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Objectives: Poultry have been suggested as a reservoir for fluoroquinolone-resistant extraintestinal pathogenic
Escherichia coli (ExPEC). Our aim was to investigate whether genotypes associated with ciprofloxacin and multi-
drug resistance were shared among human and avian E. coli.

Methods: We compared 277 human ExPEC isolates from urinary tract infection (UTI) and sepsis (142 suscep-
tible and 135 ciprofloxacin resistant) and 101 avian isolates (68 susceptible and 33 ciprofloxacin resistant) by
antimicrobial resistance phenotype, phylogenetic group and multilocus sequence type (ST).

Results: Most ciprofloxacin-resistant isolates from both human and avian sources were multidrug resistant.
Human and avian isolates strongly differed in phylogenetic group assignment (B2 and A predominated
among human and avian isolates, respectively), but a shift towards group A associated with ciprofloxacin re-
sistance was observed among human isolates (8/100, 8.0% versus 17/87, 19.5%, P¼0.021 for UTI and 5/42,
11.9% versus 15/48, 31.3%, P¼0.028 for sepsis). Heterogeneity of ST clones was observed, with ST131 strongly
predominant in human ciprofloxacin-resistant strains (58/135, 43.0%), but not in avian strains. However, two
major ST clonal complexes (CCs; CC10 and CC23, both belonging to group A) associated with ciprofloxacin re-
sistance and multiresistance were shared by human and avian isolates.

Conclusions: The major human and avian E. coli ST clones associated with multidrug resistance were identified.
A subset of ST clones belonging to CC10 and CC23 poses a potential zoonotic risk.

Keywords: zoonosis, urinary tract infections, MLST, molecular epidemiology

Introduction
Extraintestinal pathogenic Escherichia coli (ExPEC) represents a
huge public-health burden in human diseases, since it is the
most common cause of community- and hospital-acquired
urinary tract infections (UTIs) as well as bloodstream infections
caused by Gram-negative bacteria.1 – 3 The management of infec-
tions due to ExPEC has been increasingly complicated by the
emergence and dissemination of resistance to commonly used
antimicrobial agents such as trimethoprim/sulfamethoxazole,
fluoroquinolones (FQs) and b-lactams, including extended-
spectrum cephalosporins.4,5 The speed with which FQs are losing
their efficacy against ExPEC is an alarming public-health concern,
especially considering that FQ-resistant ExPEC often exhibits a
multidrug-resistant (MDR) phenotype. The worldwide dissemin-
ation of the E. coli sequence type (ST) 131 clone underlines the

importance of clonal spread in the diffusion of FQ resistance.6–9

Other epidemic and/or endemic drug-resistant clones or clonal
groups have been identified, which are associated with resistance
to FQs, b-lactams and/or trimethoprim/sulfamethoxazole, such
as clonal complex (CC) 69, CC31 and ST393.10,11 The source of
these clones has yet to be established: have they arisen in the com-
munity or have they been acquired from an external source, e.g.
food supply? Chickens have been suggested as reservoirs for
FQ-resistant ExPEC strains.12 FQs are widely used in farm animals,
mainly in poultry, and FQ-resistant E. coli strains are frequently iso-
lated from healthy and diseased birds.13 Evidence supporting the
hypothesis of the possible avian origin of FQ-resistant human
ExPEC was found in several investigations, but other researchers
reported partially contrasting results, including a previous study
of our own.14–17 Therefore, despite great efforts to shed light on
the issue, a firm conclusion has yet to be reached. In almost all
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studies on this subject, potential similarities or differences among E.
coli isolates from both human and avian sources have been
assessed by comparing distributions in the phylogenetic groups
and prevalence of virulence genes. However, phylogenetic groups
are entities too large and genetically heterogeneous to define by
themselves the genetic background of strains. In addition, virulence
typing results depend on the panel of virulence genes chosen to be
tested, but no universal panels have been employed. Moreover, the
data obtained by these kinds of studies are not easy to translate in
terms of specific clones, such as E. coli ST131, universally recog-
nized by the scientific community. Multilocus sequence typing
(MLST) appears an appropriate tool to characterize the clonal struc-
ture within phylogenetic groups; the application of this technique
can allow the identification and comparison of genotypes asso-
ciated with antimicrobial resistance phenotypes.

In the present study, we compared E. coli isolates from both
human extraintestinal infections and healthy avian sources,
stratified by FQ resistance phenotype, with respect to multidrug
resistance profile, phylogenetic group and MLST type. The aim
of the investigation was to identify genotypes associated with re-
sistance to FQ and other antimicrobial agents, and to determine
whether these genotypes were shared or not among human and
avian E. coli isolates.

Materials and methods

Bacterial strains
A total of 378 non-duplicated E. coli strains were used in this study: 277
strains were isolated from humans with extraintestinal infections and
101 from healthy avian sources. Out of 277 human ExPEC strains, 187
strains were recovered from individuals with UTI (87 ciprofloxacin-
resistant and 100 ciprofloxacin-susceptible strains) and 90 strains from
individuals with sepsis (48 ciprofloxacin-resistant and 42 ciprofloxacin-
susceptible strains). Fifty UTI patients (50/187, 27%) were children
≤15 years old, while no isolates from blood were from children. ExPEC
strains were collected from outpatients (n¼132, all with UTI) and/or
inpatients (n¼145), regardless of gender, admitted to four different hos-
pitals (General Hospital in Bergamo, ‘Careggi’ Hospital in Florence,
‘Bambino Gesù’ Paediatric Hospital in Rome and ‘P. Giaccone’ Hospital
in Palermo) located in the north (Bergamo), centre (Florence and
Rome) and south (Palermo) of Italy, during the period January–Decem-
ber 2009. Each participant hospital laboratory was asked to send: (i) all
consecutive ciprofloxacin-resistant E. coli isolates from sepsis; (ii) one in
every two consecutive ciprofloxacin-resistant isolates from UTI; and (iii)
one strain susceptible to ciprofloxacin for each ciprofloxacin-resistant E.
coli isolate from either sepsis or UTI randomly collected during the
same period. Although the overall study period was 1 year in length, in
each laboratory the sampling period changed, ranging from 2 weeks to
6 months, depending on the number of urine and/or blood cultures
therein processed. Overall, 766 cases of ExPEC infections (662 UTI and
104 sepsis) were diagnosed; of these, 230 cases (181 UTI and 49
sepsis) were caused by ciprofloxacin-resistant isolates.

The 101 avian E. coli strains (68 ciprofloxacin susceptible and 33 cipro-
floxacin resistant) included 91 strains recovered from chickens and 10
strains from turkeys. All strains were isolated from faeces of healthy
animals and were collected during the Salmonella surveillance activities
performed at poultry farms by three different regional Institutes of
Animal Health (Istituto Zooprofilattico delle Venezie, Legnaro, Padova;
Istituto Zooprofilattico della Lombardia e Emilia Romagna, Forlı̀; and Isti-
tuto Zooprofilattico dell’Umbria e Marche, Macerata) by including add-
itional tests for E. coli detection, during the period January–December
2009. Only one E. coli isolate for each farm was included in this study.

Antimicrobial susceptibility testing
Microbial identification, antimicrobial susceptibility testing and screening
for extended-spectrum b-lactamase (ESBL) production were each per-
formed according to standard laboratory procedures by either conven-
tional biochemical reactions and agar diffusion susceptibility tests or
automated methods (Vitek 2, bioMérieux Italia Spa, Florence, Italy).
The interpretative breakpoints were based on CLSI susceptibility criteria.18

Both human and avian strains were tested for susceptibility to ampicillin,
cefotaxime, ceftazidime, ciprofloxacin, trimethoprim/sulfamethoxazole
and gentamicin. For each strain, ciprofloxacin susceptibility was con-
firmed by using the Etest (AB Biodisk, Solna, Sweden) on Mueller–
Hinton agar plates (Oxoid Ltd, Hampshire, UK). Suspected ESBL-producing
strains were confirmed by Etest ESBL strips (AB Biodisk). An isolate was
defined as MDR when it was resistant to at least three antimicrobial
agents of different classes (ampicillin for penicillins, cefotaxime and/or
ceftazidime for third-generation cephalosporins, ciprofloxacin for fluoro-
quinolones, trimethoprim/sulfamethoxazole for folate pathway inhibi-
tors, and gentamicin for aminoglycosides).

Phylogenetic typing
E. coli strains were assigned to one of the four major E. coli phylogenetic
groups (A, B1, B2 and D) by the multiplex PCR-based method described by
Clermont et al.19 Total DNA extracts were prepared using the rapid boiling
method.

Screening of ST131
Human and avian E. coli strains belonging to phylogenetic group B2 were
screened to identify the ST131 clone by a rapid PCR-based method, as
previously described.20 For confirmation, all PCR-positive strains were sub-
jected to DNA sequencing of both mdh and gyrB housekeeping genes, in
accordance with the E. coli MLST scheme (http://mlst.ucc.ie/mlst/dbs/
Ecoli).

MLST
Within each source (UTI/sepsis/avian), �30% of strains belonging to each
of the four phylogenetic groups was subjected to MLST. In addition, irre-
spective of the phylogenetic group, an extra number of ciprofloxacin-
resistant and MDR strains was analysed. Overall, MLST was performed
on 172 E. coli strains [UTI (n¼83), of these 22 were susceptible and 61
were resistant to ciprofloxacin; blood (n¼46), of these 7 were susceptible
and 39 were resistant to ciprofloxacin; and avian isolates (n¼43), of
these 19 were susceptible and 24 were resistant to ciprofloxacin], follow-
ing procedures previously described.21 Gene amplification and sequen-
cing of the internal fragments from seven specific housekeeping genes
(adk, fumC, gyrB, icd, mdh, purA and recA) were performed by using the
primers specified on the E. coli MLST web site (http://mlst.ucc.ie/mlst/
dbs/Ecoli). The allelic profiles of the seven gene sequences and the STs
were obtained via the electronic database on the E. coli MLST web site.

Detection of ESBL-encoding genes
ESBL-producing strains were screened for identification of the
b-lactamase-encoding genes (blaTEM, blaCTX-M and blaSHV) by PCR amplifi-
cation, as previously described.9 DNA amplicons were sequenced to de-
termine gene types. Comparative analysis of nucleotide and deduced
amino acid sequences was performed by the advanced BLAST search
program 2.2 at the National Center for Biotechnology Information
web site (www.ncbi.nlm.nih.gov/blast/).
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Sequence analysis
PCR fragments were purified with the Qiaquick PCR purification kit
(Qiagen, Hilden, Germany). Sequencing was performed with both
strands by using the fluorescent dideoxy-chain terminator method on
an ABI 3730 DNA sequencer (Applied Biosystems, Foster City, CA, USA).

Statistical analysis
Data analysis and comparison of proportions were performed with Epi
Info (version 3.5.1; CDC) by use of the x2 test or Fisher’s exact test, as ap-
propriate. Statistical significance was defined as a P value of ≤0.05.

Results

Antimicrobial susceptibility

Table 1 shows resistance combinations among 168 ciprofloxacin-
resistant E. coli isolates stratified by source (UTI, n¼87; sepsis,
n¼48; and avian, n¼33) and tested against four additional antimi-
crobials of different classes (ampicillin, third-generation cephalos-
porins, trimethoprim/sulfamethoxazole and gentamicin). Only a
few isolates of both UTI and avian origin, and no blood isolate,
showed single ciprofloxacin resistance. MDR strains isolated from
both UTI and avian sources more frequently showed triple resistance
to ciprofloxacin, ampicillin and trimethoprim/sulfamethoxazole [27/
87 (31.0%) for UTI and 19/33 (57.6%) for avian isolates]. This pheno-
type, with or without additional resistance to third-generation

cephalosporins, was also common among isolates from sepsis
[28/48 (58.3%) for both phenotypes together, with and without re-
sistance to third-generation cephalosporins]. Resistance to all five
antimicrobial agents (ampicillin, trimethoprim/sulfamethoxazole,
gentamicin, third-generation cephalosporins and ciprofloxacin)
was found in both UTI and blood isolates [5/87 (5.7%) and 5/48
(10.4%), respectively], but not among avian isolates. A different
picture was observed among E. coli isolates susceptible to ciprofloxa-
cin (data not shown). About half of these isolates [61/100 (61.0%)
for UTI, 18/42 (42.9%) for sepsis and 28/68 (41.2%) for avian iso-
lates] were fully susceptible to the additional antimicrobial agents
tested. The most frequent phenotype was single resistance to ampi-
cillin [17/100 (17.0%) for UTI, 15/42 (35.7%) for sepsis and 16/68
(23.5%) for avian isolates] followed by dual resistance to ampicillin
and trimethoprim/sulfamethoxazole [15/100 (15.0%) for UTI, 8/42
(19.0%) for sepsis and 16/68 (23.5%) for avian isolates]. MDR
strains were rarely observed [2/100 (2.0%) for UTI, 1/42 (2.4%) for
sepsis and 3/68 (4.4%) for avian isolates].

ESBL production and characterization of ESBL-encoding
genes

Of the 277 human ExPEC isolates, 48 (17.3%) were ESBL produ-
cers. A higher percentage of ESBL-positive strains was found
among blood isolates compared with UTI isolates [27/187
(14.4%) for UTI and 21/90 (23.3%) for sepsis]. Notably, ESBL
production was found to be associated with ciprofloxacin

Table 1. Resistance combinations among ciprofloxacin-resistant E. coli strains stratified by source (UTI, sepsis and avian) and tested against four
additional antimicrobials of different classes

Resistance pattern

Human ExPEC strains (N¼135)

Avian strains (N¼33),
n (%)

UTI (n¼87),
n (%)

sepsis (n¼48),
n (%)

Single resistance
ciprofloxacin 6 (6.9) 0 2 (6.1)

Resistance to two antimicrobials of different classes
ampicillin+ciprofloxacin 13 (14.9) 7 (14.6) 3 (9.1)
third-generation cephalosporins+ciprofloxacin 1 (1.1) 0 0
trimethoprim/sulfamethoxazole+ciprofloxacin 2 (2.3) 0 0

Resistance to three antimicrobials of different classes
ampicillin+trimethoprim/sulfamethoxazole+ciprofloxacin 27 (31.0) 14 (29.2) 19 (57.6)
ampicillin+gentamicin+ciprofloxacin 4 (4.6) 3 (6.3) 1 (3.0)
ampicillin+third-generation cephalosporins+ciprofloxacin 7 (8.0) 1 (2.1) 3 (9.1)
gentamicin+trimethoprim/sulfamethoxazole+ciprofloxacin 2 (2.3) 0 0
third-generation cephalosporins+trimethoprim/sulfamethoxazole+ciprofloxacin 1 (1.1) 0 0

Resistance to four antimicrobials of different classes
ampicillin+trimethoprim/sulfamethoxazole+gentamicin+ciprofloxacin 10 (11.5) 4 (8.3) 0
ampicillin+trimethoprim/sulfamethoxazole+third-generation

cephalosporins+ciprofloxacin
6 (6.9) 14 (29.2) 5 (15.2)

ampicillin+gentamicin+third-generation cephalosporins+ciprofloxacin 3 (3.4) 0 0

Resistance to five antimicrobials of different classes
ampicillin+trimethoprim/sulfamethoxazole+gentamicin+third-generation

cephalosporins+ciprofloxacin
5 (5.7) 5 (10.4) 0

Giufrè et al.

862

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/67/4/860/858738 by guest on 10 April 2024



resistance in both UTI and sepsis isolates (P,0.01).
Regarding avian isolates, 8 of 101 (7.9%) strains were ESBL
producers.

Characterization of the ESBL genes is shown in Table 2.
Among both UTI and blood isolates, most ESBL-producing
strains [23/27 (85.2%) for UTI and 21/21 (100%) for sepsis]
were CTX-M positive; all were also ciprofloxacin resistant. In par-
ticular, 40 human strains (21 UTI and 19 sepsis) contained
blaCTX-M-15, 3 strains (2 UTI and 1 sepsis) blaCTX-M-1 and 1 strain
from sepsis blaCTX-M-27. One of the CTX-M-15-producing strains
also contained the blaSHV-12 gene. Of eight ESBL-producing
strains isolated from avian species, seven (87.5%) contained a
blaCTX-M gene. In particular, three strains carried blaCTX-M-1, two
strains blaCTX-M-2 and two strains blaCTX-M-14.

Phylogenetic analysis

Overall, human ExPEC strains mostly fell into the phylogenetic
group B2, irrespective of the isolation site [109/187 (58.3%) for
UTI and 48/90 (53.3%) for sepsis], whereas avian strains
mainly belonged to group A [35/101 (34.7%)] closely followed
by groups B1 [30/101 (29.7%)] and D [28/101 (27.7%)]. Table 3
shows the phylogenetic group distribution for the 378 E. coli iso-
lates stratified by source and by ciprofloxacin susceptibility
status. A significant increase in the proportion of group A
strains associated with ciprofloxacin resistance was observed
among both UTI and sepsis isolates [8/100 (8.0%) versus 17/
87 (19.5%), P¼0.021 for UTI and 5/42 (11.9%) versus 15/48
(31.3%), P¼0.028 for sepsis]. Moreover, ciprofloxacin-resistant

Table 2. Distribution of ESBL types among E. coli strains isolated from human extraintestinal infections (UTI and sepsis) and avian species

ESBL type
UTI strains

(N¼27), n (%) PhG, ST, CC (n)
CIPR,

n
Sepsis strains
(N¼21), n (%) PhG, ST, CC (n)

CIPR,
n

Avian strains
(N¼8), n (%) PhG, ST, CC (n)

CIPR,
n

CTX-M-15
(group 1)

20 (74.1) B2, 131, —a (16) 16 19 (90.5) B2, 131, — (13) 13 0 0 0
A, 617, 10 (1) 1 A, 617, 10 (1) 1
D, 648, — (1) 1 A, 559, 10 (2) 2
D, 405, 405 (2) 2 A, 410, 23 (2) 2

D, 648, — (1) 1
CTX-M-15+SHV-12 1 (3.7) B2, 131, — (1) 1 0 0 0 0 0 0
CTX-M-1 (group 1) 2 (7.4) A, 167, 10 (1) 1 1 (4.8) B2, 131, — (1) 1 3 (37.5) A, 617, 10 (1) 1

A, 410, 23 (1) 1 A, 1818, — (1) 0
B1, 683, — (1) 0

CTX-M-2 (group 2) 0 0 0 0 0 0 2 (25.0) D, 95, 95 (1) 0
B2, 117, — (1) 1

CTX-M-14
(group 9)

0 0 0 0 0 0 2 (25.0) B1, 602, 446 (2) 2

CTX-M-27
(group 9)

0 0 0 1 (4.8) B2, 131, — (1) 1 0 0 0

TEM 20 1 (3.7) B1, 1086, — (1) 0 0 0 0 0 0 0
TEM 52 1 (3.7) D, 405, 405 (1) 1 0 0 0 0 0 0
SHV-12 1 (3.7) A, 23, 23 (1) 0 0 0 0 1 (12.5) D, 1011, — (1) 1
Unclassified 1 (3.7) B1, 448, 448 (1) 1 0 0 0 0 0 0

PhG, phylogenetic group; CIPR, resistant to ciprofloxacin.
aCC not defined in MLST database.

Table 3. Phylogenetic group distribution for 378 E. coli strains stratified by source (UTI, sepsis and avian) and by ciprofloxacin susceptibility status

Phylogenetic group

Ciprofloxacin-susceptible strains, N¼210 Ciprofloxacin-resistant strains, N¼168
Pa (susceptible versus

resistant)

UTI (n¼100),
n (%)

sepsis (n¼42),
n (%)

avian (n¼68),
n (%)

UTI (n¼87),
n (%)

sepsis, (n¼48),
n (%)

avian (n¼33),
n (%) UTI sepsis avian

A 8 (8.0) 5 (11.9) 22 (32.4) 17 (19.5) 15 (31.3) 13 (39.4) 0.021 0.028 —
B1 9 (9.0) 8 (19.0) 18 (26.5) 5 (5.7) 4 (8.3) 12 (36.4) — — —
B2 66 (66.0) 22 (52.4) 7 (10.3) 43 (49.4) 26 (54.2) 1 (3.0) 0.022 — —
D 17 (17.0) 7 (16.7) 21 (30.9) 22 (25.3) 3 (6.3) 7 (21.2) — — —

aOnly significant P values (P≤0.05) are shown.
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isolates from UTI were found to belong significantly less fre-
quently to group B2 in comparison with ciprofloxacin-susceptible
isolates from the same source [66/100 (66%) versus 43/87
(49.4%), P¼0.022].

In avian strains, no significant difference was observed
between ciprofloxacin-susceptible and ciprofloxacin-resistant
strains with respect to phylogenetic group distribution.

MLST analysis

All group B2 strains from the three sources were subjected to PCR
screening methods for ST131 and those that were positive were
confirmed by DNA sequencing. Overall, the 129 human ExPEC
strains (83 strains from UTI and 46 from sepsis) analysed by
MLST were distributed into 37 STs, irrespective of the ciprofloxa-
cin susceptibility status, but only 6 of these STs comprised ≥3
strains. The 37 STs were grouped into 15 CCs, defined as
groups of closely related STs differing by only one allele. As
shown in Table 4, the predominant ST was ST131, comprising
37/109 (33.9%) phylogenetic group B2 strains isolated from
UTI and 26/48 (54.2%) B2 strains from sepsis (37/109 versus
26/48, P¼0.01). ST131 accounted for 39.1% (34/87) and for
30.8% (20/65) of all ciprofloxacin-resistant and MDR strains iso-
lated from UTI, respectively, and for 50.0% (24/48) and 46.3%
(19/41) of all ciprofloxacin-resistant and MDR strains isolated
from sepsis, respectively. About half of the ST131 isolates [17/
37 (46.0%) for UTI and 15/26 (57.7%) for sepsis isolates] were
ESBL positive, with 32 CTX-M-1-group-producing strains and 1
CTX-M-27-producing isolate; the majority of them [20/37
(54.1%) for UTI and 19/26 (73.1%) for sepsis isolates] were
MDR strains. The second most frequent ST associated with
humans was ST410 (CC23), encompassing 7 isolates (3/83 for
UTI and 4/46 for sepsis) that were predominantly ciprofloxacin-
resistant and MDR strains. The remaining STs (including at least
three human strains) linked to multidrug resistance and
common to both UTI and sepsis isolates were ST559, ST617
(both belonging to CC10) and ST38. Conversely, ST405 only
included UTI strains (all ciprofloxacin resistant and 2/4 MDR).
Finally, ST638 (CC73) mainly comprised ciprofloxacin-susceptible
strains isolated from UTI.

The 43 avian E. coli strains were widely distributed in 30 differ-
ent STs and grouped into 10 CCs (Table 4). The prevalent STs
(including at least three strains) were ST23 and ST156, both
including ciprofloxacin-resistant and MDR strains. Only one
strain belonged to ST131 [1/8 (12.5%) of total B2 strains]; it
was susceptible to ciprofloxacin. Finally, we found a novel ST
that was submitted to the MLST web site as ST2200 (only one
ciprofloxacin-susceptible strain). Comparing UTI, sepsis and
avian strains, and considering both STs and CCs, we observed
that the majority of group A strains from all three sources
belonged to the same CC10 and CC23 [altogether including 11/
13 (84.6%) group A strains from UTI, 10/10 (100.0%) group A
strains from sepsis and 15/21 (71.4%) group A strains of avian
origin], with some of them also sharing the same ST (ST410,
ST23, ST10 and ST617). Taking into consideration the number
of strains analysed by MLST and stratified by source, CC10 and
CC23 together accounted for 13.3% (11/83) of all UTI strains,
for 21.7% (10/46) of all sepsis strains and for 34.9% (15/43) of
all avian strains.

Discussion
The steady increase in the prevalence of FQ-resistant ExPEC isolates
is particularly concerning and suggests a need to identify their
origins, reservoirs and transmission pathways. In this study, com-
parison of the resistance phenotypes of the human ExPEC strains
isolated from UTI and sepsis with those of the E. coli isolates from
avian species revealed that: (i) most ciprofloxacin-resistant isolates
from the three sources (74.7%, 85.4% and 84.8% for UTI, sepsis and
avian isolates, respectively) were MDR strains; and (ii) human and
avian isolates shared the major resistance patterns. The presence
of overlapping resistance phenotypes between E. coli isolates
from human and avian sources has been previously described.22,23

In this study, evaluation of the potential zoonotic risk of the E. coli
isolates from poultry relies on both changes in the phylogenetic
group distribution associated with ciprofloxacin resistance and the
identification of drug-resistant clones shared among human and
avian strains. Regarding phylogenetic groups, overall, human
ExPEC strains mainly belonged to group B2, but, when they were
stratified by ciprofloxacin susceptibility, the proportion of resistant
group A strains significantly increased. Considering that more than
one-third of the avian E. coli isolates we tested belonged to group
A and that chicken meat has previously been found dominated by
A and B1 isolates,22 this finding suggests the hypothesis that
poultry might be a source for at least some human ciprofloxacin-
resistant group A strains. The shift away from group B2 in
drug-resistant ExPEC has been previously observed;24,25 however,
the recent emergence and diffusion of the ciprofloxacin-resistant
B2 ST131 clone seemed to contradict these observations.6 –9 Here,
by applying MLST, we confirmed the strong predominance of the
ST131 clone among ExPEC strains carrying multiple antimicrobial
resistances, especially those isolated from sepsis. However,
besides this successful clone, two complexes (CC10 and CC23) in-
cluding closely related STs (ST410, ST559, ST617 and others, each
with a few strains) were associated with ciprofloxacin resistance
and multiple resistances among UTI and sepsis strains. Notably,
almost all phylogenetic group A human strains we analysed by
MLST were distributed between these complexes (CC10 and
CC23). Among the other minor STs, we would like to mention
ST405 and ST38 (both belonging to phylogenetic group D), which
were mainly detected among ciprofloxacin-resistant UTI strains.
Reviewing the literature, we noticed that the ST clones herein
detected were different from both those commonly found asso-
ciated with UTI and/or extraintestinal infections in humans such
as ST14, ST73 and ST95 complex (all belonging to group B2) and
ST59 and ST69 (both belonging to D)26–29 and those previously
associated with trimethoprim/sulfamethoxazole and ciprofloxacin
resistance such as ST95, CC31, CC69 and ST393 (all belonging to
group D).10,11,30 An exception was a Spanish study that, in agree-
ment with us, found both CC10 and CC23 to be quite common
among clinical ESBL-producing E. coli.31

Looking at avian strains, our findings demonstrated that the
main ST clones associated with multidrug resistance were ST156
(belonging to the phylogenetic group B1) and ST23 (group A).
ST156 was previously detected among avian isolates carrying
ESBL CTX-M-15,32 but no strains harbouring such an ESBL were
found in the present study, while ST23 belonged to CC23. Similar
to that observed in ExPEC, most ciprofloxacin-resistant phylogen-
etic group A strains from an avian source belonged to either CC10
or CC23, suggesting that these ST complexes might constitute a
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potential zoonotic risk. Interestingly, we didn’t find strong evi-
dence for an ST131 reservoir in avian species, since only one
avian ST131 strain was detected, in agreement with previous
observations of other authors that only sporadically reported

ST131 among poultry.30,33 Based on our results, the ST131 clone
remains human associated and predominates among
ciprofloxacin-resistant strains, but can also be present among sus-
ceptible isolates, although in a low number.

Table 4. Distribution of MLST STs and CCs among E. coli strains from human extraintestinal infections (UTI and sepsis) and avian species, according
to both phylogenetic group and antimicrobial susceptibility status

Human ExPEC strains (N¼129)

Avian strains (N¼43)UTI (n¼83) sepsis (n¼46)

CC (n) ST (n) CIPR, n MDR, n CC (n) ST (n) CIPR, n MDR, n CC (n) ST (n) CIPR, n MDR, n

Phylogenetic group A
23 (5) 410 (3) 2 2 23 (6) 410 (4) 4 3 23 (11) 23 (8) 5 5

23 (1) 0 0 23 (1) 1 1 410 (2) 2 1
88 (1) 1 1 88 (1) 1 1 367 (1) 0 0

10 (6) 559 (2) 2 2 10 (4) 559 (2) 2 2 10 (4) 617 (1) 1 1
10 (1) 0 0 10 (1) 1 1 744 (1) 1 1

617 (2) 2 2 617 (1) 1 1 48 (1) 1 0
167 (1) 1 1 10 (1) 1 1

—a 216 (1) 0 0 165 (1) 165 (1) 0 0
— 746 (1) 1 1 398 (1) 398 (1) 1 1

— 347 (1) 0 0
— 1626 (1) 0 0
— 1251 (1) 0 0
— 1818 (1) 0 0

Phylogenetic group B1
469 (1) 162 (1) 1 1 469 (1) 162 (1) 1 1 156 (4) 156 (4) 3 2
448 (1) 448 (1) 1 1 448 (1) 448 (1) 1 1 155 (3) 155 (2) 1 1
155 (1) 58 (1) 1 1 — 1126 (1) 0 0 572 (1) 0 0
— 154 (1) 0 0 — 1434 (1) 0 0 446 (2) 602 (2) 2 0
— 1086 (1) 0 0 — 683 (1) 0 0

— 424 (1) 1 1
Phylogenetic group B2
— 131 (37) 34 20 — 131 (26) 24 19 — 131 (1) 0 0
73 (6) 638 (5) 1 0 12 (1) 12 (1) 1 1 — 117 (1) 1 1

73 (1) 0 0 — 1638 (1) 0 0
95 (2) 95 (2) 0 0
14 (1) 537 (1) 0 0
— 141 (1) 1 1
— 372 (1) 0 0
— 707 (1) 1 0
— 805 (1) 0 0
— 952 (1) 1 1
— 1282 (1) 0 0

Phylogenetic group D
405 (4) 405 (4) 4 2 31 (1) 393 (1) 1 1 350 (2) 350 (1) 0 1
38 (2) 38 (2) 2 2 38 (1) 38 (1) 0 0 57 (1) 1 1
69 (1) 69 (1) 0 1 69 (2) 69 (2) 0 0 95 (1) 95 (1) 0 0
354 (2) 354 (2) 2 2 354 (1) 354 (1) 1 0
394 (1) 394 (1) 0 0 — 362 (1) 0 0
— 648 (1) 1 1 — 648 (1) 1 1 — 648 (1) 1 1
— 854 (1) 1 1 — 1011 (1) 1 1
— 1011 (1) 1 0 — 2200 (1) 0 0

CIPR, resistant to ciprofloxacin.
aCC not defined in MLST database.

MDR E. coli of human and avian origin

865

JAC
D

ow
nloaded from

 https://academ
ic.oup.com

/jac/article/67/4/860/858738 by guest on 10 April 2024



Even though this study was not focused on ‘antibiotic resist-
ance genes’, some consideration of the principal ESBL types circu-
lating in human and avian strains is of interest, since poultry has
been considered a potential reservoir for ESBL-producing Gram-
negative bacteria.34 – 36 Overall, ESBL genes differed between
human and avian strains. In agreement with several previous
studies, CTX-M-15 was the most common ESBL among human
ExPEC strains isolated from both UTI and sepsis,37,38 but it was
not detected among our avian isolates. CTX-M-1 only was
shared by UTI, sepsis and avian isolates, but the majority of
strains carrying them appeared genetically diverse (with regard
to both STs and CCs) among the sources, with the exception of
two ciprofloxacin-resistant isolates (one from UTI and one from
an avian source) belonging to two genetically related ST clones
(ST167 and ST617), both included in CC10. Obviously, since ESBL
genes are generally located on plasmids, the horizontal transfer
of these genes from chicken to humans could not be ruled out
when the same ESBL genes were present, but this investigation
was not carried out in the present study.

In conclusion, this investigation allows us to identify the
major ST clones associated with ciprofloxacin resistance/multire-
sistance in both human and avian E. coli strains in Italy. Overall,
heterogeneity of ST clones was observed, with ST131 strongly
predominant in human strains, but not in avian strains.
However, two major ST complexes (CC10 and CC23, both belong-
ing to group A) were shared among strains isolated from all
sources (UTI/sepsis/avian). This finding, together with the shift
in phylogenetic distribution towards group A associated with
ciprofloxacin resistance and observed only among human
strains, supports the hypothesis that poultry might constitute a
reservoir at least for a subset of well-defined ciprofloxacin-
resistant/multiresistant clonal groups. However, further studies
are required to determine their true zoonotic potential.
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