Abstract

Objective

To develop a natural language processing system that identifies relations of medications with adverse drug events from clinical narratives. This project is part of the 2018 n2c2 challenge.

Materials and Methods

We developed a novel clinical named entity recognition method based on an recurrent convolutional neural network and compared it to a recurrent neural network implemented using the long-short term memory architecture, explored methods to integrate medical knowledge as embedding layers in neural networks, and investigated 3 machine learning models, including support vector machines, random forests and gradient boosting for relation classification. The performance of our system was evaluated using annotated data and scripts provided by the 2018 n2c2 organizers.

Results

Our system was among the top ranked. Our best model submitted during this challenge (based on recurrent neural networks and support vector machines) achieved lenient F1 scores of 0.9287 for concept extraction (ranked third), 0.9459 for relation classification (ranked fourth), and 0.8778 for the end-to-end relation extraction (ranked second). We developed a novel named entity recognition model based on a recurrent convolutional neural network and further investigated gradient boosting for relation classification. The new methods improved the lenient F1 scores of the 3 subtasks to 0.9292, 0.9633, and 0.8880, respectively, which are comparable to the best performance reported in this challenge.

Conclusion

This study demonstrated the feasibility of using machine learning methods to extract the relations of medications with adverse drug events from clinical narratives.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.