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The intrinsic and acquired resistance of Mycobacterium abscessus to commonly used antibiotics limits the che-
motherapeutic options for infections caused by these mycobacteria. Intrinsic resistance is attributed to a com-
bination of the permeability barrier of the complex multilayer cell envelope, drug export systems, antibiotic
targets with low affinity and enzymes that neutralize antibiotics in the cytoplasm. To date, acquired resistance
has only been observed for aminoglycosides and macrolides, which is conferred by mutations affecting the
genes encoding the antibiotic targets (rrs and rrl, respectively). Here we summarize previous and recent findings
on the resistance of M. abscessus to antibiotics in light of what has been discovered for other mycobacteria.
Since we can now distinguish three groups of strains belonging to M. abscessus (M. abscessus sensu stricto,
Mycobacterium massiliense and Mycobacterium bolletii), studies on antibiotic susceptibility and resistance
should be considered according to this new classification. This review raises the profile of this important patho-
gen and highlights the work needed to decipher the molecular events responsible for its extensive chemother-
apeutic resistance.
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Introduction
Mycobacterium abscessus is a rapidly growing mycobacteria
(RGM) first described by Moore and Frerichs in 1953.1 However,
it was only in 1992, after its separation from the Mycobacterium
chelonae group, that M. abscessus acquired the recognition that
it is an important human pathogen responsible for a wide spec-
trum of soft tissue infections, disseminated infection in immuno-
compromised patients and a contraindication to lung
transplantation.2 M. abscessus is now considered the prominent
Mycobacterium, along with Mycobacterium avium, involved in
broncho-pulmonary infection in patients with cystic fibrosis or
chronic pulmonary disease.3 – 6 Several outbreaks of M. abscessus
skin and soft tissue infections have also recently been reported,
demonstrating this organisms importance in healthcare-
associated infections, including surgical tourism.7 – 10 The major
threat posed by this species is mainly due to its resistance to
antibiotics, which is of major concern in public health institu-
tions.11 Indeed, M. abscessus is one of the most resistant organ-
isms to chemotherapeutic agents.12 Elucidating the molecular
mechanisms responsible for this particular trait has become an
increasing research focus, particularly after the genome se-
quence became available in 2009.13 Interestingly, genome ana-
lysis has revealed that M. abscessus shares a number of common

characteristics with some slow-growing mycobacteria (SGM), and
this has led to intriguing questions such as: (i) are the resistance
mechanisms similar to those found in SGM; and (ii) what add-
itional characteristics of this organism make it particularly resist-
ant to antibiotic therapy? Antibiotic resistance in mycobacterial
species can be either natural or acquired, and for the latter,
resistance is not reported to be provided by genes introduced
by transmissible genetic elements such as plasmids and
transposons, but by spontaneous mutation at targeted genes
in response to the presence of antibiotics. The absence of
reports of plasmid-encoded antibiotic resistance is due in part
to the problem of discerning added resistance by extrachromo-
somal genetic determinants against the very high intrinsic anti-
biotic resistance of mycobacteria.

Recently the M. abscessus species has been subclassified into
three new species on the basis of rpoB sequences: M. abscessus
sensu stricto, Mycobacterium massiliense and Mycobacterium
bolletii.14 They constitute what is now called the M. abscessus
group, or M. abscessus sensu lato. Further taxonomic studies
have shown that differentiation of the three species is not
straightforward; they share ribosomal sequences and multilocus
sequencing approaches cannot clearly assign clinical strains to
one of the three species.7,9,15,16 These species or subspecies,
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however, can also differ from each other in their antibiotic resist-
ance phenotype and genotype, indicating that studies on precisely
identified strains are warranted.17,18 For instance, clarithromycin
susceptibility is observed for M. massiliense, whereas resistance
is observed in M. bolletii.17

Antibiotic susceptibility and efficacy
Infections due to the M. abscessus group are difficult to treat
because these mycobacteria are intrinsically resistant to not
only the classical anti-tuberculous drugs, but also to most of
the antibiotics that are currently available.12,19 – 21 Few drugs
have in vitro activity against M. abscessus (Table 1). Modal MICs
are below the tissue or serum levels only for clarithromycin, ami-
noglycosides, cefoxitin, tigecycline and TMC-207. However, some
strains appear much more susceptible to some drugs, and this
may relate to the difference in the subspecies within the
M. abscessus group.

In the 1990s clarithromycin became the drug of choice for
M. abscessus infections and therapeutic successes were
reported.4,22,23 Recommendations are now to combine clarithro-
mycin with one aminoglycoside (usually amikacin) and one other
injectable drug such as cefoxitin or imipenem.2 Clinical efficacy of
this multidrug therapy is still controversial, with success for some
patients and failure for others.20,24

Natural resistance
A number of mechanisms are responsible for natural resistance
of M. abscessus and other mycobacterial species to drugs, includ-
ing slow growth, the presence of a waxy impermeable cell wall,
which acts as a physical (size exclusion) and a chemical (hydro-
phobic) barrier, drug export systems and genetic polymorphism
of targeted genes.

The mycobacterial cell envelope

The role of the mycobacterial cell envelope in conferring resistance
to drugs has been extensively studied. In 1990 Jarlier and Nikaido
indicated the essential role that the lack of permeability of the cell
envelope played in making M. chelonae (grouped at that time in the
same species with M. abscessus) resistant to antibiotics.25 In the
case of the b-lactams, the M. chelonae cell envelope drastically
reduced the influx of b-lactam antibiotics and, together with the
low levelb-lactamase activity, was sufficient to explain the low ac-
tivity of b-lactams against the M. chelonae group.25 It is also likely
that the low permeability of the cell envelope of M. abscessus
(acting in synergy with aminoglycoside-modifying enzymes)
plays a role in aminoglycoside resistance.25 The existence of the
cell wall barrier also explains the intrinsic resistance of mycobac-
terial cells to acids and alkalis.26 A key feature of the mycobacterial
cell envelope is its high lipid content (up to 60% of the dry weight of
the bacteria), which is considered to be the main factor contribut-
ing to its low permeability.27

The mycobacterial cell envelope plays a crucial role in protect-
ing the cell against toxic extracellular compounds. The presence
of porins enable the rapid passage of potentially lethal amounts
of compounds and hydrophilic antibiotics through the envelope.28

Once internalized the antibiotics can reach their target in the
cytoplasm and activate the expression of potential drug resist-
ance genes. It is well documented that the cell envelope acts
synergistically with antibiotic-inducible internal systems in com-
peting against the effects of the drugs.29 This internal system,
known as the ‘intrinsic resistome’, includes efflux pumps,
antibiotic-modifying/inactivating enzymes, target-modifying
enzymes and genes conferring metal resistance (Table 2).

Antibiotic-modifying/inactivating enzymes

M. abscessus produces enzymes that potentially degrade or
modify antibiotics, which can result in their inactivation.

Table 1. Antibiotic susceptibility of M. abscessus as defined by MIC

Antibiotic n Modal MIC (mg/L) MIC range (mg/L) Percentage susceptibilitya References

clarithromycin 48, 74 0.03 0.03–16 83, 99 89, 90
cefoxitin 48, 74 32 16–128 11, 99 89, 90
imipenem 48, 74 8 1–64 8, 55 89, 90
ciprofloxacin 48, 74 2 0.016–8 44, 57 89, 90
levofloxacin 21 32 8–64 91
moxifloxacin 21 16 2–32 73 91
doxycycline 48, 20 32, .128 0.06–32, 2–.128 8, 5 90, 92
tigecycline 20 0.12 ≤0.06–1 100 92
minocycline 20 .64 0.25–.64 5 92
tetracycline 20 64 4–.128 10 92
linezolid 98 32 0.5–128 23 93
sulfamethoxazole 48, 74 256 4–256 12, 1 89, 90
isepamicin 117 8 4–.128 96 94
tobramycin 21, 117, 74 16, 8 8–32, 4–.128 95, 36 91, 94, 90
amikacin 48, 117 2, 16 0.25–128, 4–.128 94, 87 90, 94
TMC-207 1 0.25 95
clofazimine 117 0.5 0.25–1 99 96

aAccording to breakpoints defined in Griffith et al.2 and Woods et al.97
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M. abscessus possesses a rifampicin ADP-ribosyltransferase, as
well as a mono-oxygenase that may be involved in resistance
to rifampicin.13 The fast-growing Mycobacterium smegmatis is
naturally resistant to rifampicin, although no mutation in the
target gene rpoB has been reported.30 Quan et al.31 reported in
1997 that a ribosylation mechanism is responsible for the inacti-
vation of rifampicin and represents the principal contributor to
the low susceptibility of M. smegmatis to rifampicin. It is conceiv-
able that the same phenomenon could well operate in M. absces-
sus, since no mutation has been reported in the rpoB gene from
M. abscessus clinical isolates resistant to rifampicin.32 M. absces-
sus also contains enzymes that could modify aminoglycoside
drugs by transferring acetyl or phosphate residues on key posi-
tions within the antibiotic, rendering them inactive.13 M. absces-
sus contains an aminoglycoside 2-N-acetyltransferase and
several homologs of aminoglycoside phosphotransferases. Acet-
yltransferases and phosphotransferases from M. smegmatis and
Mycobacterium tuberculosis have been reported to confer
aminoglycoside resistance.33,34 Antibiotic-degrading enzymes,
for example, b-lactamases, can also assist some mycobacterial
species to nullify the effect of antibiotics and thus confer resist-
ance to b-lactam antibiotics.29 Genetic analysis has revealed the
presence of b-lactamase-encoding genes in M. abscessus and in
SGM including M. tuberculosis.13,35

Target-modifying enzymes

Macrolide antibiotics are generally used to treat infections
caused by non-tuberculous mycobacteria (NTM).2,36 However,
M. abscessus infections tend to respond poorly to macrolide
chemotherapy. Recent reports demonstrate that intrinsic resist-
ance to macrolides in M. abscessus clinical isolates is due to
the expression of a novel inducible erm gene, erm(41)
(MAB_2997), which is induced by macrolides and confers resist-
ance to clarithromycin and erythromycin.37 Furthermore, the
same gene has been shown to confer resistance to clindamycin
and telithromycin in M. smegmatis, although M. abscessus is

naturally resistant to these two agents by a mechanism that is
independent of erm gene induction.37

Efflux pumps

Active efflux mechanisms represent potentially one of the causa-
tive factors of antibiotic resistance in mycobacteria.38,39 Efflux
pump mechanisms have a physiological role protecting bacteria
against toxic molecules and maintaining cell homeostasis and
physiological balance through export of toxins or metabolites
to the extracellular environment.39 M. abscessus encodes
protein members of the major facilitator family ABC transporters
and mycobacterial membrane protein large (MmpL) families.13

The ABC-type multidrug transporters use ATP energy to pump
drugs out of the cell and can be classified either as importers
(uptake of extracellular molecules) or exporters (remove sub-
strates to the external environment).40,41

The MmpL transporter family is involved in lipid transport to
the membrane and encode resistance, nodulation and cell div-
ision (RND) proteins, which are a family of multidrug resistance
pumps that recognize and mediate the transport of a diverse
group of compounds (cationic, anionic or neutral), including
various drugs, metals and fatty acids.42 These proteins mediate
transport across the cytoplasmic membrane using the proton
motive force of the transmembrane electrochemical proton gra-
dient.43 Genes for members of the MmpL transporter family are
distributed throughout the M. abscessus genome, but their role in
this species has yet to be established. Recent studies have attrib-
uted a drug resistance function to the MmpL family.13 Pasca
et al.44 demonstrated that the mmpL7 gene from M. tuberculosis
confers a high level of resistance to isoniazid when overex-
pressed in M. smegmatis and the resistance level was significant-
ly decreased in the presence of efflux inhibitors. However,
Domenech et al.42 constructed M. tuberculosis mutant strains
with 11 of 13 of the mmpL genes inactivated and reported
that drug susceptibility of these mutants to a broad spectrum
of agents was unaltered. This led the authors to suggest that,

Table 2. Synopsis of the genes and the possible mechanisms involved in natural resistance of M. abscessus

Antibiotic Locus and genes Proteins involved Mechanism of resistance

hydrophilic antibiotics selective permeability of cell envelope
aminoglycosides MAB_4395 aminoglycoside 2-N-acetyltransferase antibiotic-modifying enzymes

MAB_0327,
MAB_0951

aminoglycoside phosphotransferases

MAB_3637c,
MAB_4910c,
MAB_4395

rifampicin MAB_0951 rifampicin ADP-ribosyltransferase
b-lactams MAB_2875 b-lactamase antibiotic-degrading enzymes
macrolides erm(41) gene 23S RNA methyltransferase target-modifying enzymes

MAB_2297
several antibiotics scattered in genome ABC transporters efflux pumps

MmpL family
metal compounds plasmid pMMV23 mercury operon regulator MerR, mercury reductase;

ars operon
efflux pumps/detoxification

MAB_p05c, MAB_06c

Review

812

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/67/4/810/861158 by guest on 11 April 2024



unlike their function in other organisms, these proteins do not
play a significant role in the intrinsic drug resistance of
M. tuberculosis.

The P55 efflux pump was also shown to be involved in natural
resistance in M. tuberculosis, since after deletion of the correspond-
ing gene the bacteria became more susceptible to toxic com-
pounds including rifampicin and clofazimine.45 Of note, this
pump was inhibited by carbonyl cyanide m-chlorophenylhydrazone
(CCCP) and valinomycin.45

Transcriptional regulator whiB gene family

M. abscessus is equipped with a family of transcriptional regula-
tors potentially involved in conferring drug resistance (the whiB
gene family). This family is exclusively present in the actinomy-
cetes (there are six whiB genes within M. abscessus) and Strepto-
myces genomes.46 The WhiB proteins are putative transcription
factors involved in the regulation of significant cellular processes
such as cell division, pathogenesis and responses to oxidative
stress, and the presence of a helix-turn-helix motif indicates a
DNA binding role.47 – 50 The whiB7 gene in M. tuberculosis has
been shown to be induced by exposure to subinhibitory concen-
trations of antibiotic. Microarray analysis demonstrated that
upon subinhibitory exposure to tetracycline, the expression of a
cluster of genes was dependent on the induction of whiB7.51

Other M. tuberculosis whiB family members have also exhibited
conditional up-regulation in response to environmental
changes.52,53 The M. tuberculosis null mutant whiB7 is hyper-
susceptible to a large spectrum of antibiotics, and whiB7 null
mutants of M. smegmatis and M. bovis also show the same
susceptibility pattern.46 Other members of the whiB family
have also been shown to be involved in drug resistance.
Geiman et al.51 studied the transcription of whiB genes in
M. tuberculosis and demonstrated whiB2 is responsive to anti-
microbial stress. The expression of whiB2 was stimulated by expos-
ure to a spectrum of antibiotic agents (isoniazid, ethambutol and
cycloserine) that inhibit cell wall biosynthesis in mycobacteria.

Genetic polymorphism of target genes

The presence of variant nucleotides within conserved genes
targeted by drugs has been associated with establishment of
a correlation between genotype and susceptibility to drugs
within NTM. Two examples are highlighted by ethambutol and
fluoroquinolone resistance in NTM.54,55 M. abscessus exhibits
intrinsic high-level resistance to ethambutol (MICs .64 mg/L),
and much of this resistance is due to the presence of variant
nucleotides within the conserved embB ethambutol resistance-
determining region (ERDR) (Figure 1).55 The mycobacterial
embCAB operon encodes arabinosyl transferases, which are pu-
tative targets for ethambutol. Mutations in embB have been
associated with resistance to ethambutol in M. tuberculosis.56

Transfer of the emb region carrying the variant allele to the drug-
susceptible M. smegmatis resulted in a 500-fold increase in the
MICs to ethambutol.55 Sequencing of the conserved ERDRs of
13 NTM strains allowed the identification of a unique variant
sequence that was associated with ethambutol resistance.
When compared with ethambutol-susceptible M. tuberculosis,
three NTM strains—Mycobacterium leprae, M. chelonae and
M. abscessus—had isoleucine substituted with glutamine at

position 303 and leucine substituted with methionine at position
304 (I303Q and L304M) (Figure 1). This variation conferred intrin-
sic high-level resistance to ethambutol in the three strains.

Another example of the role of gene polymorphism in
conferring drug resistance has been observed with the fluoroqui-
nolones. Fluoroquinolones have been used in combination
with other anti-mycobacterial agents for infection caused
by M. abscessus.57 Guillemin et al.54 studied intrinsic resist-
ance to fluoroquinolones in NTM by determining the sequences
of conserved regions known as quinolone resistance-determining
regions (QRDRs) in the DNA gyrase subunits GyrA and GyrB (the
regions targeted by quinolones). It was shown that the presence
of alanine at position 83 (Ala-83) (Escherichia coli numbering)
within GyrA QRDR and arginine and asparagine at positions
447 and 464 (Arg-447 and Asn-464), respectively, within GyrB
QRDR confer resistance to fluoroquinolones in M. abscessus
(MICs .8 mg/L) as well as in M. avium, Mycobacterium intracellu-
lare, Mycobacterium marinum and M. chelonae (Figure 2).58

Mercury resistance

Bacterial resistance to inorganic and organic mercury com-
pounds (HgR) has been studied extensively in eubacteria.59 The
genes encoding the proteins responsible for mercury resistance
occur naturally on the chromosome and on plasmid and trans-
posable elements.59 Two major components are required to
confer bacterial resistance to mercury: the regulator MerR and
the major detoxification enzyme MerA. The resistance of some
mycobacterial strains is related to the presence of a megaplas-
mid probably containing mercury resistance genes because the
mercury resistance is carried by ‘transferable’ elements.60,61

M. abscessus contains a 23 kb mercury resistance plasmid that
is 99% identical to pMM23 from M. marinum. This plasmid
carries a mer operon with mercury operon regulator MerR
(MAB_p05c) and a mercury reductase (MAB_06c), which prob-
ably confers resistance to a wide range of organomercury com-
pounds.13 Although the mechanism of mercury resistance has
been well characterized in other eubacterial species, further
studies are needed to decipher the mechanism of mercury resist-
ance in M. abscessus.

Acquired resistance
Acquired resistance as a result of genotypic changes within
mycobacterial clinical isolates does not appear to involve

ERDRSpecies MIC (mg/L) Phenotype

M. tuberculosis SDDYILGMARVADHAGYMSN

M. chelonae SDDYQMGMARTAEHAGYMAN

M. abscessus SDDYQMGMARTAEHAGYMAN

M. leprae SDDYQMQMARTADHSGYMAN

2.5 S

64 R

64 R

64 R

Figure 1. Comparison between ethambutol phenotype and genetic
polymorphism at the ERDR in EmbB with gene polymorphisms
indicated at positions 303 (I303Q) and 304 (L304M). S, susceptible; R,
resistant. Adapted from Sreevatsan et al.56
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mobile genetic elements such as plasmid and transposons, al-
though some genetic transfer within mycobacterial species
cannot be entirely excluded.62 Spontaneous mutations affecting
the key targets of antibiotics are frequently associated with drug
resistance in mycobacterial species, but resistance may result
from alteration in the function of more than one gene.63

Alteration in chromosomal gene function represents the main
mechanism of acquired resistance in clinical strains of mycobac-
teria species; however, other mechanisms can be involved
because several reports have indicated the absence of mutations
in drug target genes.39,64,65

Aminoglycoside resistance

The 2-deoxystreptamine aminoglycosides (kanamycin, amikacin,
gentamicin and tobramycin) are important drugs for the treat-
ment of multidrug-resistant M. tuberculosis and NTM infection.66

This class of antibiotic targets the 16S rRNA in the rRNA operon,
thereby inhibiting protein synthesis by interfering with the proof-
reading process, causing errors in synthesis with premature ter-
mination.67 M. abscessus possesses one copy of the rRNA
operon, making the likelihood of phenotypic expression of a
single mutation more likely. Prammananan et al.68 reported
that a spontaneous single mutation affecting the 16S rRNA of
clinical isolates of M. abscessus was associated with resistance
to 2-deoxystreptamine aminoglycosides. They showed that
adenine substituted by guanine at position 1408 (A1408G) (E.
coli numbering) within the 16S rRNA is responsible for the high
level of resistance of M. abscessus clinical isolates to kanamycin,
amikacin and tobramycin (MICs .1000 mg/L). The same muta-
tion conferred resistance to in vitro isolates of M. abscessus to
2-deoxystreptamine aminoglycosides.68 Recently we reported
the presence of four mutations affecting the 16S rRNA
(T1406A, A1408G, C1409T and G1491T) (E. coli numbering)
that conferred high-level resistance to kanamycin, amikacin
(for A1408G, C1409T and G1491T) and gentamicin (Figure 3).
Other researchers have associated these mutations with amino-
glycoside resistance in different mycobacterial species and in
other microorganisms.69 – 73

Macrolide resistance

Macrolides represent another class of antibiotics that target the
rRNA operon, preventing peptidyltransferase from adding the pep-
tidyl group attached to tRNA to the next amino acid and inhibiting
ribosomal translocation.74 Macrolide drugs (mainly azithromycin,
clarithromycin, erythromycin and roxithromycin) are used for the
treatment of NTM infections, including M. abscessus, M. avium, M.
intracellulare and M. chelonae.75 – 77 Bacterial resistance to macro-
lides occurs by post-transcriptional methylation of the 23S bacter-
ial ribosomal RNA, thereby inhibiting drug attachment. This
acquired resistance results in cross-resistance to macrolides, linco-
samides and streptogramins.76 M. abscessus infections tend to
respond poorly to macrolide-based chemotherapy due to indu-
cible and acquired resistance mechanisms.37 The involvement of
an inducible ribosome methylase erm(41) gene conferring high-
level resistance in clinical isolates of M. abscessus to clarithromycin

83 447 464 

M. tuberculosis YHPHGDASIYDSLVRMAQPWSLRYPLVDGQ

M. bovis YHPHGDASIYDTLVRMAQPWSLRYPLVDGQ

M. intracellulare YHPHGDASIYDTLVRMAQPWSLRYPLVDGQ

M. marinum YHPHGDASIYDTLVRMAQPWSLRYPLVDGQ

M. abscessus YHPHGDASIYDTLVRMAQPWSLRYPLVDGQ

KSGRDSMFQAILRGKINEKARIDRVLKN

KSGRDSMFQAILRGKINEKARIDRVLKN

KSGRDSMFQAILRGKINEKARIDRVLKN

KSGRDSMFQAILRGKINEKARIDRVLKN

KSGRDSMFQAILRGKINEKARIDRVLKN

M. smegmatis YHPHGDASIYDTLVRMAQPWSLRYPLVDGQ KSGRDSMFQAILRGKINEKARIDRVLKN

M. fortuitum YHPHGDSSIYDTLVRMAQPWSLRYPLVDGQ KSGRDSMFQAILRGKINEKARIDRVLKN

87

Figure 2. Alignment of the peptide sequences of the QRDRs of GyrA and GyrB from mycobacterial species. The GyrA QRDR extends from amino acid
residues 77 to 106, and the GyrB QRDR extends from amino acid residues 436 to 464, in the numbering system used for E. coli.
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Figure 3. Secondary structure model of E. coli 16S rRNA showing
different mutations that confer resistance to kanamycin and other
2-deoxystreptamine aminoglycosides.
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(MICs .32 mg/L) and other macrolides has been reported.37 Re-
sistance to macrolides acquired by mutation in the rrl gene encod-
ing the 23S rRNA generally occurs in mycobacterial species,
although it does not occur with any recognizable incidence in
other bacterial species.78 – 81 Wallace et al.82 studied a group of
800 patients infected by M. abscessus that had either dissemi-
nated disease or chronic lung disease and found 18 patients
(2.3%) were infected with clarithromycin-resistant organisms
(MICs .4 mg/L). The resistant isolates were recovered after cla-
rithromycin monotherapy, and sequencing of the gene encoding
the 23S rRNA peptidyltransferase region revealed the presence of
a point mutation involving adenine at position 2058 (38%) and
2059 (62%) (Table 3).82

M. abscessus group: M. abscessus (sensu
stricto), M. massiliense and M. bolletii
M. abscessus, M. bolletii and M. massiliense are closely related
species currently identified by the sequencing of the rpoB gene
and other housekeeping genes.83 There are few reports on the
pathogenic traits of M. bolletii and M. massiliense, although
they have a broad drug resistance profile similar to M. absces-
sus.84 – 86 However, differences have been reported in the suscep-
tibility patterns of the three species.17,18 For example,
M. massiliense was reported to be susceptible to doxycycline,
whereas M. abscessus and M. bolletii were resistant, although
this difference is debatable. Also, these species differ with
respect to specific erm(41) features and intrinsic clarithromycin
susceptibility patterns. M. massiliense, which harbours a trun-
cated erm(41) gene, is intrinsically susceptible to clarithromycin,
whereas M. abscessus sensu stricto contains a complete erm(41)
gene.18 Strains identified as M. abscessus with a C28 polymorph-
ism are associated with clarithromycin susceptibility, whereas a
T28 polymorphism is associated with clarithromycin resistance.
M. bolletii, which contains the T28 polymorphic erm(41) gene,
was shown to be clarithromycin resistant.17

Recently Monego et al.87 investigated M. massiliense clinical
isolates for their susceptibility to ciprofloxacin. They reported
high resistance to ciprofloxacin, mediated by a mutation at
codon 90 within the gyrA gene.87

Concluding remarks
M. abscessus has acquired the reputation of being the most viru-
lent and chemotherapy-resistant member of the RGM group.88

This notoriety has drawn the attention of several research
groups to study this organism in order to decipher its secrets.
The development of genetic methods to study M. abscessus
represent a major breakthrough in this regard, along with the
availability of the M. abscessus genome, which opens new per-
spectives in the analysis of the pathogenesis and evolution of
this organism. Gene conservation between M. abscessus and
other mycobacterial pathogens is high, so it is likely that discov-
eries associated with antibiotic resistance in this RGM will facili-
tate our understanding of the mechanisms responsible for
treatment failure in other mycobacterial species, such as the
highly feared SGM pathogens of the M. tuberculosis complex.
Treatment of infections due to M. abscessus complex may
benefit from molecular identification within the complex since
M. massiliense appears more susceptible than M. abscessus
sensu stricto and M. bolletii.86 If susceptibility testing shows sen-
sitivity after prolonged incubation (14 days), this may predict a
favourable outcome with a combination therapy of clarithromy-
cin and amikacin, possibly combined with cefoxitin or moxifloxa-
cin.58,86 Therapeutic studies on infections involving strains that
have been precisely identified and tested against these latter
drugs, and also new anti-tuberculous drugs such as tigecycline
and TMC-207, are necessary to improve treatment outcomes.
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