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ABSTRACT

Objective: To develop a conceptual prediction model framework containing standardized steps and describe

the corresponding open-source software developed to consistently implement the framework across computa-

tional environments and observational healthcare databases to enable model sharing and reproducibility.

Methods: Based on existing best practices we propose a 5 step standardized framework for: (1) transparently defin-

ing the problem; (2) selecting suitable datasets; (3) constructing variables from the observational data; (4) learning

the predictive model; and (5) validating the model performance. We implemented this framework as open-source

software utilizing the Observational Medical Outcomes Partnership Common Data Model to enable convenient

sharing of models and reproduction of model evaluation across multiple observational datasets. The software im-

plementation contains default covariates and classifiers but the framework enables customization and extension.

Results: As a proof-of-concept, demonstrating the transparency and ease of model dissemination using the soft-

ware, we developed prediction models for 21 different outcomes within a target population of people suffering

from depression across 4 observational databases. All 84 models are available in an accessible online repository

to be implemented by anyone with access to an observational database in the Common Data Model format.

Conclusions: The proof-of-concept study illustrates the framework’s ability to develop reproducible models that

can be readily shared and offers the potential to perform extensive external validation of models, and improve

their likelihood of clinical uptake. In future work the framework will be applied to perform an “all-by-all” predic-

tion analysis to assess the observational data prediction domain across numerous target populations, out-

comes and time, and risk settings.
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INTRODUCTION

Observational healthcare data, such as administrative claims and elec-

tronic health records, are increasingly used for clinical characteriza-

tion of disease progression, quality improvement, and population-

level effect estimation for medical product safety surveillance and

comparative effectiveness. Advances in machine learning for large

dataset analysis have led to increased interest in applying patient-level

prediction on this type of data. Patient-level prediction offers the po-

tential for medical practice to move beyond average treatment effects

and to consider personalized risks as part of clinical decision-making.

Many published efforts in patient-level-prediction do not follow the

model development guidelines,1,2 fail to perform extensive external
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validation,3,4 or provide insufficient model details5 that limits the

ability of independent researchers to reproduce the models and per-

form external validation.1 This makes it hard to fairly evaluate the

predictive performance of the models and reduces the likelihood of

the model being used appropriately in clinical practice. To improve

standards, several papers have been written detailing guidelines for

best practices in developing and reporting prediction models. For ex-

ample, the prognostic research strategy consists of 4 papers stating a

variety of best practices aimed at general considerations,6 prognostic

factor discovery,7 model development,8 and making clinical impacts

by implementing the model to enable stratified medicine.9 The Trans-

parent Reporting of a multivariable prediction model for Individual

Prognosis Or Diagnosis statement provides clear recommendations

for reporting prediction model development and validation5 and

addresses some of the concerns related to transparency. However,

data structure heterogeneity and inconsistent terminologies still make

collaboration and model sharing difficult as different researchers are

often required to write new code to extract the data from their data-

bases and may define variables differently.

We propose to facilitate adherence to the best practices proposed

in prognostic research strategy by forming collaborations between

various data holders and researchers and developing a conceptual

framework that standardises the process of developing, evaluating,

and reporting predictive models. Such a strategy enables large-scale

exploration of prediction problems and improves transparency and

sharing of research within the prediction model community, but

requires standardization of the observational data to a shared data

model and terminology. Fortunately, there has already been a col-

laborative effort to standardise terminologies and develop a homog-

enous data structure for observational healthcare data via the

Observational Health Data Sciences and Informatics (OHDSI) col-

laboration. OHDSI is an open science collaborative with an interna-

tional network of researchers and data partners, who focus on

methodological research, open-source analytics development, and

clinical applications to advance the generation and dissemination of

reliable medical evidence from observational data.10 The OHDSI

community has adopted the Observational Medical Outcomes Part-

nership (OMOP) Common Data Model (CDM),11 an open commu-

nity standard for standardizing the structure and content of

observational data. Use of the OMOP CDM across participating

researchers enables studies to be consistently developed, executed

and replicated across collaborator sites. A recent investigation of

treatment pathways for three diseases12 highlights the power of uti-

lizing the OHDSI network, as collaborators efficiently replicated the

study across numerous diverse datasets from around the world.

In this paper, we propose a standardised framework for patient-

level prediction that utilizes the OMOP CDM and standardized vocab-

ularies, and describe the open-source software that we developed imple-

menting the framework’s pipeline. The framework is the first to

support existing best practice guidelines and will enable open dissemi-

nation of models that can be extensively validated across the network

of OHDSI collaborators. As a proof-of-concept we apply the frame-

work to 4 different databases for the clinical problem of predicting the

1-year risk of 21 different medical outcomes for a target population of

patients with pharmaceutically-treated depression.

Observational Healthcare Data and the OMOP CDM
In general, a prediction task can be defined as using a labeled data-

set, consisting of a set of prediction variables paired with a label, to

learn the function that maps as closely as possible the prediction var-

iables to the correct label. In contrast, in observational healthcare

data, patients yield a series of time-stamped clinical elements

(termed clinical concepts) across a variety of concept domains (such

as conditions, drugs, procedures, and measurements) based on their

encounters with the health system or other reporting of their health

information. A common strategy for transforming these data to the

labeled analytic data need for prediction is to create a population of

patients at risk of the health outcome being predicted (termed the

target population) and selecting a single time point for each patient

(target population index date) that provides the perspective for

extracting the prediction variables; only clinical elements prior to or

on the same day as the target population index date can be consid-

ered when extracting prediction variables. Finding which patients

experience the health outcome during some time-at-risk period rela-

tive to the target population index date then determines the labels.

To ensure that such a transformation process is portable across

multiple healthcare databases requires the use of a CDM. The

OMOP CDM improves semantic and syntactic interoperability by

standardizing both data structure and language.

METHODS

Standardized Prediction Framework
Our proposed conceptual has 5 steps:

0. Map the raw observational healthcare data into the OMOP CDM

1. Specify the prediction problem
• Define the target population, the patients to whom you wish to apply

to model. The target population is a set of patients who satisfy one

or more inclusion criteria for a duration of time. For example, a tar-

get population could be patients who start depression treatment ob-

served from the time of treatment initiation until treatment cessation.
• Define the outcome for which you wish to predict the risk. The

outcome is also a population defined as a set of patients who sat-

isfy one or more inclusion criteria for a duration of time. For ex-

ample, an outcome population could be patients who experience

stroke observed at the time of first diagnosis.
• Define the time-at-risk period; this is the time interval within

which you wish to predict the outcome occurring. For example,

patients with depression treatment may be at risk of stroke from

the day following treatment initiation through 1 year following

treatment initiation.

2. Select the dataset that will be used to develop the model
• Check that the target population is of sufficient size for model de-

velopment.
• Check that there a sufficient number of outcomes in the target

population during the time at risk.

3. Select from a set of standardized predictor variables (although we

strongly recommend selecting all standardized variables).
• Can pick different time periods to construct variables prior to

time-at-risk start date.
• Can pick from demographics, conditions, drugs, measurements,

procedures and observations concepts.
• Can group concepts based on a hierarchy in the vocabulary.

4. Select the machine learning models that will be trained, training

settings, and the hyper-parameter search strategy.

5. Generate and validate each model internally and externally.

Specifying the prediction problem

To standardize the prediction problem, we define the generic ques-

tion in the form: “Among <target population>, which patients will

develop <an outcome> during <a time-at-risk period>?” We define
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both target populations and outcomes as an index rule specifying

the index date (e.g., the occurrence of some diagnosis), possibly ac-

companied by a set of inclusion rules. Rules can reference one or

more clinical concepts, and because we adopt the OMOP CDM

these concepts arise from standardized vocabularies. We have opted

to define outcomes independently of the target population. This

way, it is possible to reuse outcome definitions for different predic-

tion problems as we determine the outcome not just for the target

population, but for all possible populations. For example, we may

create a definition of “stroke” to create predictive models both in a

population of diabetics as well a population of patients suffering

from depression. We recommend that both the definitions and the

code implementing a definition be available on an online repository,

for example, the OHDSI GitHub repository.

The final part of the prediction problem definition is to define

the time-at-risk, an interval relative to the target population index

date in which we wish to predict the occurrence of the outcome of

interest. We then label each patient in the target population as hav-

ing the outcome or not having the outcome in their time-at-risk. The

result is a labeled analytic dataset that is used by a classifier to learn

a predictive model. The prediction problem is illustrated in Figure 2.

Selecting the observational dataset

The next step is to pick the observational dataset mapped to the

OMOP CDM on which to learn a predictive model. Selection of a

dataset can be driven by, for example, the number of people in the tar-

get population and the number of people that experience the outcome.

Having too few people in the target population with the outcome is

known to limit the prediction model’s performance; therefore, we ad-

dress this in the framework by adding a minimum constraint on out-

come counts that we check prior to model development.

Selecting from standardized predictor variables

One key aspect of the standardized patient-level prediction framework

is its automated construction of predictor variables. The framework

contains a library of potential predictor variables. The predictor varia-

bles are well-defined and, by utilizing the OMOP CDM data structure,

their construction is readily replicated across datasets. The standard

predictor variables that are assessed relative to the index date include:

• Demographics: age, gender, index month
• All conditions/drugs/measurements/procedures/observations recorded

within n days prior to index (default n¼365)

• All conditions/drugs/measurements/procedures/observations recorded

anytime prior to index
• Hierarchal groupings of the conditions/drugs/measurements/pro-

cedures/observations
• All standard concept count variables

In addition, there is the flexibility to create custom predictor varia-

bles. The library of potential predictors will be extended consider-

ably in the future based on our ongoing research efforts in advanced

feature engineering.

The notion of “missing values” does not easily apply to longitudi-

nal observational data. Conditions or drugs may or may not be

Figure 1. Illustration of how the homogeneous structure of the OMOP common data model enables sharing of model development code.

Figure 2. Illustration of the prediction problem. Patients enter the target popula-

tion when they experience the index event (blue rectangle). For each patient,

prediction variables are constructed using data recorded prior to the index date,

and the presence of the outcome of interest is assessed during the time-at-risk.
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recorded, but it is not possible to determine whether a count of 0 indi-

cates the patient did not have the variable or whether it was missing.

Effectively, by default the framework imputes 0 for missing values

but there is also the opportunity to add custom covariates that per-

form imputation. Our framework would enable the evaluation of im-

putation methods at scale with respect to performance and

computational cost. This is an interesting subject for our future work.

Selecting the classifier and settings

We split the labeled data created during the prior steps into a test set

and train set. Within the package, the default split is 75% into the

train set and 25% in the test set, but this can be modified. We then

train a selection of suitable machine learning classifiers using the

training dataset through n-fold cross validation to select the optimal

hyper-parameters of the classifier. For each classifier, the framework

returns the hyper-parameter setting that obtains the best perfor-

mance (based on the objective function) as determined by cross-

validation on the train set. As a best practice, we propose executing

a wide array of machine learning algorithms for each prediction

problem, comparing their performances, and then selecting the algo-

rithm that is most suitable for the prediction problem.

Validating the predictive model

We internally validate the models on the test set and externally vali-

date by applying them to new data extracted from different datasets

(using the same extraction process). We use the area under the re-

ceiver operator characteristic curve (AUC) to measure discrimina-

tion, which calculates the probability that a randomly chosen

patient with the outcome will be assigned a higher risk of the out-

come by the model than a randomly chosen patient without the out-

come. We generate the receiver operator characteristic curve by

plotting the model’s sensitivity against 1-specificity. We also calcu-

late model calibration, indicating how well the predicted risks match

the observed true risk. The calibration is calculated by creating 10

bins based on predicted risk and for each bin calculating the average

predicted risk and fraction of patients with the outcome. These val-

ues are then plotted to develop a standard calibration plot. In addi-

tion, a linear model is fitted to the 10 values and the intercept/slope

is calculated to give a summary of the model calibration.

Implementation of the Standardized Prediction

Framework
The framework is implemented as a set of R packages, which are avail-

able as open source (https://github.com/ohdsi). The central package is

the PatientLevelPrediction which implements most steps of the frame-

work described above. The package contains default covariates and

classifiers, but users can readily add custom covariate construction

code or add new classifiers. The cohort definitions, the model details,

and model performance measures are all stored which enables full re-

producibility and external validation. See Supplementary material SA

for detailed information about the framework implementation.

RESULTS

The Prediction Problem
We test the framework for the problem: “Amongst patients with

pharmaceutically-treated depression, which patients will develop <an

outcome> during the 1-year time interval following the start of the de-

pression episode?.” The aim here was not to obtain the best possible

model for this problem but to demonstrate the use of the framework.

We developed prediction models for 21 outcomes listed in Table 2.

Target Population (Pharmaceutically-treated depression)

• Index rule defining the target population index dates:
• First condition record of major depressive disorder
• Target population end date: Same as target population index

date
• Inclusion criteria:

• Antidepressant recorded within 30 days before to 30 days af-

ter the target population index date
• No history of psychosis
• No history of dementia
• No history of mania
• �365 days prior observation

See Supplementary material SD for a complete list of definitions

used above.

Datasets Used to Develop the Model
We used the following datasets:

• Truven MarketScan Medicare Supplemental Beneficiaries

(MDCR)—a US insurance claims database containing 9 559 877

lives between the years January 1, 2000 and April 30, 2016,
• Truven MarketScan Medicaid (MDCD)—a US insurance claims

database containing 21 577 517 lives between the years January

1, 2006 and December 31, 2014,
• OptumInsight’s de-identified ClinformaticsTM Datamart

(Optum)—a US electronic healthcare database containing

73 969 539 lives between the years May 1, 2000 and March 31,

2016, and
• Truven MarketScan Commercial Claims and Encounters

(CCAE)—a US insurance claims database containing

131 533 722 lives between the years January 1, 2000 and April

30, 2016.

The use of Truven Health MarketScanVR and Optum databases

were reviewed by the New England Institutional Review Board and

were determined to be exempt from broad Institutional Review

Board approval.

Selected Standardized Predictor Variables
In this study we use the standardized variables described earlier, re-

moving variables occurring in less than 10 patients. As a result we

had approximately 10 000–17 000 variables, depending on the

dataset.

Machine Learning Model
For this proof-of-concept, we train an L1-regularized logistic regres-

sion using 3-fold cross validation auto hyper-parameter selection as

implemented in the R package Cyclops.15

Full details of the model development, specification and perfor-

mance can be found in the supplementary material SA. In addition

to the L1-regularized logistic regression we also trained gradient

boosting machine, random forest, and naı̈ve Bayes models.

Study Population
Table 1 presents the number of target population patients with each

outcome recorded during their time-at-risk period.

Table 2 presents characteristics of the patients for each dataset’s

target population. The target population obtained from the
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MDCD database appeared to have a shorter observation prior to

the target population index date, a mean of 973.4 days compared

to 1216.4–1262.4 for the other databases. MDCD also had a lower

percentage of males (26.3%) in the target population compared to

the other databases (ranging between 34% and 37%). MDCR con-

sists of an older target population than the other databases and

CCAE only contains people <65 years old. MDCR and MDCD

had target populations consisting of people who had more drug

and condition records in the prior 30 and 365 days than CCAE and

OPTUM.

Internal Validation
Table 3 presents the performance of the models developed for the

difference outcomes across the datasets. The discrimination per-

formance differs over the outcomes and databases. For example,

the framework led to highly discriminative models for the out-

comes such as ventricular arrhythmia and sudden cardiac death

and hypothyroidism across the 4 databases, with AUCs ranging

between 0.732–0.808 and 0.763–0.845, respectively. However,

for the outcomes diarrhea and tinnitus the discrimination was

consistently poor across the dataset, ranging between 0.636–

0.682 and 0.576–0.696, respectively. This suggests that observa-

tional databases could be utilized to develop clinically useful mod-

els that predict some outcomes, but certain types of outcomes

may need more advanced methods or alternative datasets. In some

cases there was inconsistency across databases, for example, pre-

dicting open-angle glaucoma in MDCD resulted in an AUC of

0.624, but the AUC for the same outcome in the other 3 data-

bases was >0.7.

The calibration plots for each model are available in Supplemen-

tary material SB and the reciever operating characteristic (ROC)

plots in Supplementary material SC. The intercept and slope of the

linear model fit to the average predicted risk against the observed

fraction with the outcome in bins of 10 based on risk percentile are

also presented in Table 3 as a summary of calibration. However, we

recommend inspecting the calibration plots as the intercept and

slope only present a limited perspective of calibration.

DISCUSSION

The proposed framework succeeds in developing transparent predic-

tive models that were developed in a consistent way across the data-

sets for predicting various outcomes within a target population of

therapeutically treated depressed patients. As a proof-of-concept we

shared results for lasso regression models (and 3 other classifiers) for

21 outcomes in patients with pharmaceutically treated depression.

However, we believe that model selection is an empirical process

and multiple model types should be assessed as a best practice. Our

framework is built for this purpose, and is very flexible to accommo-

date unlimited model types, custom covariates, etc. In general, com-

mon prediction models that are clinically used tend to have a AUC

ranging between 0.5 and 0.8,16–19 with many having a value <0.7,16

so the performance of our framework across the 21 outcomes is

comparable, although the external validation discrimination is likely

to be lower than the internal validation.

The implications of the proposed patient-level prediction frame-

work are: (1) a common framework will encourage collaboration

when developing patient-level prediction; (2) the standardizations

present the opportunity to develop and validate predictive models

using observational data at scale; and (3) insight in to the feasibility

of model development for specific diseases can be investigated.

The patient-level prediction framework and software directly or

indirectly address most of the best practices mentioned in the intro-

duction. One best practice suggests choosing prediction problems that

can make an impact, and this can be indirectly addressed as the

framework does now present the opportunity to efficiently perform a

large-scale exploration of various prediction problems (different tar-

get populations, outcomes, and times-at-risk) across numerous obser-

vational datasets. This enables identification of prediction problems

where sufficiently good performance can be achieved, thus making

for potentially impactful targets. A second consideration, collabora-

tion, and sharing of research, follows immediately as the purpose of

the proposed framework and software is to encourage collaboration.

The Transparent Reporting of a multivariable prediction model for

Individual Prognosis Or Diagnosis statement furthermore touches on

research transparency, and the framework provides open-source

Table 1. The Number of Outcomes Within the Target Population for the Various Outcomes Across the Datasets.

Outcome CCAE (N¼ 660 k) [%] OPTUM (N¼ 363 k) MDCR (N¼ 58 k) MDCD (N¼ 80 k)

Open-angle glaucoma 249 [0.04] 610 [0.17] 113 [0.19] 59 [0.07]

Gastrointestinal hemorrhage 1153 [0.17] 823 [0.23] 534 [0.92] 238 [0.30]

Acute myocardial infarction 1000 [0.15] 814 [0.22] 578 [1.00] 211 [0.26]

Stroke 1351 [0.20] 1183 [0.33] 874 [1.51] 356 [0.45]

Suicide and suicidal ideation 17 992 [2.73] 9530 [2.63] 575 [0.99] 4609 [5.76]

Insomnia 34 838 [5.28] 22 635 [6.24] 2941 [5.07] 5358 [6.70]

Diarrhea 30 632 [4.64] 20 169 [5.56] 3667 [6.32] 5431 [6.79]

Nausea 38 686 [5.86] 25 312 [6.97] 3876 [6.68] 8257 [10.32]

Hypothyroidism 15 422 [2.34] 10 123 [2.79] 2079 [3.58] 1822 [2.28]

Constipation 22 636 [3.43] 16 237 [4.47] 3835 [6.61] 5247 [6.56]

Seizure 3594 [0.54] 2377 [0.65] 487 [0.84] 1165 [1.46]

Delirium 2440 [0.37] 1861 [0.51] 797 [1.37] 569 [0.71]

Alopecia 5087 [0.77] 3234 [0.89] 329 [0.57] 451 [0.56]

Tinnitus 6381 [0.97] 4407 [1.21] 938 [1.62] 576 [0.72]

Vertigo 6486 [0.98] 4170 [1.15] 1034 [1.78] 657 [0.82]

Hyponatremia 4539 [0.69] 4861 [1.34] 1789 [3.08] 1463 [1.83]

Decreased libido 2832 [0.43] 1755 [0.48] 91 [0.16] 171 [0.21]

Fracture 7532 [1.14] 6273 [1.73] 2606 [4.49] 1371 [1.71]

Hypotension 8525 [1.29] 8185 [2.25] 2888 [4.98] 2603 [3.25]

Acute liver injury 387 [0.06] 306 [0.08] 44 [0.08] 114 [0.14]

Ventricular arrhythmia and sudden cardiac death 806 [0.12] 730 [0.20] 355 [0.61] 315 [0.39]
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software that is fully transparent and promotes model reproducibility.

Researchers can even share their models by adding them via the

OHDSI GitHub repository. Our framework also explicitly covers the

consideration of terminology and methodology standardization, as

the framework proposes a standard process that can be followed to

develop prediction models and uses existing standard terminologies.

Table 2. Target Population Characteristics Across the Datasets

Variable CCAE OPTUM MDCR MDCD

Mean (sd) prior obs in days 1262.4 (944.3) 1234.6 (886.3) 1216.4 (881.6) 973.4 (593.3)

Mean (sd) No. condition records 365 days 12.7 (10.2) 16.8 (13.3) 20.1 (14.5) 22.3 (16.7)

Mean (sd) No. drug ingredients 365 days 9.4 (7.2) 9.0 (6.8) 12.5 (7.7) 13.8 (9.8)

Mean No. visits in prior 365 days 24.4 (21.1) 26.3 (24.7) 31.6 (24.7) 54.7 (77.4)

(%) Gender¼Male 37.0 36.6 34.0 26.3

(%) Age group: 0–4 0.0 0.0 0.0 0.0

(%) Age group: 5–9 0.1 0.1 0.0 1.2

(%) Age group: 10–14 2.0 1.8 0.0 8.7

(%) Age group: 15–19 9.3 7.8 0.0 16.3

(%) Age group: 20–24 7.0 5.4 0.0 5.2

(%) Age group: 25–29 4.7 4.9 0.0 7.2

(%) Age group: 30–34 7.6 7.5 0.0 7.7

(%) Age group: 35–39 9.8 9.4 0.0 7.9

(%) Age group: 40–44 11.5 10.6 0.1 8.5

(%) Age group: 45–49 12.8 11.3 0.6 10.1

(%) Age group: 50–54 13.8 11.0 1.6 10.6

(%) Age group: 55–59 12.7 9.5 3.2 8.2

(%) Age group: 60–64 8.8 6.8 4.0 5.0

(%) Age group: 65–69 0.0 4.7 30.4 1.7

(%) Age group: 70–74 0.0 3.5 23.2 0.8

(%) Age group: 75–79 0.0 2.5 16.8 0.4

(%) Age group: 80–84 0.0 2.3 11.7 0.3

(%) Age group: 85–89 0.0 0.9 6.1 0.28

(%) Age group: 90–94 0.0 0.0 1.9 0.0

(%) Age group: 95–99 0.0 0.0 0.4 0.0

Table 3. Discrimination Performance of the Models for Each Outcome Across the Datasets

Outcome Discrimination (AUC) Calibration

CCAE OPTUM MDCR MDCD CCAE OPTUM MDCR MDCD

Intercept Slope Intercept Slope Intercept Slope Intercept Slope

Open-angle glaucoma 0.817 0.822 0.710 0.624 0.000 1.051 0.000 0.990 �0.001 1.495 0.000 1.399

Gastrointestinal hemorrhage 0.824 0.797 0.677 0.754 0.000 0.868 0.000 1.009 �0.001 0.952 0.000 0.633

Acute myocardial infarction 0.863 0.808 0.697 0.787 0.000 1.048 0.000 0.916 �0.003 1.404 0.000 1.263

Stroke 0.797 0.813 0.661 0.803 0.000 0.783 0.000 0.750 0.001 0.833 0.000 1.082

Suicide and suicidal ideation 0.796 0.805 0.690 0.710 0.002 1.711 �0.002 1.720 0.006 1.387 �0.002 1.773

Insomnia 0.683 0.667 0.672 0.636 0.023 1.314 0.010 1.305 0.029 1.379 0.025 1.109

Diarrhea 0.682 0.674 0.636 0.680 0.012 1.095 0.005 1.116 0.023 1.083 0.009 1.253

Nausea 0.701 0.675 0.651 0.668 0.021 1.111 0.015 1.099 0.034 0.999 0.036 1.152

Hypothyroidism 0.842 0.792 0.839 0.763 �0.002 1.343 0.000 1.051 0.002 1.557 �0.001 1.261

Constipation 0.704 0.705 0.651 0.645 0.010 1.132 0.005 1.238 0.027 1.080 0.010 1.268

Seizure 0.753 0.757 0.649 0.696 0.000 1.216 0.000 0.984 �0.001 1.212 0.001 1.107

Delirium 0.782 0.781 0.702 0.664 0.000 0.998 0.001 0.733 0.001 0.855 0.002 0.830

Alopecia 0.692 0.672 0.684 0.625 0.002 1.293 �0.001 1.323 �0.001 2.568 0.001 1.244

Tinnitus 0.696 0.672 0.576 0.638 0.003 1.152 �0.001 1.368 0.006 1.372 0.002 1.292

Vertigo 0.714 0.705 0.619 0.679 0.002 1.214 0.000 1.229 0.006 1.251 0.002 1.242

Hyponatremia 0.808 0.809 0.690 0.795 0.001 1.073 0.001 1.141 0.002 1.298 0.002 1.137

Decreased libido 0.710 0.738 0.662 0.627 0.002 1.179 0.000 1.684 �0.002 5.095 0.001 0.893

Fracture 0.674 0.734 0.679 0.657 0.001 1.037 0.001 1.119 0.007 1.019 �0.002 1.553

Hypotension 0.761 0.793 0.709 0.749 0.003 1.112 0.002 1.116 0.011 1.195 0.004 1.191

Acute liver injury 0.703 0.743 0.516 0.534 0.000 0.998 0.000 0.919 �0.003 5.698 0.001 �0.036

Ventricular arrhythmia and

sudden cardiac death

0.776 0.806 0.732 0.808 0.000 0.857 0.000 1.034 0.000 0.806 �0.001 1.105

An AUC of 0.5 means the model discriminated as well as random guessing and an AUC of 1 means perfect discrimination. For calibration, and intercept of 0

and slope of 1 means perfect calibration.
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The main limitation of the framework is that it requires research-

ers to map their data into the OMOP CDM. Although there is mini-

mum information lost,20 the mapping requires time and effort.

However, the OHDSI community is already large and rapidly

expanding, and the clear advantages of a common data model such

as proposed in this research may prompt more researchers towards

using a consistent data structure. The power of collaboration lead-

ing towards improved predictive models has been highlighted in re-

cent literature. A pre-requisite to do this at large-scale is a uniform

process to predictive model development, which we now support

through the presented framework.

Our framework proposes a standardised process for model devel-

opment and standard output, as these are important for both repro-

ducibility and model comparisons. However, we understand that

there is ongoing research in the field, so the framework has the flexi-

bility to incorporate new modeling methods or metrics. It is important

for the community to be consistent in the way model performances

are presented, and this framework aims to ensure consistency, but the

framework’s standard output will evolve with the field.

CONCLUSION

In this paper we propose a standardized framework and introduce

open-source software that can work across computer environments

to generate patient-level prediction models from observational

healthcare data in a manner that is transparent and completely re-

producible. As a proof-of-concept, we applied the framework to the

problem of predicting 21 different outcomes for the target popula-

tion of pharmaceutically-treated depression across 4 different data-

bases. The framework succeeds in efficiently developing and

evaluating 21 different models in 4 different databases, and stan-

dardizing those models so they can be directly applied to any obser-

vational data in the CDM structure.

Although several papers propose best practices for predictive

model development,5–9 this work is the first to propose an implemen-

tation that can enable model transparency and reproducibility. The

proposed framework addresses and implements key best practice con-

siderations and encourages researchers to collaborate and share mod-

els. It facilitates transportability assessment at scale which will

increase the likelihood of model implementation in clinical practice.
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