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Pharmacovigilance from social media:
mining adverse drug reaction mentions
using sequence labeling with word
embedding cluster features
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ABSTRACT
....................................................................................................................................................

Objective Social media is becoming increasingly popular as a platform for sharing personal health-related information.
This information can be utilized for public health monitoring tasks, particularly for pharmacovigilance, via the use of nat-
ural language processing (NLP) techniques. However, the language in social media is highly informal, and user-
expressed medical concepts are often nontechnical, descriptive, and challenging to extract. There has been limited
progress in addressing these challenges, and thus far, advanced machine learning-based NLP techniques have
been underutilized. Our objective is to design a machine learning-based approach to extract mentions of adverse drug
reactions (ADRs) from highly informal text in social media.
Methods We introduce ADRMine, a machine learning-based concept extraction system that uses conditional random
fields (CRFs). ADRMine utilizes a variety of features, including a novel feature for modeling words’ semantic similarities.
The similarities are modeled by clustering words based on unsupervised, pretrained word representation vectors
(embeddings) generated from unlabeled user posts in social media using a deep learning technique.
Results ADRMine outperforms several strong baseline systems in the ADR extraction task by achieving an F-measure
of 0.82. Feature analysis demonstrates that the proposed word cluster features significantly improve extraction performance.
Conclusion It is possible to extract complex medical concepts, with relatively high performance, from informal, user-
generated content. Our approach is particularly scalable, suitable for social media mining, as it relies on large volumes
of unlabeled data, thus diminishing the need for large, annotated training data sets.
....................................................................................................................................................
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INTRODUCTION
Adverse drug reactions (ADRs) are a major public health con-
cern and are among the top causes of morbidity and mortality.1

Clinical drug trials have limited ability to detect all ADRs due to
factors such as small sample sizes, relatively short duration,
and the lack of diversity among study participants.2 Postmarket
drug safety surveillance is therefore required to identify poten-
tial adverse reactions in the larger population to minimize
unnecessary, and sometimes fatal, harm to patients.
Spontaneous reporting systems (SRSs) are surveillance mecha-
nisms supported by regulatory agencies such as the Food and
Drug Administration in the United States, which enable health-
care providers and patients to directly submit reports of

suspected ADRs. When compared to reports from other health-
care providers, patients’ reports have been found to contain
different drug-ADR pairs, contain more detailed and temporal
information, increase statistical signals used to detect ADRs,
and increase the discovery of previously unknown ADRs.3–6

However, under-reporting limits the effectiveness of SRSs. It is
estimated that more than 90% of ADRs are under-reported.7 To
augment the current systems, there are new ways to conduct
pharmacovigilance using expanded data sources—including
data available on social media sites, such as Twitter,8,9 or
health-related social networks, such as DailyStrength (DS).10

While a few individuals’ experiences may not be clinically useful,
thousands of drug-related posts can potentially reveal serious
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and unknown ADRs. Figure 1 shows examples of ADR-relevant
user postings from Twitter (a) and DS (b), with labeled mentions.

Our prior research analyzed user postings in DS, and was the
first study which demonstrated that natural language processing
(NLP) techniques can be used for the extraction of valuable
drug-safety information from social media.11 Other publications
further explored the topic,12–14 relying primarily on string com-
parison techniques over existing or custom built ADR lexicons.
However, there are important challenges that make a pure lexi-
con-based approach to the problem suboptimal, namely:

1. Consumers do not normally use technical terms found
in medical lexicons. Instead, they use creative phrases, de-
scriptive symptom explanations, and idiomatic expressions.
For example the phrase “messed up my sleeping patterns”
was used to report “sleep disturbances.”

2. Even when correctly identified, matched terms are not neces-
sarily adverse effects. The terms used to describe ADRs can
also be used for indications (reason to use the drug; e.g., “in-
fection” in Figure 1b), beneficial effects, or other mention types.

3. User postings are informal, and deviate from grammatical
rules. They include misspellings, abbreviations, and phrase
construction irregularities that make extraction more diffi-
cult compared to other corpora (such as news or biomedi-
cal literature).

In this work, we introduce ADRMine, a machine learning
sequence tagger for concept extraction from social media. We
explore the effectiveness of various contextual, lexicon-based,
grammatical, and semantic features. The semantic features
are based on word clusters generated from pretrained word
representation vectors (also referred to as word embeddings15),
which are learned from more than one million unlabeled user
posts, using a deep learning technique. Deep learning, a new
class of machine learning methods based on nonlinear
information processing, typically uses neural networks (NNs)
for automatic feature extraction, pattern analysis, and classifi-
cation.16 Deep learning methods have shown promising results
in NLP tasks, including sentence chunking and named entity
recognition, in well-formatted domains such as news or
Wikipedia content.15,17 However, to the best of our knowledge,
these methods have not previously been explored for medical
concept extraction from social media data.

In this study, we hypothesized that ADRMine would address
many of the abovementioned challenges associated with social

media data, and would accurately identify most of the ADR
mentions, including the consumer expressions that are not ob-
served in the training data or in the standard ADR lexicons.
Furthermore, we hypothesized that incorporating the “embed-
ding cluster features” would diminish the need for large
amounts of labeled data, which are generally required to train
supervised machine learning classifiers.

RELATED WORK
Various resources have been studied for extraction of postmar-
keting drug safety information, including electronic health re-
cords,18,19 biomedical literature,20–22 and SRSs.23,24 However,
the surfeit of user-posted online health information has recently
encouraged researchers to explore other resources for drug-
safety information extraction including various health social
networking sites, such as DS,11,25,26 PatientsLikeMe,27,28 and
MedHelp;29 generic social networks such as Twitter;8,9,30 and
users’ web search logs.31

Given that there are standard and extensive ADR lexicons,
such as Side Effect Resource (SIDER, containing known
ADRs),32,33 Consumer Health Vocabulary (CHV, containing con-
sumer alternatives for medical concepts),34 Medical Dictionary
for Regulatory Activities (MedDRA),35 and Coding Symbols for a
Thesaurus of Adverse Reaction Terms (COSTART), most prior
studies11,12,14,36–38 focused on exploring existing or custom-
ized/expanded lexicons to find ADR mentions in user posts. To
address some of the limitations of the lexicon-based extraction
methods in our own previous work,11 we applied association
rule mining, a data mining technique, to learn the language
patterns that were used by patients or their caregivers to report
ADRs.25 The technique generated extraction patterns based on
the immediate local context of the ADR mentions in the training
sentences. The patterns could successfully extract a subset of the
ADRs. However, performance of such an approach is highly de-
pendent on training set size, making it difficult to locate concepts
expressed in less frequent and more complex sentences.

Overall, there has been limited progress on automated med-
ical concept extraction approaches from social media, and ad-
vanced machine learning-based NLP techniques have been
underutilized for the task. Specifically, there has been less ef-
fort in addressing the introduced challenges, such as finding
“creative” consumer expressions, handling misspellings, dis-
tinguishing ADRs from other semantic types (e.g., indications),
and mapping such creative expressions to the standard medi-
cal terminologies.

Figure 1: Examples of user-posted drug reviews in Twitter (a) and DailyStrength (b).
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METHODS
Data collection and annotation
We collected user posts about drugs from two different social
media resources: DS and Twitter. In this study, 81 drugs were
used (the drug list is available for download at: http://diego.
asu.edu/downloads/publications/ADRMine/drug_names.txt). A
pharmacology expert selected the drugs mainly based on wide-
spread use in the US market. The set also includes relatively
newer drugs that were released between 2007 and 2010; this
provides a time cushion for market growth and helps to ensure
that we can find patient discussions on social media. For more
information about the data and the collection process please
refer to prior publications using Twitter data or DS.8,9

A team of two expert annotators independently annotated
the user posts under the supervision of the expert pharmacolo-
gist. The annotations include mentions of medical signs and
symptoms with the following semantic types:

• adverse drug reaction – a drug reaction that the user
considered negative;

• beneficial effect – an unexpected positive reaction to the
drug;

• indication – the condition for which the patient is taking
the drug; and

• other – any other mention of signs or symptoms.

Every annotation includes the span of the mention (start/end
position offsets), the semantic type, the related drug name, and
the corresponding UMLS (Unified Medical Language System)
concept ID—assigned by manually selecting concepts in the
ADR lexicon (see “ADR lexicon” Section). To measure the inter-
annotator agreement, we used Cohen’s kappa approach.39 The
calculated kappa value for approximate matching of the con-
cepts is 0.85 for DS and 0.81 for Twitter, which can be consid-
ered high agreement.40 Finally, the gold standard was
generated by including only the reviews with complete inter-
annotator agreement. From the DS corpus, 4720 reviews are
randomly selected for training (DS train set) and 1559 for test-
ing (DS test set). The Twitter corpus contains 1340 tweets for
training (Twitter train set) and 444 test tweets (Twitter test set).
The Twitter annotated corpus is available for download from
http://diego.asu.edu/downloads/publications/ADRMine/downloa
d_tweets.zip.

For unsupervised learning, we collected an additional
313 833 DS user reviews, associated with the most-reviewed
drugs in DS, and 397 729 drug related tweets, for a total of
711 562 postings. This unlabeled set (Unlabeled_DS_Twitter
set), excluding the sentences in DS test and Twitter test sets,
consists of more than one million sentences.

ADR lexicon
We compiled an exhaustive list of ADR concepts and their cor-
responding UMLS IDs. The lexicon, expanded from our earlier
work,11 currently includes concepts from COSTART, SIDER,
and a subset of CHV. In order to compile a list of only ADRs, we
filtered the CHV phrases by excluding the concepts with UMLS

IDs that were not listed in SIDER. For example, we did not add
“West Nile virus” since the related UMLS ID (C0043125) was
not listed in SIDER. The final lexicon contains over 13 591
phrases, with 7432 unique UMLS IDs. In addition, we compiled
a list of 136 ADRs frequently tagged by the annotators in the
training data. This additional list was not used during annota-
tion and only is used in our automatic extraction techniques.
The ADR lexicon has been made publicly available at http://die
go.asu.edu/downloads/publications/ADRMine/ADR_lexicon.tsv.

Concept extraction approach: sequence labeling with CRF
A supervised sequence labeling CRF classifier is used in
ADRMine to extract the ADR concepts from user sentences.
CRF is a well-established, high performing classifier for se-
quence labeling tasks.15,41,42 We used CRFsuite, the imple-
mentation provided by Okazaki,43 as it is fast and provides a
simple interface for training/modifying the input features.15,43

Generating the input CRFsuite train and test files with calcu-
lated features for 88 565 tokens in DS train/test sets takes
about 40 min, while building the CRF model and assigning la-
bels for test sentences takes about 2 min on a PC with a dual
core CPU and 10 GB of RAM running the Ubuntu operating
system.

The CRF classifier is trained on annotated mentions of ADRs
and indications, and it attempts to classify individual tokens in
sentences. Although the focus is to identify the ADR mentions,
our preliminary empirical results show that including indication
labels in the model improves the performance of ADR extrac-
tion. We also consider the mentions of beneficial effects as in-
dications, since there are very limited number of annotated
beneficial effects and they are similar to indications. For encod-
ing the concepts’ boundaries, ADRMine uses the inside, out-
side, beginning (IOB) scheme—where every token can be the
beginning, inside, or outside of a semantic type. Therefore,
it learns to distinguish five different labels: B-ADR, I-ADR,
B-Indication, I-Indication, and Out.

CRF features
To represent the classification candidates (i.e., individual to-
kens), we explored the effectiveness of the following feature
sets:

• Context features: Context is defined with seven features
including the current token (ti), the three preceding (ti�3,
ti�2, ti�1), and three following tokens (tiþ1, tiþ2, tiþ3) in
the sentence. The preprocessed token strings are values
of these features. Preprocessing includes spelling correc-
tion and lemmatization. For spelling correction, we utilize
the Apache Lucene44 spell checker library, which sug-
gests the correct spelling based on an index of English
words. The index is generated using the ADR lexicon,
described in the previous section, and a list of
common English words from Spell Checker Oriented
Word Lists.45 For lemmatization, we used the Dragon
toolkit46 lemmatizer, which returns the WordNet47 root
of the input word.
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• ADR Lexicon: A binary feature that shows whether or not
the current token exists in the ADR lexicon.

• POS: Part of speech of the token, which was generated
using Stanford parser.48

• Negation: This feature indicates whether or not the token
is negated. The negations are identified based on syntac-
tic dependency rules between lexical cues (e.g., no, not,
cannot) and the token.49,50

Learning word embeddings
One potential problem with the abovementioned features is
that the classifier may struggle with unseen or rarely occurring
tokens. To address this issue, we incorporated a set of seman-
tic similarity-based features. We model the similarity between
words by utilizing more than one million unlabeled user sen-
tences (Unlabeled_DS_Twitter set) about drugs to generate the
word embeddings. The embeddings are meaningful real-valued
vectors of configurable dimension (usually, 150–500 dimen-
sions). We generate 150-dimensional vectors using the word2-
vec tool,51 which learns the vectors from an input text corpus.
We split the sentences in each user post, lemmatize all the to-
kens, and lowercase them for generalization. Word2vec first
constructs a vocabulary from the input corpus, and then learns
word representations by training a NN language model. The NN
learns a word’s embedding based on the word’s contexts in
different sentences. As a result, the words that occur in similar
contexts are mapped into close vectors. More information
about generating the embeddings can be found in the related
papers.15,52,53

Embedding cluster features
We compute word clusters with the word2vec tool, which per-
forms K-means clustering on the word embeddings. The words
in the corpus are grouped into n (¼150) different clusters,
where n is a configurable integer number. Examples of gener-
ated clusters with a subset of words in each cluster are shown
in Table 1. Seven features are then defined based on the gen-
erated clusters. The features include the cluster number for the

current token, three preceding and three following tokens.
These features add a higher level abstraction to the feature
space by assigning the same cluster number to similar tokens.
For instance, as Table 1 illustrates, the drug names “Abilify”
and “Adderall” are assigned to the same cluster, which in-
cludes only drug names. The value of n and the embedding
vectors’ dimension were selected based on preliminary experi-
ments targeted at optimizing CRF performance for values of n
between 50 and 500. Generating the embedding clusters
from raw input texts is very fast and takes around 30 s. The
generated word embeddings and clusters are made avail-
able for download http://diego.asu.edu/Publications/ADRMine.
html.

Figure 2 shows the calculated features for three CRF classi-
fication instances.

Baseline extraction techniques
We aimed to analyze the performance of ADRMine relative to
four baseline techniques: two simple baselines based on
MetaMap,54 a lexicon-based approach for extraction of candi-
date ADR phrases based on our ADR lexicon, and an SVM clas-
sifier that identifies the semantic type of the extracted phrases.

Lexicon-based candidate phrase extraction
To locate the ADR lexicon concepts in user sentences, we use
an information retrieval approach based on Lucene, which is
similar to those applied for ontology mapping55,56 and entity
normalization.57 A Lucene index is built from the ADR lexicon
entries. For each concept in the lexicon, the content and the
associated UMLS IDs are added to the index. Before indexing,
the concepts are preprocessed by removing the stop words
and lemmatization.

To find the concepts presented in a given sentence, we
generate a Lucene search query after preprocessing and toke-
nizing the sentence. The retrieval engine returns a ranked list
of all the lexicon concepts that contain a subset of the tokens
presented in the input query. We consider a retrieved concept
present in the sentence if all of the concept’s tokens are

Table 1: Examples of the unsupervised learned clusters with the subsets of the words in each cluster;
ci is an integer between 0 and 149

Cluster# Semantic category Examples of clustered words

c1 Drug Abilify, Adderall, Ambien, Ativan, aspirin, citalopram, Effexor, Paxil, . . .

c2 Signs/Symptoms hangover, headache, rash, hive, . . .

c3 Signs/Symptoms anxiety, depression, disorder, ocd, mania, stabilizer, . . .

c4 Drug dosage 1000 mg, 100 mg, .10, 10 mg, 600 mg, 0.25, .05, . . .

c5 Treatment anti-depressant, antidepressant, drug, med, medication, medicine, treat, . . .

c6 Family member brother, dad, daughter, father, husband, mom, mother, son, wife, . . .

c7 Date 1992, 2011, 2012, 23rd, 8th, April, Aug, August, December, . . .

The “Semantic category” titles are manually assigned and are not used in the system.
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present in the sentence. The span of the concepts in the sen-
tence are then identified by using string comparison via regular
expressions. This technique is flexible enough to identify both
single and multi-token concepts, regardless of the order or the
presence of other tokens in between them. For example, the
sentence “ . . . I gained an excessive amount of weight during
six months.” is correctly matched with the lexicon concept
“weight gain.” We apply two constraints before accepting the
presence of a retrieved lexicon concept: the distance between
the first and the last included token should be equal or less
than a configurable size (¼5), and there should not be any
punctuation or connectors like “but” or “and” in between the
tokens.

SVM semantic type classifier
Since not all mentions that match with the lexicon are adverse
reactions, we train a multiclass SVM classifier to identify the
semantic types of the candidate phrases. Every SVM classifica-
tion candidate is a phrase (may include more than one token)
that is already matched with the ADR lexicon. The possible se-
mantic types for a candidate phrase are ADR, Indication or
Other. SVM was chosen because it has been shown to perform
very well in text classification problems.58 We used SVMlight59

to build the SVM model. The SVM features for representing the
candidate phrases are similar to CRF features and include: the
phrase tokens, three preceding and three following tokens
around the phrase (neighbor tokens), the negation feature, and
the embedding cluster number for the phrase tokens and the
neighbor tokens.

MetaMap baselines
We use MetaMap to identify the UMLS concept IDs and
semantic types in the user reviews, and add two baselines
to evaluate the performance of MetaMap on this type of data.

In the first baseline (MetaMapADR_LEXICON), all identified men-
tions by MetaMap that their assigned UMLS IDs are in our
lexicon are considered to be ADRs. In the second baseline
(MetaMapSEMANTIC_TYPE), all concepts belonging to specific
UMLS semantic types are considered to be ADRs. The selected
semantic types include: injury or poisoning, pathologic function,
cell or molecular dysfunction, disease or syndrome, experimen-
tal model of disease, finding, mental or behavioral dysfunction,
neoplastic process, signs or symptoms, mental process.

RESULTS
We evaluate the performance of the extraction techniques us-
ing precision (p), recall (r), and F-measure (f ):

p ¼ tp

tpþ fp
r ¼ tp

tpþ fn
f ¼ 2� p� r

pþ r

True positives (tp), false positives (fp), and false negatives
(fn) are calculated by comparing the systems’ extracted
concepts with the annotated ADRs in the gold standard via ap-
proximate matching.60 The effectiveness of the proposed
techniques is evaluated using DS and Twitter corpora indepen-
dently. Table 2 shows the details about the sentences and the
number of annotated concepts in each corpus.

The performance of ADRMine is compared with the baseline
techniques in Table 3. We found that ADRMine significantly
outperforms all baseline approaches (p< 0.05). Furthermore
the utility of different techniques in concept extraction is con-
sistent between the two tested corpora. We compute the statis-
tical significance (p-value) by using the model proposed by
Yeh61 and implemented by Pado.62

To investigate the contribution of each feature set in the
CRF model, we performed leave-one-out feature experiments
(Table 4). We found that the most contributing groups of fea-
tures are the context and the embedding clusters. The combi-
nation of both is sufficient to achieve the highest result for DS.

Figure 2: Calculated features representing three CRF classification instances.
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Table 2: Number of user reviews and annotation details in train/test sets for DailyStrength (DS) and
Twitter corpora

Dataset No. of user
posts

No. of sentences No. of tokens No. of ADR
mentions

No. of indication
mentions

DS train set 4720 6676 66 728 2193 1532

DS test set 1559 2166 22 147 750 454

Twitter train set 1340 2434 28 706 845 117

Twitter test set 444 813 9526 277 41

Table 3: Comparison of ADR classification precision (P), recall (R), and F-measure (F) of ADRMine with
embedding cluster features (ADRMineWITH_CLUSTER) and the baselines systems on two different corpora:
DS and Twitter

Method DS Twitter

P R F P R F

MetaMapADR_LEXICON 0.470 0.392 0.428 0.394 0.309 0.347

MetaMapSEMANTIC_TYPE 0.289 0.484 0.362 0.230 0.403 0.293

Lexicon-based 0.577 0.724 0.642 0.561 0.610 0.585

SVM 0.869 0.671 0.760 0.778 0.495 0.605

ADRMineWITHOUT_CLUSTER 0.874 0.723 0.791 0.788 0.549 0.647

ADRMineWITH_CLUSTER 0.860 0.784 0.821 0.765 0.682 0.721

The highest values in each column are highlighted in bold.

Table 4: The effectiveness of different CRF feature groups; all feature set (All) includes: context, lexicon,
POS, negation, and embedding clusters (cluster)

CRF Features DS Twitter

P R F P R F

All 0.856 0.776 0.814 0.765 0.682 0.721

All – lexicon 0.852 0.781 0.815 0.765 0.646 0.701

All – POS 0.853 0.776 0.812 0.754 0.653 0.700

All – negation 0.854 0.769 0.810 0.752 0.646 0.695*

All – context 0.811 0.665 0.731* 0.624 0.498 0.554*

All – cluster 0.851 0.745 0.794* 0.788 0.549 0.647*

Contextþ cluster 0.860 0.784 0.821* 0.746 0.628 0.682*

Statistically significant changes (p< 0.05), when compared with All feature set, are marked with asterisks.
The highest values in each column are highlighted in bold.
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To further investigate the power of the embedding clusters,
we performed several experiments to compare them with con-
text features. These experiments were only performed on
DS as we had a relatively larger set of training data available.
The size of the training data was varied while the test set
remained unchanged. Starting with 20% (944 reviews) of
the original DS training set, we increased its size by 20%
each time via random sampling without replacement.
Figure 3 shows that adding the cluster features (con-
textþ clusters) constantly improves F-measure (Figure 3b),
gives significant rise to the recall (Figure 3a), but slightly de-
creases the precision.

DISCUSSION
Twitter vs. DailyStrength corpus
As shown in Table 3, the extraction performance for DS is
much higher than Twitter. This is partially related to the fact
that there was less annotated data available for Twitter. In gen-
eral, however, compared to DS extracting ADR information
from Twitter poses a more challenging problem. Whereas DS is
a health-focused site that fosters discussion from patients
about their personal experiences with a drug, Twitter is a gen-
eral networking site where users may be inclined to mention a
particular drug and its side effects for any number of reasons.
Some may include personal experiences, but others may tweet
about side effects they heard about, be sharing of a news re-
port, or a sarcastic remark. These nuances may be difficult for
even annotators to detect as the limited length of the tweets
can make it more challenging for the annotator to ascertain
the context of the mention. For instance in this tweet: “Hey not
sleeping. #hotflashes #menopause #effexor,” it is difficult to de-
termine whether the patient is taking the drug for their problem
or if they are reporting ADRs.

Comparison of the concept extraction methods
Evaluation of the baseline lexicon-based technique (Table 3)
demonstrated that it can extract ADR mentions with relatively
high recall but very low precision. The recall is anticipated
to even further improve in future by augmenting the ADR
lexicon with a larger subset of MedDRA entries and a
more comprehensive list of common consumer expressions
for ADRs. This high recall indicates that the utilized lexicon-
based techniques were effective in handling term variability in
the user sentences. However, the low precision was mainly
due to the matched mentions with semantic types other than
ADRs. When we used SVM to distinguish the semantic types,
the precision markedly increased, while the recall decreased
but the overall extraction performance improved (Table 3).
Both MetaMap baselines performed poorly, showing the vulner-
ability of MetaMap when applied to informal text in social me-
dia. ADRMine significantly outperformed all the baseline
approaches. Figure 4 illustrates examples of ADRs that could
only be extracted by ADRMine.

The effectiveness of classification features
Feature evaluations (Table 4) indicated that lexicon, POS, and
negation features added no significant contribution to the re-
sults when CRF was trained on comparatively larger number of
training instances (DS train set), while they could still make
small contributions to the performance when less data was
available (Twitter train set or DS with less number of training
instances). However, for both corpora, the context features
were fundamental for achieving both high precision and recall;
and the embedding cluster features were critical in improving
the recall which resulted in a significant boost in F-measure.
Examples of ADRs that were extracted after adding the cluster
features are starred (asterisks) in Figure 5.

Figure 3: The impact of embedding clusters on precision, recall (a), and F-measure (b), when training the CRF on variable
training set sizes and testing on the same test set.
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Interestingly, as Figure 3b illustrates, the F-measure of the
CRF with cluster features and 40% training data is higher than
the F-measure without cluster features and 100% training data.
Therefore, these features can be advantageous in situations
where less annotated data is available. As shown in Table 3, the
contribution of the cluster features in ADRMine was substantially
higher for the Twitter corpus, which also confirms this finding.

Error analysis
For error analysis, we randomly selected 50 fp and 50 fn ADR
mentions from DS test set and categorized the likely sources of
errors. A summary of this is depicted in Figure 6, with example
fp/fn concepts shown within brackets. The majority of fp errors
were caused by mentions that were confused with indications
or non-ADR clinical mentions. We believe that incorporating
more context (e.g., a longer window), and sentiment analysis
features, which model the positivity/negativity of the context,
will diminish such errors in future.

Twenty-eight percent of fn ADRs were expressed in long, de-
scriptive phrases, which rarely included any technical terms.
Sentence simplification techniques might be effective in extract-
ing such fns.63 Irrelevant immediate context or the lack of context
in too short, incomplete sentences, made it difficult for the CRF to
generalize, and contributed to 26% of fns. Other fns were related
to specific rules in the annotation guideline, mentions expressed
with complex idiomatic expressions or uncorrected spelling er-
rors. Future research is needed to identify an optimized set of
features that could potentially minimize these errors.

CONCLUSION
In this study, we proposed ADRMine, a machine learning-based
sequence tagger for automatic extraction of ADR mentions
from user posts in social media. ADRMine achieved an

F-measure of 0.82 for DS, and 0.72 for Twitter corpus, outper-
forming all baseline techniques. We explored the effectiveness
of various classification features in training the CRF model,
and found that context and embedding clusters were the most
contributing features. Furthermore, we utilized a large volume
of unlabeled user posts for unsupervised learning of the em-
bedding clusters, which enabled similarity modeling between
the tokens, and gave a significant rise to the recall.
Considering the rapid increasing volume of user posts in social
media that contain new and creative consumer expressions for
medical terms, and the fact that we generally have a compara-
tively small number of annotated sentences, we showed that
using the embedding clusters diminished the dependency on
large numbers of annotated data.

Considering the challenges of task-specific feature design,
and given the success of the deep learning techniques in gen-
erating the word embeddings, our future work will involve
exploring the effectiveness of training a deep learning NN, in-
stead of the CRF, for simultaneous learning of both classifica-
tion features and the labels. In addition, in this study we
focused on concept extraction, but future research should
examine normalization techniques. It is needed to map an ex-
tracted mention to the corresponding concept in standard
ontologies, such as UMLS and MedDRA. Moreover, we believe
that the proposed features and extraction techniques may
prove applicable for extraction of other medical concepts from
social media and similar contents.
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