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Imipenem, the first carbapenem discovered, was developed more than two decades ago in response
to an unmet need for a highly potent, broad-spectrum antimicrobial agent with a strong safety profile. It
has since been used to treat more than 26 million patients. In an era where antibiotic use has driven
antibiotic resistance, choosing appropriate initial therapy for serious infection is critical. Appropriate
antibiotic regimens must cover all likely pathogens, be administered promptly at the correct dosage
and dosing interval, be well tolerated and prevent the emergence of resistance. While imipenem was
initially reserved for use in intractable, serious infections, the benefits of early aggressive therapy
are now known, making imipenem a core agent in de-escalation therapy due to proven efficacy and
safety for indications such as nosocomial pneumonia, intra-abdominal infection, sepsis and febrile
neutropenia. De-escalation therapy with an agent such as imipenem minimizes resistance develop-
ment by initiating aggressive initial treatment and then tailoring therapy based on patient response
and culture results, switching to a less expensive, narrower spectrum antibiotic regimen or shorten-
ing the duration of therapy. Imipenem has maintained sustained clinical efficacy, tolerability and
in vitro activity against important bacterial pathogens for two decades. We review the factors
that continue to make imipenem as appropriate an agent for de-escalation therapy now as it was
20 years ago.
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Introduction

b-Lactams were among the first antimicrobial agents available for
the therapy of infectious diseases. Over time, however, problems
such as resistance development and selection of resistant
organisms have become apparent. The medical need for com-
pounds with broad-spectrum activity, rapid bactericidal action,
limited resistance-promoting properties and good tolerability has
been met with carbapenem compounds. Imipenem was the first
carbapenem antibiotic selected for development more than two
decades ago because it was a highly potent, broad-spectrum
antimicrobial agent with a good safety profile.1,2 Since that time
more than 26 million patients have been treated with imipenem
(data on file, Merck & Co., Inc.), and imipenem continues to play
an important role in the empirical and as well as the targeted
treatment of severe and difficult to treat infections. This review
will summarize important features of imipenem, discuss the
accumulated treatment experience that has been established over
20 years of therapy with imipenem, and discuss its place in
targeted and de-escalation therapy.

Chemical properties

Imipenem (N-formimidoyl-thienamycin) is an amidine derivative
of thienamycin that is 5–10 times more stable than the mother
compound (Figure 1). Deliberate substitution of a methyl moiety
in place of a sulphur was introduced to increase bactericidal
activity and b-lactamase stability in the hydroxyethyl side
chain. Imipenem is rapidly degraded by kidney dehydropeptidase-
1, thus it was combined with cilastatin, an inhibitor of this enzyme.
Cilastatin not only prevents the degradation of imipenem but also
protects the kidneys against potential toxic effects exerted by
higher doses of imipenem. Imipenem and cilastatin are combined
in a 1:1 ratio. Because cilastatin has no antibacterial activity of its
own, only the amount of imipenem is given for dosing purposes.

Mechanism of action

Like all other b-lactams, imipenem inhibits bacterial cell wall
synthesis by binding to and inactivating relevant transpeptidases,
known as penicillin binding proteins (PBPs). In Escherichia coli,
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imipenem inhibits the transpeptidase activities of PBPs-1A, -1B
and -2, and the D-alanine carboxypeptidase activities of PBP-4
and PBP-5. It also causes strong inhibition of the transglycosylase
activity of PBP-1A while it inhibits the transpeptidase activity
of PBP-3 only weakly, which is consistent with the finding that it
has low binding affinity to PBP-3 and does not inhibit septum
formation by the cells.3 This is in contrast to all other b-lactams,
including other carbapenems that preferentially bind to PBP-1
and PBP-3. Consequently, imipenem induces sphere formation
with subsequent cell rupture but not the filamentous growth of
bacteria observed for otherb-lactams. Therefore, imipenem therapy
reduces the amount of lipopolysaccharide liberated during
bacteriolysis.4 This effect was shown to be clinically relevant in a
studywith patients suffering fromGram-negative urosepsis.5When
compared with ceftazidime treatment, patients who received
imipenem showed a faster defervescence, lower endotoxin levels
and a tendency for faster normalization of cytokine levels.

The mode of action of imipenem allows for activity against
Gram-positive and Gram-negative bacteria, cocci and bacilli,
aerobes and anaerobes. Imipenem may have activity against
Mycobacteria spp., but Mycoplasma, Chlamydia, Legionella,
Stenotrophomonas, Burkholderia, Clostridium difficile and
methicillin-resistant Staphylococcus aureus (MRSA) are not
within its antimicrobial spectrum.

Mechanisms of resistance

Porins and efflux pumps

In order to reach their targets, carbapenems normally cross
through protein channels in the outer membranes of Gram-
negative bacteria called porins.6 Porin OprD deficiencies can
precipitate resistance to carbapenems. The OprD mutation, in
conjunction with AmpC production, is responsible for imipenem
resistance in Pseudomonas aeruginosa.6,7 Porin defects in
Klebsiella are also associated with carbapenem resistance.8,9 A
recent study found ertapenem selected for OprD mutants of
P. aeruginosa, albeit rarely.10

Efflux pumps are proteins that remove certain molecules from
the bacterial cell (Figure 2). They play an integral role in the
intrinsic and acquired resistance of P. aeruginosa to antibio-
tics.11,12 Imipenem is not a substrate of such efflux pumps,
although meropenem is.12–14 The most prevalent efflux system,
MexAB-OprM, has been found to cause resistance to meropenem,
but not imipenem, in vitro.6,12–15 Overexpression of this system
may emerge during antibiotic therapy and may result in treatment
failure.13,16 The MexAB-OprM system induces parallel-resistance
to other antimicrobials such as fluoroquinolones, penicillins,
cephalosporins, macrolides and sulphonamides.6,13,14,17 This
means that up-regulated efflux can quickly render fluoroquino-
lones and the majority of b-lactams ineffective against Pseudo-
monas, leaving the activity of imipenem and aminoglycosides
unaffected.

Extended-spectrum �-lactamases

The most prevalent resistance mechanism against b-lactams is the
production of b-lactamases. While many b-lactamases are not
capable of hydrolysing cephalosporins, the so called extended-
spectrum b-lactamases (ESBLs) have this ability with varying
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Figure 1. Imipenem (N-formimidoyl-thienamycin).
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Figure 2. Mechanisms of resistance in Pseudomonas. Up-regulation of efflux pumps affects fluoroquinolones, penicillins, cephalosporins and meropenem,

but does not affect imipenem.6 Reproduced with permission from the University of Chicago Press.
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specificity for individual cephalosporins.18 Commonly found in
Klebsiella pneumoniae, E. coli and other Enterobacteriaceae,
ESBLs are plasmid-mediated and thus easily transferable. Some
of the in vitro resistance to piperacillin/tazobactam among enteric
pathogens may also be explained by the production of ESBL.19

Carbapenems are not affected by ESBLs and are the agents
of choice in these cases.18,20–22 Chromosomally encoded type-1
b-lactamases such as AmpC are produced by Enterobacter
cloacae, for example. Cephalosporins may be hydrolysed by
AmpC while carbapenems retain activity.23–25 Piperacillin/
tazobactam appears to have limited in vitro activity against
Enterobacter AmpC b-lactamases.26

Carbapenemases

Among the b-lactamases, metalloenzymes are distinguished by
having a zinc ion required for enzymic activity.27 Sometimes
referred to as carbapenemases, they are able to hydrolyse many
b-lactam antibiotics including carbapenems. Two types, IMP and
VIM, have been identified, with IMP primarily isolated from the
important pathogenic anaerobe Bacteroides fragilis28–31 and VIM
from isolates of Pseudomonas and Enterobacteriaceae.32,33 The
cfiA gene appears to be responsible for metallo-b-lactamase
production in imipenem-resistant strains, and its presence is a
better marker than metalloenzyme activity, which may not be
expressed when the gene is silent.30,34,35 Data do not point to
plasmid-mediated transfer or spontaneous mutations causing
resistance acquisition, although parallel-resistance arising from
use of other classes of antibiotics such as quinolones may be an
issue.30,36,37 Although few clinically relevant Bacteroides have
been reported that either produce metalloenzymes or contain the
cfiA gene, this is clearly an area of research activity affecting all
b-lactam antibiotics.29,34 Target modifications such as those
caused by and encoded for by the mecA gene in MRSA confer
resistance to all b-lactams including the carbapenems.38,39

Otherwise imipenem remains active against staphylococci.
The class A carbapenemases (e.g. KPC-1, KPC-2, KPC-3) have

also proven to be clinically important. In a study in 10 hospitals in
Brooklyn, NY, all 96 Klebsiella with KPC carbapenemases were
carbapenem-resistant, with only a few of them retaining suscept-
ibility to cephalosporins or fluoroquinolones.40 Up to this time,
strains producing KPC have primarily been reported in facilities
in the United States.41–43

Resistance and infection control

It has been argued that the broad use of carbapenems results in
rapid resistance development particularly in P. aeruginosa and
Acinetobacter spp. and thus should be avoided.44,45 However,
these reports often have limitations such as lack of appropriate
usage data (i.e. DDD per patient days), neglect of dosing issues,
and lack of distinction between resistance development under
therapy and spread of a resistant clone. Resistance due to clonal
epidemiology is a public health issue that is best addressed by
infection control measures. For example, an in vitro 1999 survey
of 1599 clinical isolates of A. baumannii from 15 hospitals in
Brooklyn, NY, USA found that more than 50% of these isolates
were resistant to the carbapenems imipenem and meropenem.46 A
single strain, Acinetobacter Type 1, accounted for 62% of all
resistant isolates, and this strain was found in all 15 hospitals.
Four strains accounted for 97% of all Acinetobacter isolates. It

was concluded that the rate of carbapenem resistance correlated
with the use of cephalosporins and aztreonam, suggesting
the potential for parallel-resistance. The fact that a single clone
accounted for the majority of a total of 419 unique patient isolates
points to the rampant spread of that clone among the hospitals in
the study and the need for infection control rather than antibiotic
restriction.

An outbreak of KPC class A carbapenemase-positive
Klebsiella was reported in Brooklyn, NY.40 All 96 isolates
were carbapenem-resistant, and most were resistant to cephalos-
porins and fluoroquinolones. A citywide surveillance study
reported rapid spread of this type of carbapenem resistance and
parallel-resistance with other antibiotics, pointing to an immediate
need for enhanced infection control measures.47

Finally, it has been argued that imipenem selects
Stenotrophomonas maltophilia.48 Other studies and our own
experience do not support this notion.49,50

Susceptibility surveys

The potential for resistance has become as important a therapeutic
consideration as efficacy or tolerability. It is a local problem with
global implications. While resistance patterns must be determined
at an institutional level to devise effective treatment strategies,51

there is a consistent trend towards increasing resistance and
novel mechanisms of resistance. Worldwide surveys are helpful
in assessing general aspects of resistance development and in
anticipating future medical needs. Generally speaking, phenotypic
tests that determine MIC values are being used for this purpose. In
order to compare different studies and the impact of methodology
it is necessary to see the original MIC distributions, because wild-
type strains of individual species should cluster at specific MIC
values regardless of the source of the isolate. Furthermore,
breakpoints are set differently in various parts of the world, so that
the same MIC could result in different S-I-R classifications. As an
example of these differences Table 1 shows the current break-
points for carbapenems as put forward by the CLSI and the
EUCAST. Moreover, breakpoints may change over time as more
information becomes available. It may then be difficult to judge
trends in resistance development. Thus susceptibility data should
be given, e.g. as shown in Figure 3 (a and b).

A number of worldwide studies have analysed the phenotypic
susceptibility of imipenem and other antimicrobial agents
over time. Of note is the SENTRY survey,52 the Nosocomial
Prevalence and Resistance Survey (NPRS, Merck & Co., Inc.;
Table 2) and the Meropenem Yearly Susceptibility Test Informa-
tion Collection (MYSTIC) study (Table 3 and Figure 4).53

The SENTRY surveillance programme found ESBL-producing
K. pneumoniae to be a major problem in Latin America (45.4%
resistant), the Western Pacific (24.6%) and Europe (22.6%),
with the vast majority of these isolates resistant to ceftazidime,
ceftriaxone and aztreonam, as is characteristic of most ESBLs.54

Worldwide, 99–100% of these Klebsiella isolates were suscep-
tible to imipenem, although susceptibility to other broad-spectrum
agents was highly variable. For example, K. pneumoniae were
susceptible to cefepime in Canada (94.4%) and the US (87.6%),
but much less so in Europe (63.6%) and Latin America (49.6%).
The situation is much the same with Acinetobacter and
Pseudomonas. While 88.6–95.5% of Acinetobacter isolates from
North America and Latin America were susceptible to imipenem,
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only 67–70% in North America and fewer than 30% in Latin
America were susceptible to piperacillin/tazobactam, ceftazidime
and ciprofloxacin.55 Between 1997 and 1999, susceptibility of
P. aeruginosa to imipenem went from 90% to 86.2% in the
Asia-Pacific region, from 83% to 92% in Canada, from 77% to
74.3% in Latin America, from 88% to 80.9% in the US and from
89.3% to 71.6% in Europe.55

NPRS has supported more than 500 susceptibility studies in
�50 countries. Similar to worldwide SENTRY,52 NPRS data
show increasing worldwide cephalosporin resistance among
Enterobacter, Klebsiella and E. coli, and sustained susceptibility
to imipenem has been observed (Table 2).

MYSTIC data reported that 99.6% of all Enterobacteriaceae
isolated between 1997 and 2003 from 130 centres in Europe,
North America and Latin America remained susceptible to
imipenem, compared with 85–86% that remained susceptible to
ceftazidime or piperacillin/tazobactam (Figure 4).56 These
susceptibility patterns have been noted worldwide (Table 3).57

Dosing, pharmacokinetics and pharmacodynamics

Dosing

Imipenem dosing is well established in adults, children, patients
with impaired renal function and geriatric patients. It should be
noted that the often used 4· 500 mg and 3· 1 g dosing result in
approximately the same time above the MIC (t > MIC).58 Patients
with creatinine clearance of �70 mL/min/1.73 m2 and/or body
weight <70 kg require dosage reductions. For paediatric patients
�3 months of age, the recommended dose for non-CNS infections
is 15–25 mg/kg/dose every 6 h.

Pharmacokinetics and pharmacodynamics

The pharmacokinetics and pharmacodynamics of imipenem are
well established and will be reviewed only briefly. Intravenous
infusion of imipenem over 20 min results in peak plasma levels
of imipenem ranging from 14 to 24 mg/L (250 mg dose), 21 to
58 mg/L (500 mg dose) and 41 to 83 mg/L (1000 mg dose). At
these doses, plasma levels of imipenem decline to <1 mg/L after
4–6 h. The plasma half-life is �1 h. The median concentration of
imipenem 1 h after dosing is 5.6 mg/kg in lung tissue, 11.1 mg/kg
in endometrial tissue, 22 mg/L in pleural fluid, 2.6 mg/L in
cerebrospinal fluid (2 h post-dose) and 16.4 mg/L in interstitial
fluid.

Co-administration with probenecid extends the half-life and
increases the serum concentration. Approximately 10–20% of
imipenem binds to human serum proteins. Imipenem is excreted
renally, with 70% of imipenem recovered in the urine within
10 h and no detectable urinary excretion after that time. Accumu-
lation is not observed in plasma or urine even with regimens
administered as frequently as every 6 h in patients. Imipenem is
distributed extensively in tissues and fluids.59,60

Carbapenem efficacy depends on the dosing interval duration
during which free drug concentration exceeds the MIC. t > MIC
is the best pharmacodynamic predictor of carbapenem efficacy,
with optimal cell kill achieved when 40% of the dosing interval
has drug concentrations higher than the MIC.58,61 A recent study
compared the pharmacokinetic profiles of imipenem (1 g, intra-
venous, 30 min infusion) and meropenem (1 g, intravenous,
30 min infusion) in 20 patients who were critically ill withT
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sepsis.62 Peak serum concentration (Cmax) was significantly
higher with imipenem than meropenem (90.1 – 50.9 versus
46.6 – 14.6 mg/L, P < 0.01) as was the area under the curve
(216.5 – 86.3 versus 99.5 – 23.9 mg·h/L, P < 0.01). The mean
volume of distribution and mean total plasma clearance were
significantly higher with meropenem than imipenem (25 – 4.1

versus 17.4 – 4.5 L, P < 0.01 and 191 – 52.2 versus 116.4 –
42.3 mL/min, P < 0.01). The study estimated that imipenem
would maintain t > MIC for �8 h after a single infusion, whereas
meropenem would only maintain t > MIC over this 8 h period for
pathogens with an MIC �2 mg/L. The authors concluded that the
two carbapenems were not dose equivalent in patients with sepsis,
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with more research needed to clarify whether the more favourable
pharmacokinetic profile of imipenem balances any greater in vitro
potency of meropenem against Gram-negative pathogens.

A recent study simulated target attainment rates of imipenem
and meropenem using the same dose of each drug (250, 500 and
1000 mg every 6 h and every 8 h) and 30 min infusions.63

Imipenem achieved the pharmacodynamic goal more often than
meropenem (58.3–99.2% for imipenem versus 46.9–99% for
meropenem), although no statistically significant differences were
noted. Studies have used 3 h infusions to optimize meropenem
efficacy by increasing the t > MIC, while keeping the drug at
room temperature for <4 h because drug potency decreases after
this point.64,65 A study examining a 3 h infusion of imipenem and
meropenem at a variety of doses found no significant differences
in ability to achieve the pharmacodynamic goal between
imipenem and meropenem.66

Although these models suggest that imipenem and meropenem
should have equal efficacy in a 3 h infusion, they may explain the
higher dosing necessary for meropenem. If a 3 h infusion is
necessary for meropenem to achieve the same efficacy as is
possible with imipenem in a 1 h infusion, this would need to be
taken into consideration. In other words, in order to be effective, it
may be necessary to provide a higher dose of meropenem, or a
longer infusion time. This was outlined in a literature review that
suggested that administering meropenem 500 mg every 8 h
infused over 30 min would have a much lower probability of
attaining 40% t > MIC against P. aeruginosa (72.5%) than would
500 mg every 8 h infused over 3 h (87.9%) or 1000 mg every

8 h infused over 30 min (93.4%).67 The pharmacokinetics of
meropenem may need to be optimized to achieve the critical
t > MIC.61,67

Indications and clinical studies

Imipenem is active against a broad spectrum of pathogens,
making it particularly useful in the treatment of serious poly-
microbial and mixed aerobic/anaerobic infections, as well as
for initial empirical treatment. Guideline documents developed
worldwide for serious infection recommend imipenem as effec-
tive initial targeted or empirical therapy in ventilator-associated
pneumonia (VAP) hospital- and healthcare-acquired pneumonia
(HAP and HCAP), intra-abdominal infection and febrile
neutropenia. Imipenem is indicated for hospitalized patients
with intra-abdominal, lower respiratory tract, gynaecological and
genitourinary tract and skin and soft tissue infections, as well as
for those with sepsis or endocarditis.68,69 Extensive study has
shown imipenem to be effective in these disease areas as well as
in nosocomial and ventilator-associated pneumonia, febrile
neutropenia and for the empirical treatment of serious
infection.70–84 Imipenem is also considered to be appropriate
empirical therapy for serious infection when there is a high
likelihood of infection with resistant organisms or multiple
organisms that might otherwise require multidrug regimens.85

In addition, using imipenem in preference to other antibiotics
during the 5 day period after onset of bacteraemia due to an

Table 2. Worldwide Nosocomial Prevalence and Resistance Survey (NPRS) percentage susceptibility dataa indicate that imipenem has

remained consistently active against the most difficult to treat pathogens responsible for nosocomial infection (data on file, Merck &Co., Inc.)

Percentage susceptibility to imipenem

Country E. coli P. aeruginosa Klebsiella spp. Enterobacter spp. Acinetobacter spp.

Argentinab 100 (n = 152) 65 (n = 194) 99 (n = 171) 99 (n = 104) 74 (n = 248)

Mexicoc 96 (n = 92) 47 (n = 119) 97 (n = 46) 73 (n = 59) 71 (n = 41)

Perud 92 (n = 77) 70 (n = 56) 82 (n = 39) 85 (n = 54) 48 (n = 27)

Cypruse 98 (n = 175) 92 (n = 63) 97 (n = 105) 100 (n = 22) 93 (n = 15)

Germanyb 100 (n = 147) 68 (n = 74) 100 (n = 90) 99 (n = 73) 100 (n = 24)

Swedend 100 (n = 200) 81 (n = 91) 100 (n = 104) 99 (n = 69) 100 (n = 10)

Turkeyf 99 (n = 109) 62 (n = 107) 100 (n = 94) 95 (n = 42) 66 (n = 104)

Chinaf 100 (n = 399) 63 (n = 403) 99 (n = 389) 96 (n = 178) 94 (n = 339)

Russiag 100 (n = 308) 80 (n = 497) 100 (n = 313) 100 (n = 123) 95 (n = 106)

Koreab 100 (n = 75) 70 (n = 177) 98 (n = 137) 93 (n = 47) 91 (n = 143)

Philippinesd 92 (n = 13) 75 (n = 22) 100 (n = 27) 80 (n = 71) 80 (n = 5)

Malaysiaf 100 (n = 40) 78 (n = 110) 100 (n = 163) 100 (n = 40) 40 (n = 161)

Saudi Arabiab 98 (n = 93) 88 (n = 41) 93 (n = 47) 100 (n = 22) 100 (n = 14)

South Africab 100 (n = 59) 65 (n = 88) 100 (n = 54) 99 (n = 76) 77 (n = 101)

aEach site evaluated 100 sequential isolates submitted during the care of ICU patients over a time span of 3 months. Studies were conducted using the Etest
procedure. Results were reported for ‘initial isolates’, the first encountered sample of a given species from a specific patient. Results for repeated isolations were
excluded to minimize bias. The breakpoints used were the ‘fully susceptible’ criteria of the NCCLS (M100-S9, 1999). In the specific case of imipenem, this
breakpoint was 4 mg/L. In the case of E. coli and Klebsiella spp. the recommended criteria for ESBL were applied to ceftazidime and ceftriaxone. A ceftazidime/
clavulanate Etest reagent was supplied for use in verification.
b2001.
c2002–2004.
d2002.
e2000.
f2003.
g1999.
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ESBL-producing organism was independently associated with
lower mortality in one study.86 Imipenem has become a standard
comparator in clinical studies for several indications.76,87,88

Efficacy in special situations

Mycobacterium spp.

There are multiple reports of imipenem efficacy against
Mycobacterium spp. Three patients with M. tuberculosis infec-
tions recalcitrant to most standard antituberculosis agents had
their infections cleared with imipenem and amikacin, with no
recurrence in 12 months of follow-up.89 However, an MIC of
>100 mg/L for imipenem against M. tuberculosis strain H37Rv
was described.90

A review of non-tuberculous mycobacteria listed imipenem
as a parenteral drug of choice in the treatment of infections
due to Mycobacterium fortuitum, Mycobacterium chelonae,

Mycobacterium smegmatis, M. chelonae-like organism, Myco-
bacterium peregrinum, and sorbitol-positive and -negative
biovariants of M. fortuitum.91 Case reports have been published
on the use of imipenem in the treatment of various infections due
to M. chelonae, M. fortuitum and Mycobacterium abscessus.92–98

While imipenem-containing regimens were successful in some
of these cases, several involving M. chelonae showed little or
no improvement during treatment that included imipenem. This
may be due to variations in the in vitro activity of imipenem
against different Mycobacteria isolates. One study reported that
imipenem had good activity against threeM. fortuitum biovariants
but only slight activity against two M. chelonae subspecies.99

A mouse model of disseminated Mycobacterium avium complex
infections reported that ciprofloxacin in combination with
amikacin and imipenem reduced both bacteraemia and mortal-
ity.100

Transplant patients

Enterobacteriaceae, including E. coli, Klebsiella spp. and
Enterobacter spp., are common causes of intra-abdominal,
respiratory tract and bloodstream infections in transplant patients.
These organisms are in many parts of the world commonly
cephalosporin-resistant, due to ESBLs and inducible group 1
cephalosporinases. Because of this, third-generation cephalospor-
ins should generally be avoided for treatment of serious infections
in transplant recipients.101

Nocardia infections, although infrequent among heart, lung
or heart–lung transplant recipients, are of concern. In a retro-
spective review of 540 transplant patients, 10 were found to have
Nocardia infection; all isolates were susceptible to imipenem,
trimethoprim/sulfamethoxazole and amikacin.102 A single-centre
study found that 3 of 233 heart-transplant recipients had Nocardia
infections.103 The authors suggested that a b-lactam/b-lactamase
inhibitor with ciprofloxacin or amikacin followed by a short
course of trimethoprim/sulfamethoxazole could be effective. A
retrospective survey of nocardiosis in 9 hospitals in Italy found
30 patients with documented nocardiosis from 1982 and 1992.104

Most strains tested were susceptible to imipenem and amikacin.
In a rare case of post-cardiac transplantation mediastinal infection
due to Nocardia, surgical debridement, dressing, sugaring and
imipenem with ciprofloxacin were used for 4 weeks followed by
oral ciprofloxacin for 1 year. Treatment was successful and well
tolerated.105 In addition, multiple case reports have described
successful treatment of HIV-infected patients with concurrent
pulmonary or cerebral Nocardia infection.106–111

Table 3. Imipenem has shown sustained susceptibility worldwide

against P. aeruginosa and Acinetobacter spp. according to the

MYSTIC programme56,156

Organism/

antimicrobial agent

Percentage susceptibility

1997–2000

Percentage

susceptibility

2003—

worldwideEurope Americas MEA

Pseudomonas aeruginosa

imipenem 68.5 76.4 58.1 84.6

ceftazidime 69.5 79.3 75.8 83.7

ciprofloxacin 74.6 67.5 19.8 68.7

piperacillin/tazobactam 82.1 85.9 88.7 90.3

meropenem 78.9 77.9 90.3 88.3

Acinetobacter spp.

imipenem 80.6 64.6 62.7 91.9

ceftazidime 51.1 38.6 21.6 64

ciprofloxacin 46.8 45.8 16.7 58.6

piperacillin/tazobactam 42.4 41 54.9 61.3

meropenem 71.2 79.5 54.9 87.4

MEA, Middle East and Africa.
Breakpoints: imipenem and meropenem, 4 mg/L; piperacillin/tazobactam,
16 mg/L for Acinetobacter and 64 mg/L Pseudomonas; ciprofloxacin, 1 mg/L;
ceftazidime, 8 mg/L.

75

80

85

90

95

100

1999 2000 2001 2002 2003

Imipenem

Meropenem

Ceftazidime

Ciprofloxacin

Piperacillin/
tazobactam

Figure 4. Imipenem showed sustained susceptibility against important Enterobacteriaceae across North America in the MYSTIC programme.56,156 Four

comparator antibiotics included in the MYSTIC study are shown.
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Febrile neutropenia

The treatment of infectious complications in cancer patients has
evolved as a consequence of the developments in the chemo-
therapy of cancer patients. An early non-comparative study of
imipenem in 71 cancer patients with 79 febrile episodes reported a
response rate of 67%.112 A prospective, open label, randomized,
multicentre study comparing cefepime and imipenem/cilastatin in
patients with haematological malignancies and febrile neutrope-
nia (n = 180) reported monotherapy success rates of 40% and 51%
in the cefepime and imipenem groups, respectively (P = NS). The
4 week overall mortality rate was 5%.87 Another study comparing
imipenem and cefepime in the treatment of patients with cancer
and febrile neutropenia found a 68% response rate to the
imipenem regimen, compared with a 75% response rate to the
cefepime regimen (P = 0.2).77 Imipenem and ceftazidime plus
tobramycin were found to have similar efficacy in cancer patients
with febrile neutropenia, with successful outcomes in 78% (35 of
45) of the imipenem group patients and 71% (29 of 41) of the
ceftazidime group patients.113 In a prospective, randomized study,
imipenem and sulbactam/cefoperazone plus amikacin were
compared for empirical therapy of febrile neutropenia in 30
evaluable episodes in cancer patients. The clinical response rate
was 60% (P > 0.05) for both regimens.114 A prospective study of
83 febrile neutropenic cancer patients randomized patients to
imipenem or piperacillin plus amikacin. The overall response rate
for clinically or microbiologically documented infections was
90% with imipenem versus 76% with the piperacillin regimen
(P = NS).115 Sixty-six patients undergoing bone marrow
transplant were randomized to receive netilmicin plus either
imipenem or ceftazidime as empirical antimicrobial therapy for
febrile neutropenia.116 Positive clinical response was observed in
80% of receiving the imipenem regimen and 73% of those
receiving the ceftazidime regimen.

Paediatric patients

The use of imipenem is well established in children with non-CNS
infections who were from 3 months to 16 years of age, as
indicated below. The dose of imipenem used in most studies was
100 mg/kg/day for patients �3 years of age or 60 mg/kg/day for
those >3 years of age, divided in four equal doses. A multicentre,
open, non-comparative trial involving 178 infants and children
with bacterial infections evaluated the efficacy of imipenem.117

A favourable clinical response was achieved in 98 of 100 patients.
Adverse reactions, generally mild and reversible, included
diarrhoea/vomiting (5.1%), irritation of intravenous infusion site
(3.3%) and rash (2.2%). Changes in laboratory test values
reported most frequently were thrombocytosis (8.9%), elevations
in aspartate aminotransferase (7.9%) and alanine aminotransfer-
ase (5.6%) and eosinophilia (8.4%). Infections were caused by a
broad spectrum of pathogens including Haemophilus influenzae,
S. aureus, P. aeruginosa and anaerobes.

In another study, children (n = 144, 22 days to 15 years old)
hospitalized for non-CNS bacterial infections received imipenem
(100 mg/kg/day for patients �3 years of age; 60 mg/kg for those
>3 years of age) for 9.4 days (range 3–28 days).118 Diagnoses in
the 74 evaluable children included bronchopneumonia with or
without empyema (20%), peritonitis complicating appendicitis
(16%), skin/soft tissue abscesses (14%), septicaemia (11%) and
miscellaneous other infections (39%). Among evaluable patients,
95% were clinically cured or improved. One child, a marasmic

child with Pseudomonas pneumonitis, died during therapy;
12% of children had non-serious adverse experiences possibly
related to imipenem.

A multicentre study evaluated imipenem in severe infections
in children with granulocytopenia and haematological diseases
and cancers.119 Children who had received prior antibiotics had
an efficacy rate of 79.2%, while those who had not received
previous treatment had an efficacy rate of 80.6%. Three children
experienced nausea, vomiting and/or diarrhoea; two children
had abnormal liver function test parameters that recovered after
cessation of the drug treatment.

Twenty-five children (5 months to 11.3 years) with acute
osteomyelitis (n = 7), suppurative arthritis (n = 11) or both (n = 7)
were treated with imipenem.120 Bacterial pathogens identified
included S. aureus, H. influenzae, P. aeruginosa, Streptococcus
pneumoniae, group A Streptococcus, Kingella kingae
and Citrobacter amalonaticus. All isolates were susceptible to
imipenem in vitro. All but one child with P. aeruginosa
osteomyelitis responded favourably to imipenem. The median
duration to resolution of symptoms was 6 days. Adverse reactions
included maculopapular rash (n = 1), diarrhoea (n = 1) and mild
transient elevation of alanine aminotransferase levels (n = 3).

Safety and tolerability

The good safety profile of imipenem is well established after
29 years of research and 20 years of clinical experience in
26 million patients from more than 100 countries. Adverse effects
seldom require discontinuation and serious side effects are rare.
The most common drug-related adverse events reported in
at least 1% of patients in clinical trials included phlebitis/
thrombophlebitis (3.1%), nausea (2.0%), diarrhoea (1.8%) and
vomiting (1.5%).

Seizures

Imipenem is not indicated for CNS infections because of
its proconvulsive activity.121–124 Dosage monitoring systems
have resulted in decreased seizure incidence in patients treated
with imipenem, making it important to examine the current, real-
life incidence of seizure with carbapenems. A meta-analysis of
37 papers published between 1984 and 1999 reporting the use of
imipenem was done to ascertain the true incidence of seizures
when variables known to increase the risk or seizure are factored
in.125 Among 5761 adult patients treated with imipenem
81 seizures were reported, corresponding to a 1.4% incidence of
seizures. Yearly data from US product labelling indicate that the
seizure rate for imipenem has consistently been 0.4%, compared
with 0.5–0.7% for meropenem. No seizures were reported in
two comparative studies of imipenem and meropenem (n = 200
and n = 232, respectively).74,126 Recognition of the factors that
predispose patients to seizure, such as kidney dysfunction, prior
history of seizure, metabolic derangement, anoxia, and phenytoin
discontinuation, and use of appropriate carbapenem doses
have substantially reduced concerns about seizure risk with
carbapenems.127

Overdose

The main dosage concern with imipenem is correct dosage
adjustment in patients with renal impairment. The risk of produ-
cing a seizure is highly associated with improper dose adjustment
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in relation to kidney function.128 If appropriate care is taken,
seizures occur in <1% of patients treated. It is possible that
concomitant administration of drugs with neurotoxic profiles,
such as theophylline given in overdose, may increase the risk
of seizures.128 In patients with normal kidney function, the
maximum total daily dosage should not exceed 50 mg/kg/day or
4.0 g/day, whichever is lower.

Drug interactions

In general, ganciclovir and imipenem should not be used
concomitantly because seizures have been reported in patients
who received these drugs together. Concomitant administration
of imipenem and probenecid results in only minimal increases
in plasma levels of imipenem and plasma half-life, thus it is not
recommended that imipenem and probenecid be co-administered.
Imipenem should not be mixed into solution with other
antibiotics, although it may be administered concomitantly with
other antibiotics, such as aminoglycosides.

Carbapenems as appropriate therapy

With the introduction of new carbapenems with different spectra
of activity, it has become necessary to differentiate among the
available agents so that the most appropriate agent can be
selected. The place of carbapenems in appropriate therapy has
been addressed in several recent publications. A carbapenem
classification scheme was proposed to delineate the optimal use of
these agents (Table 4).69 Ertapenem, a Group 1 carbapenem, is
best suited for use in infections where non-fermenting Gram-
negative bacilli such as Pseudomonas and Acinetobacter are
not usually involved. Imipenem and meropenem, classified as
Group 2, are considered to be among the most reliable agents for
nosocomial infections. Brink et al.129 agreed that Group 2 agents
are appropriate empirical treatment for patients with severe or
nosocomial infection when used in accordance with local surveil-
lance data. Nevertheless, it is still difficult to give clear recom-
mendations for the selection of a single carbapenem compound in
a particular situation. Whenever imipenem and meropenem were
tested against each other in clinical studies, significant differences
were not observed. This does not come as a surprise since clinical
trials are usually designed to show non-inferiority rather than
superiority of a compound. This is a clear limitation of the
evidence base that is generated with such studies. Ertapenem was
not tested against imipenem or meropenem in clinical trials.
However, despite the fact that ertapenem has no significant
activity against enterococci and only 5% of the drug is unbound in
the serum, it has shown non-inferiority to the established broad-
spectrum therapy with piperacillin/tazobactam in patients with
intra-abdominal infections.130 In vitro advantages of one com-
pound in terms of MIC values may be contrasted by less
favourable pharmacokinetic properties. Because of differences in
local epidemiologic situations, all recent guidelines point to this
fact and the necessity to adjust treatment recommendations
accordingly. Finally, pharmaco-economic considerations may
vary with country, healthcare system, re-embursement forms,
contracts and medical practice.

Imipenem has an important role in the treatment of HAP and
VAP.131–134 These infections are burdened with treatment failure,
often in the range of 30–40%, and these are clearly related to an
increased mortality.135,136 If adequate therapy is used, treatment

failure decreases.135–138 Ibrahim et al.139 demonstrated a decrease
in inadequate initial therapy when initiating a strategy that
included imipenem plus vancomycin and a quinolone or b-lactam.
Recent American Thoracic Society (ATS) guidelines recommend
among other compounds ertapenem for early onset HAP or VAP
in patients with no known risk factors for multidrug-resistant
pathogens.140 Conversely, imipenem and meropenem are among
those that in combination with an antipseudomonal fluoroquino-
lone or an aminoglycoside are recommended for patients with late
onset disease or risk factors for multidrug-resistant pathogens.
Moreover, the addition of linezolid or vancomycin is recom-
mended if there is a likelihood for MRSA.

Imipenem is regarded as an agent of choice in the treatment
of severe nosocomial infections.69,129,141–143 The patients most
likely to benefit from imipenem would include those who are
suspected of being infected with P. aeruginosa, an ESBL-
producing E. coli or Klebsiella, Acinetobacter or any multidrug-
resistant pathogen, and those with polymicrobic or mixed aerobic/
anaerobic infections. The utility of this recommendation was
illustrated by data suggesting that when a carbapenem was
administered during the first 5 days in patients with ESBL-
producing K. pneumoniae bacteraemia, the mortality rate was 5%
compared with a mortality rate of 43% when any other antibiotic

Table 4. Classification scheme for carbapenems (adapted from

Shah and Isaacs 2003)69

Group Characteristics Carbapenems Indications

Group 1 broad-spectrum,

limited activity

versus

non-fermenting

Gram-negative

bacilli; suitable

for community-

acquired

infection

ertapenem complicated IAI

complicated SSI

acute PI

CAP

complicated

UTI

Group 2 broad-spectrum,

activity versus

non-fermenting

Gram-negative

bacilli; suitable

for nosocomial

infection

imipenem IAI

LRTI

gynaecological

infections

septicaemiaa

genitourinary

tract infections

bone and joint

infections

skin and soft

tissue infections

endocarditisa

meropenem IAI

bacterial

meningitis

Group 3 activity against

MRSA

none available none

IAI, intra-abdominal infection; SSI, skin and skin structure infection;
PI, pelvic infection; CAP, community-acquired infection; UTI, urinary tract
infection.
aNot indicated for therapy with the intramuscular formulation.
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was used (P = 0.01).86 Similarly, a bowel colonization study
suggested that piperacillin/tazobactam may not retain activity
against AmpC producers in some cases.144,145

Mono versus combination therapy

There are three reasons given for combining antimicrobial agents:
(i) to broaden the spectrum of activity; (ii) to achieve synergistic
effects; and (iii) to prevent resistance development. In the case of
carbapenem therapy these reasons might not be convincing since
these agents have an inherent broad spectrum of activity, synergy
even in vitro has only inconsistently been demonstrated and
prevention of resistance development has not been well
documented. Hence, a number of studies have addressed the
question of whether imipenem can be used as monotherapy in
severe nosocomial infections. The results were conflicting.146,147

However, two meta-analyses clearly showed that there was no
advantage for combination therapy employing aminoglycosides,
not even in Pseudomonas infections.125,147 However, combination
therapy was associated with a significantly higher rate of
nephrotoxicity.

De-escalation therapy

For decades escalation therapy was advocated in the treatment of
infectious disease. Antibiotic therapy was initiated with a basic
agent and only if this approach failed after 72 h, more potent
compounds were used. Rising resistance rates and better under-
standing of the inflammatory process prompted some experts to
advocate initial therapy with broad-spectrum, highly active com-
pounds at least in severe infections. This concept was initially
referred to as ‘intervention therapy’. Although not the only
suitable agents for this concept, carbapenems always played an
essential role in this approach. The concerns about engendering
resistance through overuse of potent antibiotics were met by
expanding the concept to the ‘de-escalation therapy’, whereby the
initial therapy was tailored once microbiological culture results
and susceptibility tests were available. The two-stage approach of
using aggressive initial therapy followed by de-escalation allows
serious infection to be treated immediately and effectively while
avoiding antibiotic overuse, potential resistance and excessive
cost. Meanwhile this concept has been proven by a number of
studies that showed that the appropriate initial therapy is a crucial
factor in outcome of the patient.148–150

Cost is a practical consideration in selecting treatment.
Imipenem is a cost-effective treatment for serious infection,151–154

particularly if de-escalation to an oral regimen is possible.152 A
formulary feasibility study found that imipenem and piperacillin/
tazobactam were both effective and suitable for intra-abdominal
infection, pneumonia, febrile neutropenia, and skin and soft tissue
infection, but that imipenem should be retained due to the pre-
valence of multidrug-resistant Gram-negative pathogens.75 A
more recent study of febrile neutropenic patients reported that
overall treatment costs were 189.55 euros less with imipenem
than piperacillin/tazobactam (P < 0.001).155 Imipenem mono-
therapy has been recommended in polymicrobial infections where
combination therapy would be more costly, although imipenem
combination therapy was recommended if Pseudomonas was
present.85 This sustained susceptibility, efficacy, tolerability and
cost-effectiveness are the hallmarks of appropriate initial therapy.

Conclusions

Imipenem, the first in the carbapenem class, has pioneered broad-
spectrum antibiotic usage. It has been used in 26 million patients
over 20 years and still demonstrates potent antibiotic activity
against life-threatening pathogens, including those that are
multidrug resistant. Imipenem is still used as the benchmark for
comparison with other agents and remains an antibiotic of choice
for the treatment of serious infection. Early aggressive therapy
with a broad-spectrum agent is essential to reduce mortality and
minimize resistance. Imipenem has remained a key asset in the
setting of appropriate antibiotic therapy for 20 years due to its
efficacy, tolerability and sustained pathogen susceptibilities. The
option to de-escalate allows physicians to achieve the goal of
treating critically ill patients aggressively while maintaining the
option to narrow treatment as needed to avoid resistance.
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