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ABSTRACT

Objectives: To predict 72-h and 9-day emergency department (ED) return by using gradient boosting on an ex-

pansive set of clinical variables from the electronic health record.

Methods: This retrospective study included all adult discharges from a level 1 trauma center ED and a commu-

nity hospital ED covering the period of March 2013 to July 2017. A total of 1500 variables were extracted for

each visit, and samples split randomly into training, validation, and test sets (80%, 10%, and 10%). Gradient

boosting models were fit on 3 selections of the data: administrative data (demographics, prior hospital usage,

and comorbidity categories), data available at triage, and the full set of data available at discharge. A logistic re-

gression (LR) model built on administrative data was used for baseline comparison. Finally, the top 20 most in-

formative variables identified from the full gradient boosting models were used to build a reduced model for

each outcome.

Results: A total of 330 631 discharges were available for analysis, with 29 058 discharges (8.8%) resulting in 72-

h return and 52 748 discharges (16.0%) resulting in 9-day return to either ED. LR models using administrative

data yielded test AUCs of 0.69 (95% confidence interval [CI] 0.68–0.70) and 0.71(95% CI 0.70–0.72), while gradi-

ent boosting models using administrative data yielded test AUCs of 0.73 (95% CI 0.72–0.74) and 0.74 (95% CI

0.73–0.74) for 72-h and 9-day return, respectively. Gradient boosting models using variables available at triage

yielded test AUCs of 0.75 (95% CI 0.74–0.76) and 0.75 (95% CI 0.74–0.75), while those using the full set of varia-

bles yielded test AUCs of 0.76 (95% CI 0.75–0.77) and 0.75 (95% CI 0.75–0.76). Reduced models using the top 20

variables yielded test AUCs of 0.73 (95% CI 0.71–0.74) and 0.73 (95% CI 0.72–0.74).

Discussion and Conclusion: Gradient boosting models leveraging clinical data are superior to LR models built

on administrative data at predicting 72-h and 9-day returns.

Key words: decision support techniques, emergency medicine, machine learning

INTRODUCTION

Emergency department (ED) returns represent an important quality

of care metric and patient-centered outcome.1,2 Being able to predict

a patient’s likelihood of returning to the ED may allow providers to

engage in an evidence-based discussion regarding a patient’s dis-

charge plan, provide optimal care for those who would have

been prematurely discharged, and reduce ED overcrowding.3,4

While periods ranging up to 30 days have been used as a time frame

for ED return, a shorter time frame may be useful in identifying re-

turn visits related to the previous episode of care as well as in identi-

fying preventable causes of ED return.5–8 Many prior studies define

early ED return as those occurring within 72 h of discharge,1,9–14

while, more recently, a time frame of 9 days has been proposed as

an objective threshold for early return.15,16
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Risk factors for ED return have been studied extensively.10,17–21

Prior studies have relied on a handful of variables used in traditional

descriptive methods such as demographic variables and qualitative

metrics (ie, disability rating and living situation).17,18 Recent studies

have explored the utility of quantitative variables such as medication

counts, diagnoses codes, and temporal markers of ED utiliza-

tion.10,11,19,22,23 Machine learning algorithms such as random for-

ests and gradient boosting have been used to predict ED return using

the 30-day time frame,19,23–27 a cutoff likely borrowed from Medi-

care’s Hospital Readmission Reduction Program.28,29 However,

study of shorter ED return intervals has been limited by the use of

routine administrative data, small sample size, and use of linear

algorithms such as logistic regression (LR).11,12,15 One such investi-

gation of 72-h returns was restricted to a predominantly male, el-

derly Veteran population.12 While administrative data have been

shown to contain many useful features, such as prior hospital utili-

zation history and comorbidity categories, the predictive value of de-

tailed clinical data such as lab values and ED administered

medications has yet to be explored. Given their utility in predicting

various patient outcomes, clinical data extracted from the electronic

health record (EHR) may improve prediction of early ED return.30–

32 Moreover, we hypothesize that the relationship between previ-

ously studied risk factors is nonlinear and may be more accurately

modeled by nonlinear algorithms.33,34

Expanding on prior work, we predict both 72-h and 9-day ED re-

turn using a large dataset of adult ED visits, with 1500 variables

extracted per visit from the EHR, including but not limited to: historical

and current vitals and lab values, ECG and imaging counts, ED admin-

istered medications, and discharge diagnosis. To test the impact of addi-

tional input features, we build our models on 3 subsets of variables:

administrative data (demographics, prior hospital usage, and comorbid-

ity categories), data available at the time of triage, and data available at

the time of discharge. We use gradient boosting (XGBoost), a powerful

classification algorithm suited for EHR data due to its ease with missing

values, to model nonlinear relationships.27,30,31,35,36 Finally, we discuss

how such a prediction model can be used either to trigger intervention

for patients with high return risk or to retrospectively identify lapses in

care for quality assurance process.

METHODS

Study design and setting
Retrospective data on all adult visits was obtained from 2 EDs cov-

ering the period of March 2013 to July 2017 to ensure a 1-year his-

torical time frame from the study start period of March 2014 as well

as a 9-day prospective time frame for all visits. The represented EDs

include a level 1 trauma center with an annual census of approxi-

mately 85 000 patients and a community hospital-based department

with an annual census of approximately 75 000 patients. Both EDs

are located within the same city and are part of a single hospital sys-

tem utilizing the Epic EHR (Verona, WI, USA) and the Emergency

Severity Index for triage. This study adhered to the Transparent

Reporting of a multivariable prediction model for individual prog-

nosis or diagnosis statement.37 This study was approved, and the in-

formed consent process waived, by the Human Investigation

Committee at the authors’ institution (IRB 2000022883).

Response variable
Two binary outcomes were defined for every ED visit ending in

discharge: return within 72 h and return within 9 days. Given the

overlap in patient population and frequent transfers between the 2

EDs included in the study, a return visit at either ED was considered

valid regardless of the location of the initial visit.

Feature processing
The dataset used for this study derives from our prior study on pre-

dicting hospital admission at triage, which made use of patient dem-

ographics, time and location of presentation, triage vitals, chief

complaint, hospital usage statistics, past medical history, outpatient

medications, historical vitals, historical labs, and historical imaging

and EKG counts.30 To these variables, we added variables collected

during the patient’s current ED visit, including discharge diagnosis,

ED administered medications, current lab values, current vitals, pro-

cedures and imaging orders, as well as the presence of a primary

care provider listed on the EHR, for a total of 1500 variables. The

chief complaint was encoded as a categorical variable with the top

200 most frequent values (>90% of all visits) as unique levels and

all other values binned to ‘Other’. No natural language processing

was used given that the dataset did not contain triage notes. The lo-

cation of the encounter was encoded in the dataset (deidentified as

“A” vs “B”), allowing the models to take into account differences in

practice patterns between the 2 EDs. Processing steps for each vari-

able category are outlined in Supplementary Text S1, while the full

list of variables are provided in Supplementary Table S1. All data

elements were obtained from the enterprise data warehouse, using

SQL queries to extract relevant raw-data in comma-separated value

format. All subsequent processing and analysis were done in R. The

link to the repository containing all R scripts is available in Supple-

mentary Text S1.

Model fitting and evaluation
Samples were randomly split into a training set of 264 631 (80%), a

validation set of 33 000 (10%), and a held-out test set of 33 000

(10%). All categorical variables were converted to numeric variables

using one-hot encoding.38 For LR, all administrative variables were

scaled to the interval between 0 and 1, then imputed using the me-

dian of each variable. No imputation was performed for XGBoost,

since it learns a default direction for each split in the case that the

variable needed for the split is missing.35 XGBoost models were

trained for each of the 2 outcomes (72-h return, 9-day return) on 3

subsets of variables: administrative data (demographics, prior hospi-

tal usage, comorbidity categories), data available at the time of tri-

age, and the full set of data available at the time of discharge

(Table 1).

LR models were trained on all samples excluding the test set us-

ing the RMSprop optimizer in the Keras interface.39 Hyperpara-

meters for each XGBoost model were optimized by maximizing the

AUC of the validation set. The optimized set of hyperparameters

was then used to train the XGBoost model on all samples excluding

the test set. The test AUC of each model was calculated on the held-

out test set with 95% confidence intervals (CIs) constructed using

DeLong’s method.40 The equality between every pair of AUC values

for each outcome was also tested using DeLong’s method. Informa-

tion gain, an importance metric that quantifies the improvement in

accuracy of a tree-based algorithm from a split based on a given var-

iable, was used to identify important variables for the full models,

and a reduced model built from the top 20 variables for each out-

come.41 To test the applicability of the model at the time of triage,

statistical measures such as sensitivity and specificity were calculated

for the model using data available at the time of triage, with 95%

JAMIA Open, 2019, Vol. 2, No. 3 347

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/2/3/346/5526174 by guest on 20 M
arch 2024

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooz019#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooz019#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooz019#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooz019#supplementary-data


CIs constructed using 1000-fold bootstrap. Details of the model fit-

ting process are provided in Supplementary Text S1.

RESULTS

Characteristics of study sample
From the 346 656 ED discharges in the study period, a total of

330 631 visits were available for analysis after filtering for inclusion

criteria (age greater or equal to 18). Of these, 29 058 discharges

(8.8%) resulted in a return visit within 72 h while 52 748 discharges

(16.0%) resulted in a return visit within 9 days. Major characteris-

tics of each outcome group are shown in Table 2. Patients who

returned to the ED were more likely to be older, arrive by ambu-

lance, have Medicaid, and have a higher number of prior ED visits.

They were also more likely to have a history of chronic heart failure

(CHF) or chronic obstructive pulmonary disease (COPD), as well as

a history of alcohol or substance abuse. Alcohol-related disorders,

abdominal pain, and substance-related disorders were the most fre-

quent diagnoses for discharges resulting in early return (Figure 1).

The risks of admission for 72-h and 9-day return visits were 22%

and 20%, respectively, significantly lower than the general admis-

sion risk of 30% across all visits (P< .001).

Model performance
LR models using administrative data yielded test AUCs of 0.69

(95% CI 0.68–0.70) and 0.71 (95% CI 0.70–0.72), while XGBoost

models using administrative data yielded test AUCs of 0.73 (95% CI

0.72–0.74) and 0.74 (95% CI 0.73–0.74) for 72-h and 9-day return,

respectively. XGBoost models using variables available at triage

yielded test AUCs of 0.75 (95% CI 0.74–0.76) and 0.75 (95% CI

0.74–0.75), while those using the full set of variables yielded test

AUCs of 0.76 (95% CI 0.75–0.77) and 0.75 (95% CI 0.75–0.76) for

72-h and 9-day return, respectively (Figure 2). The training and vali-

dation AUC values for each model are provided in Supplementary

Tables S2 and S3.

Variables of importance
Variables with high information gain for the full XGBoost models

included markers of ED usage such as number of prior ED visits,

number of prior admissions, ECG counts, urinalysis counts, as well

as historical vital signs and a comorbidity of alcohol- or substance-

related disorders (Figure 3). Variables from the current visit, such as

the mean temperature during the patient’s current visit, were more

informative for predicting 72-h return compared to 9-day return.

Reduced XGBoost models using the top 20 variables yielded test

AUCs of 0.73 (95% CI 0.71–0.74) and 0.73 (95% CI 0.72–0.74) for

72-h and 9-day return, respectively. Information gain values for the

top 100 variables are provided in Supplementary Table S4.

Statistical measures
Statistical measures for XGBoost models built on data available at

triage, at 3 different cutoffs (0.3, 0.5, and 0.7), are shown in Table 3.

The cutoff of a prediction model represents the threshold above

which a probability output of the model is classified as a positive

case and is responsible for the tradeoff between sensitivity and spe-

cificity. At a cutoff of 0.5, the models were equivalent to a diagnos-

tic test for 72-h ED return with a sensitivity of 0.16, specificity of

0.99, positive predictive value of 0.75, and a negative predictive

value of 0.92 and a diagnostic test for 9-day ED return with a sensi-

tivity of 0.23, specificity of 0.98, positive predictive value of 0.70,

and a negative predictive value of 0.87.

DISCUSSION

In this study, we predict 72-h and 9-day ED return using gradient

boosting on an expansive set of 330 631 ED discharges and 1500

variables. We are able to predict 72-h and 9-day return with similar

accuracy, with small but significant improvement from including

comprehensive elements of clinical data. Our best-performing mod-

els for predicting 72-h and 9-day ED return yielded test AUCs of

0.75 and 0.76, respectively, while our reduced models built on the

top 20 informative variables yielded a test AUC of 0.73 for both out-

comes. We expand on a prior model that predicted 72-h return in a

Veteran’s Affairs population, enhancing performance by using a

nonlinear algorithm on a large number of clinical variables.12 Fur-

thermore, we are the first to report measures of diagnostic accuracy

for the prediction of 9-day return.15

We confirm that visits that result in early ED return differ in sev-

eral ways from those that do not result in return. Previously identi-

fied risk factors such as arrival mode, insurance status, number of

previous ED visits, number of hospital admissions, and types of di-

agnoses were found to be significant.10–12,18,25 Discharge diagnoses

such as alcohol-related disorders, substance-related disorders, and

Table 1. Variables included by dataset type

Category Number of variables Administrative Triage Discharge

Response variable (72-h or 9-day return) 1 X X X

Demographics 10 X X X

Hospital usage statistics 4 X X X

Past medical history 281 X X X

Triage evaluation 13 X X

Chief complaint 200 X X

Outpatient medications 48 X X

Historical vitals and labs 407 X X

Prior imaging/ECG counts 9 X X

Current vitals 19 X

Current labs and orders 135 X

ED administered meds 98 X

Discharge diagnosis 275 X

Total 1500 296 973 1500

Abbreviations: ECG: electrocardiogram; ED: emergency department.
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skin infection were over-represented in those visits resulting in early

return. Exploratory analysis was not sufficient to reveal any clear

differences between visits that result in 72-h return and those that re-

sult in 9-day return. However, variables relating to patient’s acuity

such as current vital signs were more informative for predicting 72-

h return and suggest that 72-h returns may represent a more acute

patient population compared to 9-day returns. Given that our study

was not designed to delineate differences between these 2 return

populations, further studies are needed to support using 9 days as an

alternative cutoff to 72 h for early ED return.

The AUCs of our best models do not exceed 0.8 despite the in-

clusion of numerous clinical variables. The challenge of predicting

early ED return may in part be due to the multifactorial nature of

ED returns. Although the EHR can accurately encode quantitative

variables such as presence of comorbidities and frequency of hospi-

tal utilization, a patient’s decision to return to the ED may also be

contingent on emotional factors like fear and uncertainty that are

not well-captured in the EHR.16,42 Recent studies suggest free-text

data such as physician charts may contain information regarding

these subjective factors.43,44 Quantitative measurements of psycho-

social factors using standardized surveys represent another way to

encode this information, although one study’s quantification of un-

certainty, the “U-Scale,” was shown to not be predictive of 30-day

ED return.42,45 Our reduced models, built on the top 20 informative

variables for each outcome, point to the importance of resource

over-utilization and history of alcohol or substance use disorder in

predicting ED return and may facilitate external replication of our

results in different practice settings and patient populations.

We anticipate multiple clinical applications of ED return risk

prediction models. It may be valuable to predict ED return visits

early in the ED course in order to trigger intervention. We show that

most informative variables are available by the time of triage, sug-

gesting that care coordinators or social workers may begin interven-

tions as early as triage. This suggestion is further supported by prior

studies that have shown that patient disposition (ie, admission or

discharge) can be robustly predicted at triage.30,46 Although concep-

tual models have shown that social work services may yield net eco-

nomic benefits, there have been no formal cost-benefit analyses

regarding interventions aimed at modulating return visits.47–49

Given this fact, we explored various model cutoffs, each which

would capture a different number of likely returns with varying pos-

itive predictive values. At a cutoff of 0.5, the model built on data
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Figure 1. Frequent discharge diagnoses for visits that result in early ED return. The top 5 most frequent discharge diagnoses for visits that result in 72-h return are

shown in order, as well as the respective percentages of those diagnoses for visits that result in 9-day return and for visits that do not result in early return. ED:

emergency department.

Table 2. Characteristics of study sample

Variables No acute return (n¼ 277 883) 72-h return (n¼ 29 058) 9-day return (n¼ 52 748)

Mean age (SD) 43.4 (18.1) 44.6 (16.5) 44.8 (16.9)

Gender (% male) 43 56 53

Arrival by ambulance (%) 27 44 41

Mean triage heart rate (SD) 84.5 (15.5) 87.2 (16.0) 86.7 (15.7)

Mean ESI level (SD) 3.24 (0.86) 3.02 (0.91) 3.06 (0.90)

Insurance status (% Medicaid) 41 53 53

Mean number of previous ED visits (SD) 2.44 (5.08) 17.2 (34.5) 13.8 (27.9)

Prevalence of COPD or CHF (%) 6 10 10

Prevalence of alcohol or substance abuse (%) 8 30 27

Note: All comparisons between visits that do not result in acute return and those resulting in early return (either 72-h or 9-day return) were significant

(P< .001).

Abbreviations: CHF: chronic heart failure; COPD: chronic obstructive pulmonary disease; ED: emergency department; ESI: Emergency Severity Index; SD:

standard deviation.
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available at triage represents a diagnostic test for 72-h ED return

with a sensitivity of 0.16, specificity of 0.99, positive predictive

value of 0.75, and a negative predictive value of 0.92. Such a model

could be used as a prospective rule-in trigger to start intervention at

the completion of triage even before the patient is roomed.

Well-resourced EDs may choose to use a lower cutoff to try capture

more early returns, or to identify different types of returning patient

populations.50–52 Future efforts will be required to fully understand

various subgroups within early returns and to identify which of

them will respond to intervention.2,13,53

Another potential clinical application may be to use the model

to retrospectively screen return cases for those associated with

lapses in care.1 It is increasingly understood that many ED returns

do not represent adverse events or lapses in care.2,53 In accordance

with prior research, we found that the risk of admission is lower

for return visits (22% for 72 h, 20% for 9 days), compared to the

general admission risk (30%).2 It has been proposed that

“expectedness” of patient returns is a key dimension for classifying

lapses in care.15 While expectedness is currently a subjective as-

sessment, we hypothesize that it may be definable in a data-driven

gender.Female
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Figure 3. Variables with high information gain for XGBoost models using the full dataset. The top 20 informative variables are shown for each outcome. The

points represent the mean information gain from a 100 runs of XGBoost, while the horizontal lines show bootstrapped 95% confidence intervals. Note that infor-

mation gain does not specify directionality, but instead encodes the predictive value of a variable in a nonlinear model. Description of each variable can be found

in Supplementary Table S1.
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Figure 2. Receiver operating characteristic curves. The difference in AUC value for every pairwise comparison between the 4 models was significant (P< .001) for

both the 72-h and 9-day return outcomes. AUC: area under the curve.
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manner as the probability output of a model. In this framing,

returns with low probability outputs might be passed on for qual-

ity assurance review. Further studies will be needed to assess the

validity of this approach.

This study has several limitations. The study is a retrospective

study that lacks a separate validation cohort. The study did not take

account into scheduled versus unscheduled ED return, given that

there is no formal definition for scheduled visits and that scheduling

a return visit does not necessarily result in return. The study also

restricts patient data to those collected from prior ED visits and does

not include data from outpatient clinic or inpatient wards, which

may provide important information regarding a patient’s healthcare

usage pattern. Although our study included 2 neighboring EDs

within the same city, it did not take account of return visits to EDs

outside the city or to EDs in a different hospital system and likely

under-represents ED return.9 Finally, this study does not provide set

guidelines on how the information obtained about risk of early ED

return may be used to improve patient care.

CONCLUSION

Machine learning is able to predict 72-h and 9-day return with mod-

est accuracy, with small but significant improvement from the use of

clinical variables. The highest impact features are available by the

completion of triage, supporting earlier intervention for patients

with high risk of return. Further studies are needed for clinical im-

plementation of such a model.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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