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The carbapenems, imipenem and meropenem, are anoma-
lous �-lactams in their antipseudomonal behaviour, as well
as in their �-lactamase stability. In the case of imipenem,
MICs for Pseudomonas aeruginosa isolates are unrelated
to those of other �-lactams, whereas a strong relationship
exists between the MICs of different penicillins and
cephalosporins for most Pseudomonas isolates.1–4 This
observation is partly because imipenem MICs are in-
dependent of derepression of the chromosomal AmpC 
�-lactamase, whereas this factor strongly co-determines the
MICs of penicillins and cephalosporins.5 More critically,
the MICs of imipenem are unaffected by the broad-spec-
trum intrinsic resistance expressed by many P. aeruginosa
isolates, whereas this mechanism strongly co-determines
the MICs of penicillins, cephalosporins and several unre-
lated drug classes, including quinolones, tetracyclines and
chloramphenicol.1–4

Intrinsic resistance is expressed to a variable degree by
all P. aeruginosa isolates, which are less susceptible than
Enterobacteriaceae to most antibiotics. This behaviour 
was long thought to depend on impermeability,1,2 but is
now found to involve an interplay of impermeability with
multi-drug efflux, mediated principally by MexA-MexB-
OprM.3,4,6,7 The MexB protein is a broad-spectrum pump,
located in the cytoplasmic membrane; the OprM protein is
a pore-forming protein that provides an exit portal through
the outer membrane; and the MexA protein physically
links these components.

Upregulation of MexA-MexB-OprM arises at high fre-
quency as a result of the nalB mutation at the mexR
locus8–10 and raises the MICs of penicillins, cephalosporins,
quinolones, tetracycline and chloramphenicol (Table), but
not those of imipenem. nalB mutants may be selected in
vitro, or during therapy with fluoroquinolones, penicillins
and cephalosporins,11,12 and were the predominant pheno-
type selected when carbenicillin and ticarcillin were the

mainstays of antipseudomonal treatment.13 The broad
range of resistance conferred by upregulation is intriguing,
and it is postulated that MexA-MexB-OprM has a natural
role in removing amphipathic substances, which otherwise
invade and disorganize the cytoplasmic membrane.14 Such
a role would favour the evolution of a very broad substrate
specificity. The lack of activity against imipenem may be
because this carbapenem lacks any lipophilic phenyl or 
heterocyclic side chain(s).

The advantage of evading intrinsic resistance is tem-
pered by the fact that imipenem readily selects resistant
mutants of P. aeruginosa, which are found to lack OprD
protein (initially called D2 porin).15 The primary role of
this protein is in the passive uptake of basic amino acids
across the outer membrane, but it forms pores that are 
also permeable to carbapenems, though not to other 
�-lactams.16 Its loss raises the imipenem MICs from 1–2
mg/L, as for typical P. aeruginosa, to 8–32 mg/L, thus con-
ferring clinical resistance. The MICs of non-carbapenems
are unaffected. The resistance demands continued expres-
sion of the chromosomal AmpC �-lactamase, whether
inducible or derepressed,17 but this aspect is peripheral in
the present context. Carmeli et al.18 noted that selection of
resistant P. aeruginosa during imipenem therapy was 
substantially more frequent than selection of ceftazidime-,
piperacillin- or ciprofloxacin-resistant mutants, and Calan-
dra et al.19 found a 17% rate of resistance emerging during
imipenem treatment of P. aeruginosa infections.

The interactions of meropenem with these resistance
mechanisms differ from those of imipenem, with implica-
tions that are provoking debate. The MICs of meropenem
are 0.12–0.5 mg/L for typical strains of P. aeruginosa, and
either upregulation of MexA-MexB-OprM or loss of OprD
raises them to 2–4 mg/L,5,20 thereby reducing susceptibility
without conferring resistance relative to either BSAC or
NCCLS breakpoints. It is inferred that meropenem, like
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imipenem, can use the OprD pathway to enter the pseudo-
monal cell but that, unlike imipenem, it is recognized and
ejected by MexB-mediated efflux, presumably because of
its 2� heterocyclic side chain.

These differences between imipenem and meropenem
allow arguments for either compound as ‘the less likely to
cause resistance in P. aeruginosa’. The case for imipenem21

argues that, although it selects OprD– mutants, these have
a narrow-spectrum insensitivity and remain fully sus-
ceptible to other drugs, whereas meropenem resistance 
co-depends on upregulation of MexA-MexB-OprM, a
mechanism that compromises fluoroquinolones as well as
other �-lactams. The case for meropenem17,22 is that sub-
stantive resistance is much harder to achieve than to
imipenem, since two mutations (loss of OprD and upregu-
lation of MexA-MexB-OprM) are needed rather than one.
The likelihood that a cell will simultaneously undergo both
mutations is c. �10–14, whereas imipenem-resistant mutants,
lacking OprD, emerge at c. 10–7. Although formal analyses
of the risk of meropenem resistance emerging during 
therapy are lacking, there are far fewer case reports than
for imipenem, even after 6 years of use. Moreover, there is
a greater facility to raise the dosage with meropenem, over-
coming low-level resistance.

The stronger case is surely that for meropenem, pri-
marily because of the high frequency of emergent imi-
penem resistance reported by Carmeli et al.18 If imipenem
is preferred as an antipseudomonal carbapenem, there is a
strong risk that resistance will emerge and that a sub-
sequent antibiotic will be needed. This, in turn, will exert its
own selection pressure. In general the risk of obtaining
multi-resistant mutants in such sequential usage is greater
than where a drug requiring a double mutation is used in
the first instance against a drug-naive bacterial popula-
tion.23

Several caveats should be noted. First, in the UK at least,
resistance to either carbapenems remains rare in P. aerugi-
nosa.24 Secondly, the present arguments relate only to the
therapy of P. aeruginosa infections. Thirdly, upregulation
of MexA-MexB-OprM and loss of OprD are not the sole
routes to carbapenem resistance in P. aeruginosa (although
they are considerably the most prevalent). Upregulation of
another efflux system, MexE-MexF-OprN is associated
with raised MICs of both carbapenems as well as fluoro-
quinolones,25 although it is unclear whether this pump itself
recognizes carbapenems or whether the association reflects
co-regulation of MexE-MexF-OprN with OprD.26 This
infrequent mechanism, mediated by the nfxc mutation, is
sometimes selected by quinolones but rarely, if ever, by
carbapenems. Finally, although still rare, metallo-�-
lactamases of the IMP and VIM families are increasing
sources of resistance to carbapenems in P. aeruginosa.27

Isolates of P. aeruginosa with IMP-1 enzyme are widely
scattered, but infrequent, in Japan,28 and a major outbreak
of VIM-producers was reported in Greece.29 IMP and VIM
enzymes can confer high-level resistance to all �-lactams,

248

T
ab

le
.

E
ff

ec
ts

 o
f m

ut
at

io
ns

 a
ff

ec
ti

ng
 r

es
is

ta
nc

e 
to

 �
-l

ac
ta

m
 a

nt
ib

io
ti

cs
 in

 P
. a

er
ug

in
os

a

E
ff

ec
t o

n 
su

sc
ep

ti
bi

lit
y 

or
 r

es
is

ta
nc

e 
to

M
ut

at
io

na
l e

ve
nt

ur
ei

do
pe

ni
ci

lli
ns

ca
rb

ox
yp

en
ic

ill
in

s
ce

ft
az

id
im

e
im

ip
en

em
m

er
op

en
em

qu
in

ol
on

es
te

tr
ac

yc
lin

e
ch

lo
ra

m
ph

en
ic

ol

D
er

ep
re

ss
io

n 
of

 A
m

pC
 �

-l
ac

ta
m

as
e

R
r

R
–

–
–

–
–

(m
ut

at
io

n 
at

 a
m

pD
)

U
pr

eg
ul

at
io

n 
of

 M
ex

A
-M

ex
B

-O
pr

M
r/

R
R

r/
R

–
r

R
R

R
R

R
(n

al
b

m
ut

at
io

n 
at

 m
ex

R
)

L
os

s 
of

 O
pr

D
–

–
–

R
r

–
–

–
U

pr
eg

ul
at

io
n 

of
 M

ex
E

-M
ex

F
-O

pr
N

–
–

–
r/

R
r

R
–

–
(n

fx
c

m
ut

at
io

n,
 a

ls
o 

do
w

nr
eg

ul
at

in
g 

op
rD

)
L

os
s 

of
 O

pr
D

 p
lu

s 
up

re
gu

la
ti

on
 o

f M
ex

A
-

R
R

R
R

R
R

R
R

R
R

M
ex

B
-O

pr
M

r,
 s

us
ce

pt
ib

ili
ty

 r
ed

uc
ed

, o
ft

en
 w

it
ho

ut
 fr

an
k 

re
si

st
an

ce
; R

, r
es

is
ta

nc
e 

us
ua

lly
 c

on
fe

rr
ed

; R
R

, n
at

ur
al

 r
es

is
ta

nc
e 

of
 P

. a
er

ug
in

os
a

in
cr

ea
se

d 
to

 th
es

e 
dr

ug
s;

 –
, n

o 
ef

fe
ct

 o
n 

M
IC

s.



Leading article

including both carbapenems, and may become a significant
problem in the future. At present, though, these enzymes
are rare, and future increases in their prevalence require 
de novo spread of strains or genes. In contrast, upregulation
of MexA-MexB-OprM and loss of OprD arise by simple
mutation, can occur in any P. aeruginosa strain and are
widely relevant to the choice of antipseudomonal carba-
penem.
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