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Background: Treatment of VRE is of clinical concern. While certain numbers of vanD-type VRE have been
isolated, only two vanD5-harbouring Enterococcus faecium isolates have been reported in Canada and Japan.

Methods: We report the isolation of vanD5-type E. faecium and the first ever determination of the whole-
genome sequence to investigate the possible mechanisms of the acquisition of the vanD5 gene cluster in
E. faecium.

Results: Two vanD5-harbouring vancomycin-resistant E. faecium were isolated from the skin (SMVRE19) and
faeces (SMVRE20) of a patient with a skin ulcer in Japan. The isolates exhibited vancomycin and teicoplanin MIC
values of 128 mg/L, whilst the previous isolates of vanD5-harbouring E. faecium were only resistant to vanco-
mycin. SMVRE19 and SMVRE20 were clones related to ST18, which is also seen in vanA- and vanB-type VRE.
These isolates harboured an insertion element, ISEfm1, in the ddl gene, similar to a previously described
teicoplanin-resistant vanD3-type E. faecium. The vanD5 gene cluster was integrated into the SMVRE20 chromo-
some as a part of a large genomic island (approximately 127 kb), similar to other recently spreading vanD var-
iants in the Netherlands. The genomic island shared the greatest similarity with a part of the Blautia coccoides
genome sequence, except for the region surrounding the vanD gene cluster.

Conclusions: This study reports that emergence of vancomycin- and teicoplanin-resistant vanD5-type
E. faecium occurred via acquisition of the vanD5 cluster and ISEfm1 insertion into ddl. Considering the genetic
similarity between the various VRE strains, the current study should serve as a warning against the spread of
vanD5-type VRE.

Introduction

Enterococcus spp. are some of the most important nosocomial
pathogens that cause urinary tract infections, surgical wound in-
fection, endocarditis and bacteraemia. VRE are isolated worldwide
and their treatment is a serious clinical concern. Vancomycin-
resistant Enterococcus faecium strains are of particular concern
because of the frequently observed MDR phenotype, including
resistance to b-lactams, fluoroquinolones and aminoglycosides.1

Glycopeptide (vancomycin and teicoplanin) resistance is attrib-
uted to the acquisition of vancomycin resistance (van) genes.
Nine van genes that encode a D-Ala:D-Lac or D-Ala:D-Ser ligase
(vanA, vanB, vanC, vanD, vanE, vanG, vanL, vanM and vanN) have

been identified in Enterococcus spp.1 These resistance genes are
usually harboured together with other van gene clusters, such as
vanR, vanS, vanY, vanH and vanX, with the different combinations
depending on the van types.1 The isolation of vanD-type
vancomycin-resistant E. faecium strains has been reported since the
mid-2000s,2,3 and they have been spreading in clinical fields in re-
cent years.4–9 In addition to the vanD gene cluster, functional disrup-
tion of Ddl (D-Ala:D-Ala ligase), which also contributes to vancomycin
and teicoplanin resistance,10 has been commonly observed.

In the current study, we report the isolation of vanD5-harbour-
ing E. faecium isolates from a patient with a skin ulcer in Japan in
2017. We describe, to the best of our knowledge, the first ever
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determination of the whole-genome sequence of a vanD5-
harbouring E. faecium and present the possible pathways of acqui-
sition of the vanD5 gene cluster.

Materials and methods

Clinical isolates and detection of the vanA–D genes

Two vancomycin-resistant E. faecium isolates were isolated from the skin
(SMVRE19) and faeces (SMVRE20) of a patient with a skin ulcer in Sapporo
Medical University Hospital (Sapporo, Japan) in 2017. The patient had no
history of travelling abroad and had received vancomycin treatment
2 months before the isolation. The study was approved by Sapporo Medical
University Ethics Committee (No. 302-1031). The vanA–D genes were
detected by PCR, as previously described.2,11

Antimicrobial susceptibility testing
Antimicrobial susceptibility, including susceptibility to vancomycin
(Shionogi, Osaka, Japan) and teicoplanin (Sanofi, Tokyo, Japan), was tested
using the microbroth dilution method according to the guidelines of CLSI.
E. faecium ATCC 35667 was used as a reference.

WGS
Genomic DNA of SMVRE19 and SMVRE20 was isolated using the Wizard
Genomic DNA Purification Kit (Promega, Madison, WI, USA). The complete
genome sequence of SMVRE20 was determined using the PacBio RS SMRT
Portal (Pacific Biosciences, Menlo Park, CA, USA). The filtered subreads (in
fastq format) were assembled with 300 bp paired-end reads obtained by
MiSeq sequencing (Illumina, San Diego, CA, USA) using Unicycler (version
0.4.3).12 To increase accuracy, the sequences were curated by mapping
analysis with the paired-end reads using the CLC Genomics Workbench
(QIAGEN, Hilden, Germany). The finalized contig lengths were 2 840 573 bp
(the SMVRE20 genome), 153 748 bp (pSMVRE20L, the large plasmid of
SMVRE20) and 40 229 bp (pSMVRE20S, the small plasmid of SMVRE20).
The entire sequences were annotated by DFAST (legacy version) based on
PROKKA.13 Paired-end reads of SMVRE19 were subjected to mapping ana-
lysis to compare with SMVRE20, using CLC Genomics Workbench.

Genome analysis
The nucleotide sequences of previously reported vanD-positive strains
E8043,6 E93546 and NEF13 were assembled using the respective short
reads available from the European Nucleotide Archive (ENA) database using
the CLC Genomics Workbench with default parameters. The sequence of
the genomic island of SMVRE20 harbouring the vanD5 gene cluster was
then compared with those of the other vanD-positive strains and the corre-
sponding region of Blautia coccoides YL58 (accession number CP022713.1),
using BLASTn in EasyFig 2.2.2.14 Putative drug resistance-related
genes were identified using CARD version 3.0.1.15 In addition, core genes
were defined using BLASTn, based on the reciprocal best hits between two
compared sequences.

Conjugation experiments
Conjugation experiments were performed as previously described.16 Eight
rifampicin- and fusidic acid-resistant E. faecium mutants selected from four
E. faecium isolates were used as the recipients. Brain heart infusion (BHI)
agar containing vancomycin (8 mg/L), rifampicin (32 mg/L) and fusidic acid
(25 mg/L) was used for the selection of vanD5-habouring transconjugants
after incubation at 37�C for 3 days. The details of the conjugation experi-
ments are described in Appendix S1 (available as Supplementary data at
JAC Online).

Natural transformation experiment
Genomic DNA was isolated from E. faecium SMVRE19 and SMVRE20 using
the Wizard Genomic DNA Purification Kit. Approximately 1 lg, 100 ng or
10 ng of the genomic DNA was added into the mixture of 900 lL of fresh
BHI broth and 100 lL of overnight culture of eight rifampicin- and fusidic
acid-resistant E. faecium mutants in BHI broth (details are in Appendix S1).
BHI agar containing vancomycin (8 mg/L), rifampicin (32 mg/L) and fusidic
acid (25 mg/L) was used for the selection of vanD5-habouring transconju-
gants after incubation at 37�C for 3 days.

Data availability
The obtained genome sequences were deposited at the DNA Data Bank of
Japan (DDBJ)/ENA/GenBank under the accession numbers AP019408 (the
SMVRE20 genome; https://www.ncbi.nlm.nih.gov/nuccore/AP019408.1),
AP019409 (pSMVRE20L; https://www.ncbi.nlm.nih.gov/nuccore/AP019409)
and AP19410 (pSMVRE20S; https://www.ncbi.nlm.nih.gov/nuccore/
AP019410).

Results

Antimicrobial susceptibility of vanD-type vancomycin-
resistant E. faecium

SMVRE20 and SMVRE19 exhibited identical antimicrobial suscepti-
bility results: resistance to vancomycin and teicoplanin (both MICs
were 128 mg/mL), penicillins (penicillin and ampicillin MICs were
128 and 64 mg/L, respectively) and fluoroquinolones (ciprofloxacin
and levofloxacin MICs were >64 mg/L); they were susceptible to
linezolid (MIC of 1 mg/mL) and daptomycin (MIC of 4 mg/mL).
WGS of SMVRE20 and SMVRE19 revealed the presence of only two
SNPs among the two strains. This suggested that the two strains
originated from an identical clone. Meanwhile, SMVRE19 lacked a
small plasmid harboured by SMVRE20 (pSMVRE20S). The two iso-
lates were untypeable by MLST (https://pubmlst.org/efaecium/)
because of an ISEfm1 insertion in ddl, one of the seven housekeep-
ing genes used for the determination of ST. However, with the
exception of the insertion, ST of the isolates was identical to ST18.

Identification of the vanD variant and sequencing of the
vanD cluster and ddl genes

The vanD sequence of SMVRE20 was identical to the sequence of a
vanD5 variant (100% identity with vanD5 of the first ever isolated
E. faecium strain N03-0072, accession number NG048362).
SMVRE20 possessed other vanD gene clusters: vanR, vanS, vanY,
vanH and vanX. SMVRE20 had a complete vanY sequence, whereas
N03-0072 harbours a frameshift, i.e. insertion of thymine between
position 77 and 78 in that gene (accession number AY489045.1).2

In addition, SMVRE20 VanX had two amino acid substitutions
(Trp21Cys and Met22Ile) compared with the N03-0072 protein,
whereas VanR and VanS were 100% identical (accession numbers,
NG_048412.1 and NG_048436.1) with N03-0072. The ddl gene of
SMVRE20 had been disrupted by a 1050 bp insertion, ISEfm1, be-
tween nucleotides 762 and 763, inserted via repeated nucleotide
sequences, atcaataat (Figures S1 and S2).

Genomic location of the vanD5 gene cluster and the
genomic island

The long-read WGS and BLAST analysis revealed that the region
surrounding the vanD5 gene cluster in SMVRE20 harboured
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sequences of non-Enterococcus spp. origin and most of the regions
were highly similar to the genome sequence of B. coccoides YL58
(Figure 1a). The region containing the B. coccoides YL58-like nu-
cleotide sequences consisted of 127 465 bp and was sandwiched
in the E. faecium chromosome in the vicinity of the 16S rRNA gene
and a tRNA-dihydrouridine synthase gene (lysS) via an 11 bp re-
peat nucleotide sequence, cattgtgggga (Figure 1b).

Comparison of the genomic island regions with other vanD-
type E. faecium isolates8 revealed that SMVRE20 shared greater
nucleotide sequence similarity with E9354, which harbours a clus-
ter II vanD-containing genomic island, than with E8043 (cluster I)
or NEF1 (cluster III) (Figure 2). Further, the vanD5-containing gen-
omic island of SMVRE20 was approximately 6.5 kb longer than that
of E9354 (approximately 120.8 kb).6

Conjugation and natural transformation experiments

In the conjugation experiment, we observed a total of 19 strains
that grew on the BHI agar containing vancomycin, rifampicin and
fusidic acid. However, no vanD gene was observed in the obtained
strains by PCR. We also failed to select any vanD5-harbouring
transconjugants in the natural transformation.

Discussion

The first identification of vanD5 was reported in an isolate from a
rectal/perineal sample of a patient with a nephrostomy in Canada
in 2004.2 A recent study reported the isolation of vanD5-harbour-
ing E. faecium (ST203) in Japan in 2017.9 These indicate that the
emergence of vanD5-type VRE did not exclusively occur in Canada,
but independently in another place. The present isolate SMVRE20
represents ST18, when the ISEfm1 insertion in ddl is disregarded.
ST18 is a major lineage in which vancomycin resistance acquisition
is associated with vanA, vanB and other vanD variants and spread
worldwide.6,17 Therefore, the spread of ST18 strains should be
monitored in the clinic because of their ability to acquire various
types of van genes.

Although the Canadian and recently isolated Japanese vanD5-
type E. faecium strains (N03-0072 and IPHb306, respectively) were
resistant to vancomycin (MIC of >16 mg/L) and susceptible to an-
other glycopeptide, teicoplanin (MICs of 1 and 2 mg/L),2,9 SMVRE20
was resistant to both agents. Teicoplanin resistance is contributed
to by imbalance of peptidoglycan precursors (UDP-MurNAc-penta-
depsipeptide, UDP-MurNAc-pentapeptide and UDP-MurNAc-
tetrapeptide) due to the disruption of Ddl and regulation of VanXY
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Figure 1. Genomic analysis of the vanD5 gene cluster and the surrounding genomic island genes in E. faecium SMVRE20 (identical with SMRVE19). (a)
Genetic comparison of the genomic island harbouring the vanD5 gene cluster in SMVRE20 and the corresponding region of the B. coccoides YL58
genome (accession number CP022713.1). The island was defined by an 11 bp repeat sequence according to Top et al.6 Bi-directional BLAST hits
were coloured using a colour gradient corresponding to identity of 71%–100%. (b) Predicted integration site of the vanD5-harbouring genomic
island in the E. faecium SMVRE20 (identical with SMVRE19) chromosome. The arrows correspond to coding sequences (CDSs) originating from
E. faecium (green), the vanD5 gene cluster (yellow), transposase genes (red), functional protein genes (grey) and hypothetical protein genes
(white). Some features are shown as arrows in the bottom lane for clarity. * and **, the predicted integration site and the associated 11 bp
repeated nucleotide sequence, cattgtgggga (underlined). The nucleotide at the seventh position (guanine, marked in red) is different from that
(cytosine) reported previously.5
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and VanSR.18 Thus, the resistance to teicoplanin of SMVRE20 can
be explained by functional VanY and mutated VanX in addition to
Ddl disruption from the comparison with N03-0072. The insertion
of ISEfm1 into ddl at the same position has been reported in a
vanD3-type E. faecium strain N97-330 in Canada in 2000.19

The acquisition mechanism of vanD5 has not been fully deter-
mined, because whole-genome data for the previously reported
vanD5-type E. faecium strains N03-0072 and IPHb306 are not
available. We suggested that the vanD5 of SMVRE20 shared a
common pathway for acquisition of the vanD gene cluster, the in-
tegration of a highly similar large genomic island via 11 bp repeat
nucleotide sequence (cattgtcggga, but cattgtgggga in SMVRE20)
at the same site of the chromosome with other vanD-harbouring
E. faecium strains (vanD1-like, vanD2-like and vanD4).3,6 These
observations indicate that the acquisition pathway of vanD var-
iants occurs via a hotspot in the E. faecium chromosome in many
lineages.

Several segments of the SMVRE20 genomic island were
identical to the nucleotide sequence of B. coccoides. B. coccoides, a
commensal anaerobic Gram-positive bacterium, resides in the
human gut, as do Enterococcus spp.20 Therefore, the emergence

of vanD5-harbouring vancomycin-resistant E. faecium could be
mediated by horizontal gene transfer of a large part of the genom-
ic island originating from B. coccoides to the E. faecium chromo-
some in the human gut.21 However, transfer of the genomic island
from SMVRE20 to E. faecium recipients did not occur in our in vitro
experiments. This suggested that the vanD5-harbouring genomic
island is stable in the E. faecium chromosome after the integration.

In conclusion, we report here the genetic similarity
(ST18-related, large genomic island integration and ISEfm1 inser-
tion) of vanD5-harbouring vancomycin- and teicoplanin-resistant
E. faecium between the various VREs.
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