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Objectives: Plazomicin, a novel aminoglycoside with in vitro activity against MDR Gram-negative organisms, is
under development to treat patients with serious enterobacterial infections. We evaluated the activity of plazo-
micin and comparators against colistin-resistant enterobacterial isolates.

Methods: Susceptibility to plazomicin and comparators was tested by broth microdilution for a collection of 95
colistin-resistant enterobacterial isolates collected from 29 hospitals in eight countries. Forty-two isolates
(Klebsiella pneumoniae and Klebsiella oxytoca) possessed chromosomally encoded resistance mechanisms to
colistin, 21 isolates (Escherichia coli and Salmonella enterica) expressed the mcr-1 gene, 8 isolates (Serratia,
Proteus, Morganella and Hafnia) were intrinsically resistant to colistin and 24 isolates (K. pneumoniae, E. coli and
Enterobacter spp.) had undefined, non-mcr-1 mechanisms. Susceptibility profiles were defined according to CLSI
for aminoglycosides and to EUCAST for colistin and tigecycline.

Results: Plazomicin inhibited 89.5% and 93.7% of the colistin-resistant enterobacterial isolates at�2 and �4 mg/L,
respectively. MICs of plazomicin were �2 mg/L for all of the mcr-1 positive isolates and �4 mg/L for all the intrinsic
colistin-resistant Enterobacteriaceae. Non-susceptibility to currently marketed aminoglycosides was common: ami-
kacin, 16.8%; gentamicin, 47.4%; and tobramycin, 63.2%. Plazomicin was the most potent aminoglycoside tested
with an MIC90 of 4 mg/L, compared with 32, .64 and 64 mg/L for amikacin, gentamicin and tobramycin, respectively.

Conclusions: Plazomicin displayed potent activity against colistin-resistant clinical enterobacterial isolates,
including those expressing the mcr-1 gene. Plazomicin was more active than other aminoglycosides against this
collection of isolates. The further development of plazomicin for the treatment of infections due to MDR
Enterobacteriaceae is warranted.

Introduction

Acquired resistance to polymyxins is increasingly reported in
Enterobacteriaceae, and particularly in Klebsiella pneumoniae.
This is of great concern, considering that polymyxins are among
the rare last-resort antibiotics for treating infections due to
carbapenem-resistant Enterobacteriaceae.1 The predominant
mechanism of colistin resistance described to date among clinical
enterobacterial isolates involves changes in the phosphate groups
of lipid A by addition of 4-amino-4-deoxy-1-arabinose and/or
phosphoethanolamine, resulting in reduced anionic charge of
LPS.2 Genetic alterations associated with resistance include muta-
tions in the two-component regulatory systems PhoPQ and
PmrAB, as well as inactivation of the mgrB gene.1,3,4 More

recently, a plasmid-encoded resistance mechanism (involving
the mcr-1 or mcr-2 genes) has been described worldwide among
enterobacterial isolates from animals, food and humans.5,6 This
plasmid-encoded mechanism may be associated with ESBL and
carbapenemase genes, heightening concerns regarding the glo-
bal spread of pandrug-resistant Enterobacteriaceae.7–9

Plazomicin (plazomicin sulphate, ACHN-490) is a novel semi-
synthetic aminoglycoside derived from sisomicin. Plazomicin is
insensitive to classical aminoglycoside-modifying enzymes such
as acetyl-, phosphoryl- and nucleotidyltransferases. Plazomicin is
active against clinical isolates possessing a broad range of
resistance mechanisms, including ESBLs, carbapenemases and
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fluoroquinolone target site mutations. This novel antibiotic has the
potential to address an unmet medical need for patients with ser-
ious MDR Enterobacteriaceae infections, including those caused by
carbapenem- and colistin-resistant isolates. Few studies have
been conducted so far to evaluate the activity of plazomicin
against MDR Gram-negative organisms, but a recent study showed
that this molecule retained excellent activity against carbapene-
mase and ESBL producers, including those combining aminoglyco-
side resistance mechanisms.10

The first step in aminoglycoside uptake by Gram-negative bac-
teria involves electrostatic binding of the positively charged antibi-
otic to negatively charged sites on the outer membrane (OM),
including LPS.11 Because common polymyxin resistance mechan-
isms in Enterobacteriaceae lead to a reduction in the negative
charge of the OM, there is a theoretical possibility that colistin resist-
ance may impact the activity of aminoglycosides, including plazomi-
cin. This was of concern in the context of the emergence of the
transmissible MCR-1/-2 resistance determinants, as stated above.
In this study, we evaluated the activity of plazomicin and compara-
tors against colistin-resistant clinical enterobacterial isolates with re-
sistance conferred by a wide variety of genetic mechanisms.

Materials and methods

Bacterial isolates

A total of 95 colistin-resistant clinical Enterobacteriaceae were evaluated in
this study. The strains were collected from 29 hospitals in eight countries

(Angola, Colombia, France, Portugal, South Africa, Spain, Switzerland and
Turkey). Forty-two isolates (K. pneumoniae and Klebsiella oxytoca) had
identified chromosomal colistin resistance mechanisms (e.g. mgrB, phoPQ
or pmrAB mutations), 21 isolates (Escherichia coli and Salmonella enterica)
expressed mcr-1, 8 isolates (Serratia, Proteus, Morganella and Hafnia) were
intrinsically resistant to colistin12 and 24 isolates (K. pneumoniae, E. coli and
Enterobacter spp.) had undefined, non-mcr-1-related colistin resistance
mechanisms (Table 1). In addition, E. coli TOP10 WT reference strain and its
counterpart E. coli transconjugant TOP10 producing MCR-1 were tested,
corresponding to two isogenic strains expressing or not expressing a colistin
resistance mechanism.7

In vitro susceptibility testing methods
MICs were determined following CLSI broth microdilution guidelines,13,14

with the exception of colistin and tigecycline, for which EUCAST breakpoint
criteria were applied.15 Frozen pre-loaded antibiotic-growth-medium
microtitre plates were purchased from Thermofisher (OH, USA) by
Achaogen, Inc. (South San Francisco, CA, USA) for MIC testing.

All isolates were tested for their susceptibility to the following antibi-
otics: colistin, amikacin, gentamicin, plazomicin, tobramycin, piperacillin
plus tazobactam at a fixed concentration (4 mg/L), ceftazidime, ceftriax-
one, doripenem, imipenem, meropenem, aztreonam, levofloxacin, tigecyc-
line and trimethoprim plus sulfamethoxazole. The range of concentrations
tested was: 0.06–128 mg/L for plazomicin and colistin; 0.015–32 mg/L
for doripenem, imipenem, ceftazidime, ceftriaxone, aztreonam and
tigecycline; 0.03–64 mg/L for the aminoglycosides amikacin, gentamicin
and tobramycin; 0.004–512 mg/L for meropenem; 0.004–8 mg/L for
levofloxacin; 0.06–64 mg/L for piperacillin plus 4 mg/L tazobactam; and

Table 1. Colistin-resistant isolates with intrinsic resistance, chromosomally acquired resistance or plasmid-mediated or unknown resistance mechanisms

Species Number Colistin resistance Mechanism

Strains naturally resistant to colistin

Morganella morganii 2 intrinsic resistance NA

Proteus mirabilis 2 intrinsic resistance NA

Proteus vulgaris 1 intrinsic resistance NA

Serratia marcescens 2 intrinsic resistance NA

Hafnia alvei 1 intrinsic resistance NA

Strains resistant to colistin with an identified mechanism of resistance

K. pneumoniae 41 acquired, chromosomal 3 strains: pmrA mutations

3 strains: pmrB mutations

phoP, 25 nt deletion

phoQ point mutation

3 strains with mgrB point mutations

7 strains with a truncated mgrB gene

15 with IS insertion into the mgrB gene

8 strains with a partial or total deletion of the mgrB gene

K. oxytoca 1 acquired, chromosomal IS insertion in mgrB

E. coli 15 acquired, plasmid mcr-1 gene

E. coli 2 acquired, plasmid mcr-1 gene

S. enterica 4 acquired, plasmid mcr-1 gene

Strains resistant to colistin without an identified mechanism of resistance

K. pneumoniae 9 acquired unknown

E. coli 2 acquired unknown

E. cloacae 12 acquired unknown

Enterobacter asburiae 1 acquired unknown

NA, not applicable.
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Table 2. In vitro activities of plazomicin, colistin, amikacin, gentamicin, tobramycin, imipenem, doripenem, meropenem, tigecycline, levofloxacin, cef-
tazidime, ceftriaxone, aztreonam, piperacillin/tazobactam and trimethoprim/sulfamethoxazole against colistin-resistant Enterobacteriaceae

Colistin resistance mechanism/antibiotic n

MIC (mg/L) MIC interpretive criteria (mg/L)

range MIC50
a MIC90

a susceptible intermediate resistant

Intrinsic resistance 8

plazomicin* 1–4 8 0 0

colistin** 16 to .128 0 — 8

amikacin 2–16 8 0 0

gentamicin 0.25–32 7 0 1

tobramycin 0.5–16 7 0 1

imipenem 0.25–16 2 0 6

doripenem 0.06–0.5 8 0 0

meropenem 0.03–0.12 8 0 0

tigecycline*** 0.5–8 4 0 4

levofloxacin 0.03–2 8 0 0

ceftazidime 0.03 to .32 7 0 1

ceftriaxone �0.015 to .32 4 0 4

aztreonam �0.015 to 32 7 0 1

piperacillin/tazobactam �0.06/4 to 0.5/4 7 0 1

trimethoprim/sulfamethoxazole �0.25/4.75 6 — 2

Acquired, chromosomal 42

plazomicin 0.25 to .128 0.25 1 38 0 4b

colistin 8–64 32 64 0 — 42

amikacin 1 to .64 16 64 30 7 5

gentamicin 0.25 to .64 32 .64 14 1 27

tobramycin 0.25 to .64 16 .64 5 7 30

imipenem 1 to .32 32 .32 1 2 39c

doripenem 0.06 to .32 8 .32 12 5 25c

meropenem 0.03 to .512 8 256 16 1 25c

tigecycline 0.25–4 2 4 19 17 6

levofloxacin 0.06 to .8 .8 .8 6 2 34

ceftazidime 0.5 to .32 .32 .32 6 0 36

ceftriaxone 0.03 to .32 .32 .32 3 3 36

aztreonam 0.12 to .32 .32 .32 7 0 35

piperacillin/tazobactam 4/4 to .64/4 .64/4 .64/4 4 0 38

trimethoprim/sulfamethoxazole �0.25/4.75 to .64/1216 .64/1216 .64/1216 10 — 32

Acquired, plasmid mcr-1 21

plazomicin 0.5–2 1 2 21 0 0

colistin 4–16 8 8 0 — 21

amikacin 1–32 2 8 20 1 0

gentamicin 0.5–64 1 32 17 0 4

tobramycin 0.5–32 1 32 15 1 5

imipenem 1–8 4 4 4 5 12

doripenem 0.03–0.5 0.06 0.12 21 0 0

meropenem 0.03–0.5 0.03 0.06 21 0 0

tigecycline 0.25–2 0.5 1 19 2 0

levofloxacin 0.03 to .8 8 .8 10 0 11

ceftazidime 0.12 to .32 0.5 .32 14 0 7

ceftriaxone 0.03 to .32 0.12 .32 12 0 9

aztreonam 0.06 to .32 0.25 .32 13 0 8

piperacillin/tazobactam 1/4 to .64/4 4/4 .64/4 15 3 3

trimethoprim/sulfamethoxazole �0.25/4.75 to .64/1216 .64/1216 .64/1216 7 — 14

Unknown mechanism 24

plazomicin 0.12 to .128 0.5 4 22 0 2d

Continued
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0.25–64 mg/L for trimethoprim plus 4.75–1216 mg/L sulfamethoxazole.
E. coli ATCC 25922 was used for quality control according to CLSI guidelines.

Molecular testing methods
Enterobacterial isolates with plazomicin MICs �8 mg/L were screened by
PCR for the presence of 16S methyltransferase genes armA, npmA, rmtA,
rmtB, rmtC, rmtD, rmtE, rmtF, rmtG and rmtH, and for the different carbape-
nemase genes,16,17 as resistance to plazomicin has been associated with
the presence of 16S methylases that modify the intracellular target of all
aminoglycosides.18,19

Results and discussion

Plazomicin inhibited 89.5% (85/95) and 93.7% (89/95) of the
colistin-resistant Enterobacteriaceae isolates at �2 and �4 mg/L,
respectively (Table 2). For strains with a well-defined chromo-
somally encoded resistance mechanism to colistin, the MIC90

value (i.e. the MIC that inhibits 90% of the isolates) was 2 mg/L for
plazomicin. All of the mcr-1-positive isolates were inhibited at
�2 mg/L, while the naturally colistin-resistant bacteria were in-
hibited at �4 mg/L. No difference was observed between E. coli
TOP10 and E. coli TOP10 producing the plasmid-encoded MCR-1,
both exhibiting an MIC of colistin of 0.25 mg/L. The MIC90 value
was 2 mg/L for isolates with unknown colistin resistance
mechanisms.

Overall, five K. pneumoniae isolates had a plazomicin MIC of
�128 mg/L; none of these isolates carried mcr-1. A 16S methyl-
transferase gene was detected in all of these isolates (armA in
three isolates, rmtC and rmtF in one isolate each; data not shown)

and the blaNDM carbapenemase gene was also detected in four of
these isolates (data not shown). One Enterobacter cloacae isolate
had an elevated plazomicin MIC (8 mg/L), but a methyltransferase
gene was not detected in this isolate.

Plazomicin was more active than currently marketed aminogly-
cosides against this collection of colistin-resistant isolates. The pla-
zomicin MIC90 value was 4 mg/L, compared with 32, .64 and
64 mg/L for amikacin, gentamicin and tobramycin, respectively.
Non-susceptibility to amikacin, gentamicin and tobramycin was
common [16.8% (16/95), 47.4% (45/95) and 63.2% (60/95) of the
isolates, respectively] (Table 2).

This study shows that plazomicin remains effective against
colistin-resistant Enterobacteriaceae, regardless of the mechan-
ism of polymyxin resistance (intrinsic, acquired, chromosome-
or plasmid-encoded). Importantly, the emergence of plasmids
encoding the MCR-1/MCR-2 polymyxin resistance traits has
not altered the susceptibility of Enterobacteriaceae to this
antibiotic.

By circumventing the main mechanisms of resistance to ami-
noglycosides, i.e. the aminoglycoside-modifying enzymes, plazo-
micin may be seen as an interesting molecule for treating
infections due to MDR Enterobacteriaceae. Consistent with known
limitations of this drug, and the aminoglycoside class in general,
isolates with high plazomicin MICs (.128 mg/L) carried 16S rRNA
methylase-encoding genes, often in association with NDM-
encoding genes in this isolate collection. There were a total of four
isolates co-producing an NDM-type carbapenemase and a 16S
rRNA methylase, and two isolates producing an NDM carbapene-
mase only.

Table 2. Continued

Colistin resistance mechanism/antibiotic n

MIC (mg/L) MIC interpretive criteria (mg/L)

range MIC50
a MIC90

a susceptible intermediate resistant

colistin 4 to .128 64 .128 0 — 24

amikacin 0.5–64 4 32 21 1 2

gentamicin 0.15 to .64 4 64 12 1 11

tobramycin 0.25 to .64 8 32 8 4 12

imipenem 1 to .32 8 .32 2 3 19e

doripenem 0.03 to .32 2 16 10 3 11e

meropenem 0.008–64 1 16 12 4 8e

tigecycline 0.12–4 2 4 10 9 5

levofloxacin 0.03 to .8 8 .8 9 2 13

ceftazidime 0.12 to .32 .32 .32 5 0 19

ceftriaxone 0.03 to .32 .32 .32 3 2 19

aztreonam 0.06 to .32 .32 .32 5 0 19

piperacillin/tazobactam 0.5/4 to .64/4 .64/4 .64/4 6 1 17

trimethoprim/sulfamethoxazole �0.25/4.75 to .64/1216 16/304 .64/1216 11 — 13

MIC50, MIC that inhibits 50% of the isolates; MIC90, MIC that inhibits 90% of the isolates.
CLSI criteria were applied with the exception of *plazomicin, for which no breakpoint is available at the moment (4 mg/L was arbitrarily chosen to cat-
egorize the isolates), and **colistin and ***tigecycline, for which EUCAST breakpoint criteria were used.
aNo MIC50 and MIC90 are given for isolates exhibiting intrinsic resistance to colistin due to a limited number of tested isolates.
bFour isolates expressed 16S rRNA methylases and three out of four expressed NDM.
cTwenty-seven isolates produced a carbapenemase, of which six were NDM producers.
dOne isolate co-produced a 16S rRNA methylase and an NDM-type carbapenemase.
eFifteen isolates produced a carbapenemase.
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Taking into account the irreversible spread of multiresistance in
Enterobacteriaceae, it is expected that plazomicin may find its
place in the armamentarium against those bacteria. All aminogly-
cosides, including plazomicin, possess rapid bactericidal activity
and favourable chemical and pharmacokinetic properties, making
this class of antibiotics a therapy of choice for treating many bac-
terial infections.
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