
group diversity. SD, standard deviation; min, minimum; max, maximum. This figure appears in colour in the online version of JAC and in black and
white in the print version of JAC.
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integrase genes.52,53 Sa2int and Sa4int were present in 26.0%
(34/131) and 33.6% (44/131) of our isolates, while Sa1int and
Sa5int were only found in 3.1% (4/131) and 5.3% (7/131), respect-
ively. Sa2int prophages did not carry any known virulence determi-
nants. Sa3int prophages were absent from the ST9 lineage despite
being present in 90% of S. aureus genomes described to date.54

Thus, ST9 completely lacks some of the staphylococcal enterotoxin
and superantigen genes (i.e. sea, sek, and tst), carried on Sa3int
phages.55 Genomic structural comparison between the prophages
in ST9 isolates revealed a high degree of similarity (Figure S6). We
also examined the restriction-modification systems (R-M system)
in our isolates. All ST9 isolates harboured an intact type I R-M sys-
tem which is tightly associated with the lineages or CCs into which
S. aureus isolates are divided (Table S1).56

To further understand the propensity of the ST9 isolates to
cause disease, we examined the genome sequences for S. aureus
virulence factors (Table S1). None of the isolates was positive for
genes encoding the Panton–Valentine leucocidin (lukS/F-PV).
However, all isolates carried genes encoding the a- and b-toxins
(hla and hlb), Ç-haemolysin (hlgA/B/C), and the von Willebrand
factor binding protein (vwb). Moreover, the ST9 isolates harboured

the enterotoxin gene cluster (Table S1), even though the Sa3int-
encoded sea gene was missing.

Discussion

In contrast to the previous research on ST9,23 our large-scale study
provides improved insight into the local evolution and genomic
structure of the LA-MRSA ST9 in China. The numbers of samples
from each province in our data set is uneven due to the availability
of ST9 isolates from the different provinces of China. Other studies
have also shown that MRSA ST9 in healthy pigs occurs in the differ-
ent provinces at various frequencies, estimated to range from
3.6% to 47%, with an average of 11.2%.10,21 Pig- and human-
derived isolates clustered into both sub-clades (ST9-A or ST9-B),
suggesting that host exchanges have sometimes occurred be-
tween pigs and humans in the evolutionary history of ST9, which
has also been demonstrated by other research.23 Clinical isolates
and pig-derived isolates were clustered on the same branch of the
phylogenetic tree, suggesting that ST9 has also the ability to colon-
ize humans and might pose a non-negligible threat to the health
of both humans and pigs. The observation that isolates from the

Figure 2. Molecular clock estimate of the emergence of ST9. Shown is the MCC tree for ST9, with the timescale estimated in BEAST using a variable
clock model (uncorrelated lognormal). The posterior possibility of each node corresponds to the ML tree. The tips of the tree are constrained by isola-
tion dates. Different MGEs are shown in binary form, where black and white regions represent the presence and absence of the elements, respective-
ly. Tip circles with colours indicate the different areas from which the isolates were collected. The little stars beside the tip points represent human
samples. The green and purple binary represents subclade ST9-A and ST9-B, respectively. The red bars indicate the respective 95% highest posterior
density intervals of three main differentiation nodes (MRCA, ST9-A, and ST9-B). This figure appears in colour in the online version of JAC and in black
and white in the print version of JAC.
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same province clustered together suggested the regional develop-
ment of ST9, whereas the subclusters comprising isolates from
different areas may result from pig trade.

The combination of phylogenetic and molecular clock analyses
provided a compelling depiction of the emergence of ST9 from its
proposed origins in China around 1987 to its current status as the
most prevalent LA-MRSA lineage in China.10,21,57 The separation of
ST9-A and ST9-B indicates the individual evolutionary paths along
which the two clades have developed, while the distance between
them suggests that their core-genomes are slightly divergent. We
did not reconstruct the ancestral state for the reason of the uncer-
tainty in the tree nodes, but according to the molecular clock with
binary, we could infer that the main MGEs, such as SCCmec, were
acquired before the oldest ST9 isolate emerged. The acquisition of
SCCmec may facilitate the expansion of S. aureus,58 including ST9.

Crucial for the survival of S. aureus is the ability to generate gen-
etic point mutations and recombinations, enabling it to rapidly
adapt to new ecological niches.58 A study estimated the rate of
recombinations within CCs and concluded that point mutations
were at least 15-fold more likely to happen than recombinations.59

Bayesian analysis suggested that LA-MRSA ST9 has a rapid substi-
tution rate compared with other S. aureus STs. The estimated

substitution rate of ST9 isolates (2.73%10#6, 95%
HPD = 1.97%10#6 to 3.46%10#6) was comparatively higher
than those reported previously for many S. aureus lineages such as
ST22 (1.3%10#6, 95% HPD = 1.2%10#6 to 1.4%10#6), ST8
(6.15%10#7, 95% HPD = 5.53%10#7 to 6.77%10#7), and ST398
(1.49%10#6, 95% HPD = 9.44%10#7 to 1.97%10#6), but was
similar to that of ST239 (2.2%10#6, 95% HPD = 1.96%10#6 to
2.51%10#6).14,60–62 ST9 emerged in China 20 years later than
ST398 in Europe,63 however, the evolution rate of ST9 was faster,
which may be related to the extensive use of antibiotics in the pig
industry and the continuous growth of the pig trade at the end of
last century. Because of the rapid evolution, more in-depth gen-
omic monitoring of ST9-MRSA in the various regions will be neces-
sary to understand the local epidemiology and evolutionary
history. Furthermore, a limitation of the sampling framework used
as the basis for this study is that the non-structural sampling
and the limited sample size do not provide a sufficiently high
confidence level to allow speculation on the geographical spread
of the ST9 lineage.

Our data showed that all ST9 isolates have accumulated anti-
microbial resistance genes since the early ages of the lineage. As
an evolutionary advantage in the presence of selective pressure,

Figure 3. Structural comparison of the lsa(E) cluster. (a) Comparative structural analyses of five different types of lsa(E)-cluster from five isolates.
Isolates NX-T55, QD-CD9, and A69/A71/A187 were included in our data set, while genomic information for isolate C2944 and plasmid pV7037 was
retrieved from the NCBI database. Regions of >95% nucleotide sequence identity are indicated by shading. (b) Sequence comparison of plasmid pG38
and parts of the lsa(E)-cluster. Open reading frames are shown as arrows, indicating the direction of transcription. Different colours indicate different
genes: insertion sequences (green), resistance genes (red), and functional and hypothetical genes (yellow). The 7 bp direct repeats are shown in blue
boxes. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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many MGEs are stably present in the ST9 genome. The observed in-
tegration of IS257-aadD-(repU-like)-IS257 and Tn4001 into the
chromosomal lsa(E)-cluster, within which genes are more stable
than in plasmids, suggested that the integration process was
mediated by IS257 which has been involved in chromosomal inte-
gration and plasmid co-integrate formation processes in staphylo-
cocci.64,65 The abundance of MGEs suggests that the success of
ST9 isolates in colonization of various hosts is likely the result of a
specific mobilome content. S. aureus from animals can be a reser-
voir of antimicrobial resistance genes,66 and disseminate MGEs to
other members of the bacterial population, occasionally by
enhancing their pathogenicity.67 Hence, the wide distribution of
ST9 isolates raises the possibility that these isolates are important
donors of MGEs to other environmental bacteria.

Phages play an important role in gene transfer and phage-
mediated transmission of virulence genes may be affected by the
phage type and limitations associated with the lineage of the host
bacterium.68,69 The ST9 isolates do not carry known virulence fac-
tors associated with human diseases, and, therefore, are likely to
be less virulent. Sa3int prophage, which reportedly harbours viru-
lence genes such as sak, chp and scn that encode modulators of
the human innate immune response, appears to be completely
absent in the ST9 lineage, suggesting ST9 is more adaptive to ani-
mals than humans. Under long-term antimicrobial selection pres-
sure, MGEs may have been exchanged within the ST9 lineage,
resulting in similar antimicrobial resistance phenotypes and geno-
types. In addition, ST9 phages had a high degree of homology to
phage stauST398_2 of the CC398 isolate SO385. It is worth noting
that LA-MSSA CC398 is also occasionally detected in China.21,45,56

Notably, a study has shown that ST9 existed in Europe before the
emergence of CC398.70 In other studies conducted in the United
States, ST9 was one of the most common MSSA STs in pigs.70,71

The acquisition of multiresistance is considered as one plausible
explanation for the successful emergence of ST9 in China.10,21–23

The prevalence of resistance genes among the ST9 isolates is likely
attributed to the extensive use of antimicrobial feed additives in
livestock rearing,72 with the consequence of the rapid evolution.
The observed high antimicrobial resistance rates for b-lactams,
tetracyclines, florfenicol, and fluoroquinolones among others, re-
flect the sales and consumption figures of veterinary antimicrobial
agents used in pig breeding industry in China.72 The future will
show whether traditional Chinese medicine73 can replace or re-
duce the use of antimicrobial agents in pigs and thereby lower the
selection pressure.
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