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ABSTRACT

Objective: Our objective is to test the limits of the assumption that better learning from data in medicine re-

quires more granular data. We hypothesize that clinical trial metadata contains latent scientific, clinical, and

regulatory expert knowledge that can be accessed to draw conclusions about the underlying biology of dis-

eases. We seek to demonstrate that this latent information can be uncovered from the whole body of clinical

trials.

Materials and Methods: We extract free-text metadata from 93 654 clinical drug trials and introduce a represen-

tation that allows us to compare different trials. We then construct a network of diseases using only the trial

metadata. We view each trial as the summation of expert knowledge of biological mechanisms and medical

evidence linking a disease to a drug believed to modulate the pathways of that disease. Our network representa-

tion allows us to visualize disease relationships based on this underlying information.

Results: Our disease network shows surprising agreement with another disease network based on genetic data

and on the Medical Subject Headings (MeSH) taxonomy, yet also contains unique disease similarities.

Discussion and Conclusion: The agreement of our results with other sources indicates that our premise regard-

ing latent expert knowledge holds. The disease relationships unique to our network may be used to generate

hypotheses for future biological and clinical research as well as drug repurposing and design. Our results pro-

vide an example of using experimental data on humans to generate biologically useful information and point to

a set of new and promising strategies to link clinical outcomes data back to biological research.
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BACKGROUND AND SIGNIFICANCE

The collection of all clinical trials represents research carried out on

millions of humans1 along with thousands of decisions made by re-

searchers, clinicians, and executives managing billions of dollars.2

Each trial teaches us something about the specific relationship be-

tween an indication and an intervention that can be summarized in

terms of safety and efficacy. However, the question of how to learn

from the collection of clinical trials remains open. Little is known

about the information clinical trials reveal as a whole.

We hypothesize that, at present, different trials are only con-

nected indirectly through the expertise accumulated by the scientific,

clinical, regulatory, and executive decision-makers who deployed

their expertise in those trials. We believe this expertise is latent in

the collection of clinical trials and can be accessed via inference.

Viewing the collection of clinical trials as observables emerging

from this latent knowledge, we show how to leverage clinical trial

metadata to arrive at unique insights into the relationships between

diseases. We further show how these insights may be useful in link-

ing clinical data back to biology by generating hypotheses for future

biological research.

Collections of clinical trials are now available in clinical trials

registries, enabling work like ours to benefit from multiple clinical
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trials together.3 The desire to increase learning from multiple trials

and possibly further inform scientific research has led many re-

searchers to push for greater access to patient-level clinical trial data

and even electronic health records.4–6 The prevailing assumption

within the field is that the more granular the data, the better the

learning.

In this paper we explore whether relationships among diseases

can be learned from superficial data, such as the kind of metadata

available in clinical trial registries, and how the relationships uncov-

ered compare to relationships learned from molecular and biological

data.

The notion that new knowledge may be generated from the struc-

tured aggregation of databases has been used before to explore rela-

tionships between diseases or between drugs. For example, Goh

et al.7 and Butte et al.8 compared diseases and phenotypes by shared

gene correlations based on the Online Mendelian Inheritance in Man

database and the Gene Expression Omnibus database. Zhou et al.9

compared diseases by shared symptoms from text in PubMed.

Hidalgo et al.10 compared diseases by shared comorbid conditions.

Yildirim et al.11 compared drugs based on shared targets. Campillos

et al.12 and Tatonetti et al.13 compared drugs based on shared side ef-

fects. These examples provide a strategy to access disease similarities

that would not have been apparent from individual experiments.14

New insights into disease similarities or dissimilarities can have

dramatic results. For example, the similarity between psoriasis and

multiple sclerosis led to the blockbuster drug Tecfidera (dimethyl fu-

marate) being used to treat relapsing-remitting multiple sclerosis.15

As another example, the discovery of genetic dissimilarity in breast

cancer corresponding to dissimilar prognoses led to new and im-

proved diagnosis and treatment options.16 Similarity metrics between

drugs have been used to predict indications, targets, and drug interac-

tions.17–19 Such predictions have enabled repurposing of existing

drugs and avoidance of adverse drug reactions.20

To some degree, all of these examples may be viewed as accessing

latent information about underlying biology. In this work we follow

an approach similar in spirit, but introduce the hypothesis that the un-

derlying biology is contained in the expert knowledge used in deciding

to conduct the trials. Expert knowledge may come from literature re-

views, proprietary biological experiments, other clinical trials, or the

summaries of expert opinions. We further hypothesize that such ex-

pert knowledge may be accessed as latent information from clinical

trial metadata. By uncovering that latent information, it is possible to

extract what experts collectively know about the relationships among

tested diseases. Using this information, one may explore the relation-

ships among diseases and generate hypotheses to guide future re-

search. In this work we use aggregated clinical trial metadata to

construct relationships among diseases and show that similar relation-

ships can be found when compared to analyses based on detailed

biological data.

To the best of our knowledge, studying disease relationships by

using the entire set of clinical drug trials along with the premise of

expert knowledge latent in the trial metadata is novel, and it is a key

contribution of this work. Our approach and subsequent results im-

ply that there is much more knowledge to be gained from existing

clinical trial data. It also suggests a path to compare patient-level

data across different trials when such data becomes more widely

available.

The paper is organized as follows: We explain how we used free-

text metadata from drug trials on ClinicalTrails.gov to construct a

model of the diseasome. We then explore the connectivity between

diseases and drugs and visualize the data in a network layout. We

report on the validation of the disease-disease network (DDN)

against a standard disease taxonomy and a diseasome built from ge-

netic data. The relationships derived from our network show sur-

prising agreement with relationships based on genetic data or

medical taxonomies and show promise for informing future scien-

tific research.

METHODS

Construction of the disease-disease network
We extracted metadata from 93 654 clinical drug trials on

ClinicalTrials.gov (see Supplementary Methods). The metadata in-

cluded a list of 1 or more free-text strings for conditions (diseases)

and a similar list for drugs. Comparing diseases or drugs from differ-

ent trials was sometimes ambiguous, because 2 different text strings

could represent the same concept. For example, there are 73 strings

that represent the single concept type 2 diabetes mellitus

(Supplementary Table 1).

Some resources have already been constructed to disambiguate dis-

eases and drugs, such as the option to browse trials by condition or

drug intervention on ClinicalTrials.gov21 and use of the Aggregate

Analysis of ClincalTrials.gov (AACT) database.22 These resources in-

cluded errors, such as imidacloprid listed as a drug in 129 trials when

browsing by intervention on ClinicalTrials.gov and in 6 trials in the

AACT database. Imidacloprid is actually an insecticide that is not

tested in any trials listed on ClinicalTrials.gov. We traced this false pos-

itive to the trade name Advantage, which is used as a synonym for imi-

dacloprid in the 2013 edition of Medical Subject Headings (MeSH).

These false positives occur because both resources rely on an automatic

algorithm for finding MeSH terms.22 Such false positives would erro-

neously connect diseases in our analysis. We also found that these re-

sources have built-in inferences based on a National Library of

Medicine (NLM) algorithm or annotations by clinicians. Our goal was

to use the raw data as much as possible, without introducing layers of

inference.

Much of the work that analyzes large sets of clinical trials is

based on the AACT database.23–25 Other work focuses on specific

aspects of the trials, such as drug combinations26 or participation

criteria,27,28 which use algorithms tailored to the specific fields to

automatically extract their datasets. Due to the nature of our ap-

proach, it was more important for us to reduce false positives, and

we therefore curated the data manually. To enable comparison, we

built a thesaurus of terms, starting with diseases (Figure 1). We

started with the MeSH vocabulary29 as a base thesaurus. Another

option was UMLS,30 which is a more comprehensive thesaurus

based on many databases and can be accessed with enhanced tools

such as MetaMap.31 We chose MeSH because contributors to

ClinicalTrials.gov are encouraged to use its vocabulary,32 and by us-

ing a single database we avoided inferences as described above.

MeSH only identified 22% of the unique disease strings listed in

ClinicalTrials.gov, accounting for 56% of all disease strings and

70% of the trials. We manually reviewed the 17 970 disease strings

not identified by MeSH, comparing each one to the 20 closest terms

in MeSH generated by fuzzy string matching (see Supplementary

Methods for details). If a match could not be made and the disease

string occurred repeatedly, we created a new “data-derived” term in

the thesaurus. The number of MeSH disease terms used over time

peaked in 2008, and the percentage of terms we added to our the-

saurus increased linearly over time (Supplementary Figure 1), sug-

gesting that the 2014 MeSH vocabulary did not include terms
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currently used in research, hence the need for our enhanced thesau-

rus. Using our thesaurus, we identified 94% of the disease strings

for 96% of the drug trials listed in ClinicalTrials.gov.

Drugs were more challenging to disambiguate, because one drug

string often included multiple drugs and because experimental drugs

were often not found in MeSH. Of 63 066 unique drug strings, we

generated 503 270 possible substrings and used automated and man-

ual filtering to identify all drugs and construct a thesaurus (see

Supplementary Methods and Supplementary Figure 2). We analyzed

the drug thesaurus and found patterns similar to that of the disease

thesaurus (Supplementary Figures 3 and 4). We then used the drug

thesaurus to identify individual drugs in drug strings (Supplementary

Table 2). To assess accuracy, we took a sampling of 100 random trials

with 216 drugs and found that 98% were identified (Supplementary

Table 3). We also sampled 100 drug strings that were not mapped to

any drugs and found that 92% were correctly excluded

(Supplementary Table 4).

The resulting disease-drug dataset accounts for 93 069 trials and

includes 132 822 diseases (3663 unique) and 175 584 drugs (7349

unique). HIV infection was the most tested disease, with 2772 trials

involving 700 drugs. There were 1211 unique diseases tested in more

than 10 trials with at least 1 drug and 1784 unique drugs tested in

more than 10 trials with at least 1 disease. The variety of trials involv-

ing different diseases and drugs provides the connectivity for a

network.

To construct the network, we started with the disease-drug net-

work, a bipartite network of disease nodes and drug nodes (Figure 2).

Diseases and drugs are linked by trials, with the width of the edge pro-

portional to the number of trials with both the disease and the drug.

The disease-disease network (DDN) is constructed using only diseases

as nodes and the edges representing the number of drugs tested at least

once on both diseases. The connectivity of the disease-drug network

follows a power law (Supplementary Figure 5A), while the connectiv-

ity of the DDN follows an exponential distribution (Supplementary

Figure 5B).33 We assigned the weight of all edges in the graph to 1, in-

dicating a binary connection between diseases, for simplicity in this

work.

Visualization of the disease-disease network
Visualizing the network is difficult, because there are 3663 disease

nodes with hundreds of thousands of edges between them. To reduce
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Figure 1. Creating a thesaurus maximizes the data that can be used. To compare disease terms to each other, we needed a standard vocabulary with synonyms.

We started with the Medical Subject Headings (MeSH), but only 70% of drug trials on ClinicalTrials.gov and 56% of the diseases listed in those trials could be

found in MeSH. We augmented MeSH by looking at every unique disease string, of which only 22% are in MeSH. Going through the remaining 78% manually,

we either added another synonym to a MeSH term (4b), created new terms from the data with accompanying synonyms (4c), or discarded infrequent or irrelevant

strings (4d and 4e). Every unique string was reviewed and either included in our thesaurus or discarded. From our thesaurus we identified 94% of all disease

strings, enabling us to compare data from 96% of the trials.
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the number of edges, we filtered edges to keep ones with strong rela-

tionships. We defined an edge as strong if 1 of the 2 disease nodes it

connects is frequently associated with the drug the edge represents. A

frequently associated disease for a given drug is one that shows up in a

significant percentage of all trials for that drug. To determine signifi-

cance, we used a binary test with a cutoff P-value of 0.001 and the

Bonferonni correction for comparing multiple diseases. We selected

this method for filtering because of a pattern we found in drug trials.

New diseases tested on a drug are either tested in conjunction with an

established indication for that drug or tested on completely new dis-

eases. We hypothesized that the first case suggests a deeper characteri-

zation of the drug and diseases, while the latter case suggests an
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Figure 2. Construction of the disease-disease network (DDN) with descriptive statistics. The DDN was constructed from a bipartite network of diseases and drugs

linked by trials. In the bipartite network, the thickness of edges corresponds to the number of trials that have both the disease and the drug the edge connects. In

the DDN, diseases are linked by drugs, with the edges proportional to the number of drugs tested in trials with both diseases the edge connects. (A) The number

of diseases that occured in a given number of trials. Diseases appear in thousands of trials, but for visualization purposes the plot was truncated at 200 trials.

Note that the Y-axis in each plot is a logarithmic scale. (B) The top 15 diseases by number of trials (darker/longer bars) and number of drugs (lighter/shorter bars).

(C) The number of diseases tested with a given number of unique drugs. (D) The number of drugs that occur in a given number of trials. (E) The top 15 drugs by

number of trials. (F) The number of diseases associated with a given number of other diseases by the criteria that both diseases were tested with a particular

drug. The X-axis can be viewed as the degree of each node in a network of diseases linked to each other.
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exploration of possible new indications. We treated the diseases in the

first case as having a strong relationship. Our filtering for strong rela-

tionships between diseases is only one way to examine the data. In the

discussion, we explain why subtle weak relationships are potentially

more interesting.

The network graph was laid out using the Fruchterman and

Reingold method, though other force-directed layout algorithms

gave similar results (Supplementary Methods and Supplementary

Figure 6). Node size is proportional to the number of drugs tested

on the disease, and edge width is proportional to the number of

drugs tested on both diseases. Nodes are colored according to

MeSH categories of diseases (Supplementary Methods and

Supplementary Table 5).

Validation with the MeSH taxonomy
The MeSH disease taxonomy was constructed by experts based on

biological and clinical understanding. If the DDN can reproduce the

MeSH taxonomy, it would suggest that the DDN captures the same

level of information implicitly that experts explicitly outlined when

constructing MeSH. To explore similarities between the DDN and

MeSH, we quantitatively evaluated clustering of diseases in the

DDN by MeSH category. First, we evaluated the internal consis-

tency of clusters in our network visualization using the nearest

neighbor index.34 Second, we evaluated how distinct clusters are

based on graph theoretic distance. Third, we evaluated how consis-

tent the DDN and MeSH are compared to a randomly constructed

network using a binomial test.

Validation with the human disease network
We also validated the DDN by comparing it to the human disease

network (HDN), which was constructed using a database of disease-

gene associations.7 The HDN was validated by examining clustering

by disease categories that match the MeSH categories we used

(Supplementary Table 5). First, we evaluated the internal consis-

tency of clusters of nodes within the same category by measuring the

fraction of edges connecting nodes within that category. Second, we

used the ratio of shortest paths within versus without of a category

to derive a graph theoretic measure of clustering for each disease

category. Third, we evaluated how much overlap there was relative

to a randomly constructed network using the binomial test.

Prediction potential
We tested the potential of the DDN for prediction by building a rudi-

mentary recommender engine for clinical trials. We used the entire

unfiltered DDN, rather than the filtered version that we used for visu-

alization purposes, to capture the subtle relationships among diseases

and not just the strongest ones. Our training set contained trials start-

ing before 2011 and our test set contained trials starting in 2011 or

later. The dataset contains 2160 diseases that were tested with at least

1 drug in the training set and 1 drug in the test set. There are 7349

possible drugs to predict, with 54509 disease-drug pairs in the train-

ing set and 19 157 disease-drug pairs in the test set. Each disease is

represented by a vector of drug variables, with 1 indicating that the

drug was tested in a trial with the disease and 0 otherwise. The pur-

pose of the recommender engine is to suggest drugs that had not pre-

viously been tested on a given disease but may be relevant to a disease

based on data in the training set. For a given disease, we made predic-

tions about each drug using collaborative filtering,35 with a cosine

similarity metric or the normalized inner product between disease vec-

tors. We evaluated the performance of the recommender engine

looking at the area under the ROC curve36 for each disease in the 3.5-

year period after 2011.

RESULTS

The disease-disease network
The network graph resulting from our layout (Figure 3) contains a

giant component, with 1101 nodes and 6972 edges. The distance be-

tween nodes in the graph represents similarity based on shared drugs

directly or through other disease nodes. By visual inspection, cluster-

ing of nodes of the same color or MeSH category can be seen. Many

nodes in close proximity were expected, such as Crohn’s Disease

and Ulcerative Colitis or Parkinson’s and Alzheimer’s disease. At the

same time there were surprises, such as hypertension and

Parkinson’s being close together. We also observed similarities of

disease categories, such as psychiatric and nervous system diseases

next to each other or cardiovascular and metabolic diseases mixed

together.

Validation with MeSH
Validation of the DDN against the Medical Subject Headings

(MeSH) taxonomy is shown in Figure 4. The nearest neighbor index

(NNI) for a group of data points in a plane indicates whether the

points are randomly spaced (an index of 1), nonrandomly clustered

(an index smaller than 1), or non-randomly spaced apart (an index

larger than 1). The NNI for each MeSH category (Figure 4A) is less

than 1 for all categories except Skin. Compared to randomly con-

nected networks, 13 of the 15 disease categories with 10 or more

nodes had a significantly smaller (P< .05) NNI (Supplementary

Table 7). All 3 disease categories with fewer than 10 nodes were not

significant. All P-values were calculated empirically using Monte

Carlo simulations (Supplementary Table 7).37

Figure 4B shows how close nodes of the same MeSH category

(colored bars) are compared to how close nodes of different MeSH

categories (gray bars) are, using shortest path distance. Distinct clus-

ters have a significantly shorter colored bar than gray bar, which is

the case for all 15 disease categories with 10 or more nodes.

Compared to randomly connected networks, 14 of these categories

have a significantly (P< .05) shorter colored bar (Supplementary

Table 7). Only 1 of the 3 disease categories with fewer than 10

nodes had a shorter colored bar, which was also significant com-

pared to randomly connected networks. Figure 4C shows the bino-

mial distribution of the number of edges connecting nodes of the

same category if they were randomly placed in the network, and the

red arrow indicates how many correct links we observed in the

DDN. For the binomial test, the P-value is too small to be be calcu-

lated using double floating point precision (Supplementary

Methods).

The 3 evaluations show that the connectivity of the network as a

whole significantly reflects categories in the MeSH. In addition to

the clustering within categories, we also noted related diseases of

different categories that are close, such as AIDS (Endocrine) and

Hepatitis C (Digestive), Myelodysplastic Syndromes (Hemic and

Lymphatic) and Leukemia (Neoplasms), and Hypercholesterolemia

(Metabolic) and several cardiovascular diseases.

Validation with the HDN
There are visual similarities between the DDN and the Human-

Disease Network (HDN), such as neoplasms/cancer being the largest

cluster. There are differences, too, such as deafness being prominent
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in the HDN but absent in our plot, which reflects the different data

sources. Deafness may be strongly associated with certain genes, but

it does not currently have pharmaceutical treatment options.

Quantitative validation of the DDN against the HDN is shown in

Figure 5. The average degree fraction within a disease category indi-

cates how connected the nodes in the category are to each other.

Figure 5A shows that average degree fraction is similar or larger for

the DDN (colored bars) compared to the HDN (gray bars) for 13 of

the 15 categories with 10 or more nodes and for 0 of the 3 categories

with fewer than 10 nodes. The 2 categories with more than 10 nodes

and a smaller average degree fraction in the DDN are Metabolic and

Hemic and Lymphatic. Hemic and Lymphatic is an interesting case,

where the DDN has a smaller degree fraction than the HDN. This is

true because it is mixed with Neoplasms in the DDN, which may re-

flect the similarity in treatment in hematology and oncology, while

the genetic basis may be more distinct. The difference between the

DDN and HDN compared to the difference between randomly con-

nected networks and the HDN is significant (P< .01) for all catego-

ries except Muscular and Skin, which do not have any directly

connected nodes (Supplementary Table 8).

Taking into account indirect connections between nodes, Figure

5B shows the mean of the ratio of the shortest path within versus

without for each category, where a smaller ratio indicates tighter

clustering within the category. The DDN has a similar or smaller ra-

tio for 10 of the 15 categories with 10 or more nodes and for 1 of

the 3 categories with fewer than 10 nodes. The difference between

the DDN and HDN compared to the difference between randomly

connected networks and the HDN is significant (P< .01) for all

categories except Connective Tissue, Muscular, and Skin

(Supplementary Table 8).

Comparing the 2 networks directly, we found 181 common

nodes with 764 edges among those nodes in the DDN and 192 edges

among the same nodes in the HDN. The expected number of over-

lapping edges is a binomial distribution (Figure 5C). We observed

that 73 edges were the same, giving a P-value of 9�10�42 (see

Supplementary Methods). There is significant overlap in disease re-

lationships found in the DDN compared to the DDN, even though

the 2 networks were constructed using very different datasets.

Prediction potential
We plotted the AUC for all diseases as a scatter plot also showing

the disease category, the number of drugs in the training set, and the

number of drugs in the test set (Figure 6). Random predictions

would give an AUC around 0.5, while the majority of our predic-

tions had an AUC much larger. The average AUC for diseases was

0.845. The histogram of all AUCs compared to random predictions

benchmarks the predictive ability of the network (Supplementary

Figure 7). Using the Shapiro-Wilks test for normality of the AUC

scores, the P-value is 6 �10�39. We note that if a trial did not occur

in the 3.5-year test set time period, this did not indicate that a trial

will not happen in the future or that there is no connection between

the drug and the disease, so this result represents a conservative esti-

mate. Examples of diseases with an AUC of more than 0.95 are pro-

vided in Supplementary Table 9, along with references to recent

Figure 3. Visualization of the disease-disease network (DDN). In the DDN, diseases are represented as nodes, with the size of the node proportional to the number

of drugs tested on that disease. Edges between nodes represent drugs tested on both diseases the edge is connected to. Thickness of the edge is proportional to

the number of drugs tested on the 2 diseases. For ease of comparison with MeSH, we colored nodes according to MeSH disease subtrees, though that informa-

tion was not used by the visualization algorithm. A cluster of nodes of 1 color indicates the DDN captures information about the relationships between diseases

that can be found in the MeSH taxonomy.
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Figure 4. The disease-disease network (DDN) shows clustering by MeSH category. (A) The nearest neighbor index (NNI) for each MeSH disease category. Values

significantly less than 1 indicate clustering in our visualization. Numbers on bars indicate how many diseases in the DDN are in each MeSH category. (B) The

average shortest path length between nodes in the same category (solid bars) compared to the average shortest path between a node within a given category

and all nodes outside the category (white bars). Solid bars that are significantly lower than white bars indicate more distinct clusters in the network. Error bars

are the standard error. The numbers on the bottom of each bar indicate how many pairs of nodes are both within the category versus the numbers on top show-

ing how many pairs of nodes have one within the category and one outside of the category. (C) The binomial distribution of edges between nodes of the same

category if they were randomly placed on the graph (shaded area) compared to the observed number of edges in the disease-disease network (arrow).
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Figure 5. The disease-disease network (DDN) shows similarity in clustering of MeSH categories compared to the human disease network (HDN), which is based

on a very different dataset. (A) The average degree fraction ratio for nodes within the same category. The ratio is the number of edges extending to nodes in the

same category to the number of edges extending to nodes in different categories. The DDN is shown solid for each category, with the HDN shown in white with

hatches next to it. In general, the DDN shows a similar or greater ratio than the HDN, demonstrating similar or even tighter clustering. (B) The average shortest

path ratio for nodes within the same category. The shortest path ratio for a node is the ratio of the mean of the shortest path to every node in the same category

to the mean of the shortest path to every node outside the category. As in (A), the solid bars correspond to the DDN and the white bars with hatches to the HDN.

In general, the DDN shows a similar or smaller ratio than the HDN, demonstrating similar or possibly better clustering. (C) The binomial distribution of overlap-

ping edges between the DDN and the HDN if edges were randomly placed between nodes, with the observed number shown by the arrow. The comparison is

only made for nodes that are identical in the 2 graphs.
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literature supporting the connection between the disease and the

predicted drug.

DISCUSSION

Our results demonstrate that clinical trial metadata can be used to in-

fer disease relationships found in genetic data or medical taxonomies.

Such agreement is surprising, given that the metadata used contains

no explicit information about biology. The agreement suggests that

our method succeeded in leveraging information latent in the collec-

tion of clinical trials to draw conclusions beyond what any single trial

could reveal. The aggregate expert knowledge may reveal disease rela-

tionships a single group of experts may not have identified by them-

selves. This result opens the possibility that such latent information in

clinical trial data or other types of clinical data can be used to uncover

biological relationships that otherwise might only be found by using

detailed biological data, by gaining access to large amounts of clinical

data, or by conducting resource-intensive research. There are several

promising avenues for use of the DDN as a resource to generate new

hypotheses for biological and medical research.

The visualization of the DDN we presented provides a quick

global reference of the therapeutic links among diseases conveying

the underlying similarities among diseases. This similarity is based

on the decision to run specific clinical trials as observed in

ClinicalTrials.gov. The decision to conduct a trial is based on the

summation of biological and medical knowledge, such as published

research, proprietary in vitro or animal study results, clinical obser-

vations, results from previous clinical trials, and economic

considerations. This represents a significant body of cross-disciplin-

ary information leading to the decision to run any single trial. At

present, lessons learned from this cross-discipline endeavor are

shared in part through publications, reviews, and conference pro-

ceedings; collating this information for the entire body of clinical tri-

als to derive lessons about human biology would be very time

intensive. Instead, our representation of clinical trial metadata al-

lows us to access that cross-discipline information implicitly to de-

rive conclusions and lessons learned. The DDN we built

demonstrates one way that access to such implicit or latent informa-

tion can be used to draw conclusions beyond the information con-

tained in any single trial, such as similarities between diseases.

As an example, asthma and inflammatory bowel diseases

(Crohn’s disease and ulcerative colitis) are closely related in the

DDN map, even though the MeSH taxonomy classifies them differ-

ently and there is little direct connection between the diseases in the

dataset. They are both inflammatory diseases, though, and recent re-

search suggests that patients with asthma are at higher risk for in-

flammatory bowel disease.38 Such similarities could stimulate

hypotheses about related biological pathways, epidemiological con-

nections, comorbidities in patients, or new indications for drugs.

As a computational tool, we showed that the DDN may be used

to recommend drugs to test on a given disease. Similarly, for a given

drug, one might predict which set of diseases would most likely ben-

efit. Others have tried this approach by relating drugs using aggre-

gated datasets as described earlier.11–13

The DDN may be most useful in combination with other data sour-

ces. For example, overlap of gene expression in 2 diseases in the HDN7

Figure 6. Area under the curve for drug predictions for individual diseases. The AUC for every disease is shown on the Y-axis, with the number of drugs in the

training set on the X-axis and number of drugs in the test set for each disease as the size of each circle. The disease category is also shown as the color of the cir-

cle. Intuitively, more data should lead to more accurate predictions, but as the number of drugs in the dataset increases, the AUC actually decreases. This may be

because diseases that have many drugs (more than 50–100) may be more prevalent and result in more random exploration of drugs than those with just a few.
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seemed to indicate that the genes might be involved in the same bio-

chemical pathways in both diseases. The DDN also provides informa-

tion about shared biochemical pathways, but from the perspective of

drugs that could modulate those pathways. Together, the HDN and

DDN could point more precisely to pathways or help distinguish be-

tween a genetic and environmental etiology. The DDN could be used in

conjunction with datasets such as epigenetics, metabolomics, environ-

mental factors, symptoms, and others that could be layered together to

support inference.

In this work we limited ourselves to trial header information,

based on our desire to focus on what we called superficial informa-

tion and our intent to explore the limits of learning imposed by the

availability of data. Our work shows that there is potential to ex-

tract more information from clinical trial data. Now that we have

established this as a benchmark, future work could make use of ad-

ditional information about each trial, such as inclusion/exclusion

criteria or trial results. The thesaurus we built and the cleaned trial

data will be extremely useful for expanding this work and may

prove useful for other research in related areas such as meta-

analysis.

For visualization and validation, we limited our exploration to a

subset of the network. We filtered out some of the nodes for easier

comparison with the HDN, such as infectious diseases that do not

occur in the HDN. We filtered out edges for clearer visualization

and to demonstrate the structure present in our data. Having vali-

dated a large subset of the network, future work could explore visu-

alization methods on the unfiltered network, other filtering

techniques to extract different meaning from the network, and the

use of other similarity metrics and inferences on graphs.39

There is other information in the clinical trial data, such as the

economic potential of drugs, special interest in orphan diseases, and

the prevalence of diseases in developed countries. Such information

may bias an attempt to draw inferences about biological relation-

ships. In this work we focused on capturing all learning from trials.

Future work using this learning for inference should account for bias,

depending on the specific inference problem. One example where

bias would not need to be removed would be in predicting which sets

of diseases are least explored. Such predictions would be useful for

determining what future trials would lead to the greatest increase in

the understanding of diseases. The amount of learning indicated by

the topology of the DDN does not always match a straightforward

measure, such as the number of trials or drugs tested on a disease

(Supplementary Figure 8).

Beyond the DDN as a resource, the approach we demonstrated

may prove useful in other areas where latent information is con-

tained in seemingly superficial data. Though it is anticipated that a

flood of medical data will be released in the future, there is much

more that can be done with the seemingly superficial data that is

currently available. For example, “off-label” prescription data could

be used in the same manner to uncover aggregated learning implic-

itly taking place by physicians in clinical practice.

Our results provide an example of using experimental data on hu-

mans, which is rare and valuable, to extract biologically useful infor-

mation. This approach is different from the typical approach of

learning biology mechanisms in models and then testing to see if they

also hold in humans. Here we have shown how relationships can be

derived from testing in humans and then explored to see if those rela-

tionships can improve understanding of biological mechanisms. As

more clinical data does become available, it will be important to have

tools like these in place to more rapidly uncover biological insights

and discover effective treatments. For example, patient-level clinical

trial data is becoming more available to researchers, but it is not clear

how to compare 2 patients from 2 trials that were constructed for dif-

ferent purposes. As patient-level data becomes available, we see op-

portunities to extend this work to provide a structure for making such

comparisons and posing research questions that do not depend on

clinical endpoints.

CONCLUSIONS

We demonstrated that clinical trial metadata can be used to derive

biologically meaningful disease relationships as tested using other

disease networks and taxonomies. We therefore conclude that there

is latent expert knowledge in the metadata. Our disease-disease net-

work (DDN) shows a way to access that knowledge and to leverage

the collective expert understanding of diseases. The relationships

unique to the network can be used to generate new hypotheses for

future biological and clinical research. This demonstrates a new

strategy for leveraging research data on humans to advance our un-

derstanding of biological mechanisms. Furthering this approach to

the translation of clinical data back to biological research will be-

come even more important as more granular clinical data becomes

available.
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