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STATISTICAL ANALYSIS 

Chemometric Protocol to Validate an Analytical Method in the 
Presence of Corrigible Constant and Proportional Systematic 
Errors 
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University of Granada, Faculty of Science, Department of Analytical Chemistry, Av. Fuentenueva s/n, E-18071, Granada, Spain 

A statistical methodology to verify the trueness of 
an analytical method in the presence of corrigible 
systematic errors is presented. This protocol en­
ables detection of constant and proportional com­
ponents of error. By using the data set obtained in 
the Youden calibration with different sample test 
portions, the constant component of the error 
(Youden blank) can be determined. An analysis of 
covariance was applied to 3 calibration curves es­
tablished with standard solutions and with stand­
ard additions to 2 different sample test portions. 
The slopes were compared, and the presence of 
any matrix-analyte interaction was detected. A 
method for removing the numerical components of 
systematic errors is proposed: a calculation proce­
dure to obtain a correct analytical result and a sta­
tistical test to verify the correctness of analyte con­
tents obtained from different calibrations. For 
demonstration purposes, the protocol was applied 
to spectrofluorometric determination of oxalates in 
spinach leaves. 

In analytical methodology, results are always affected by er­
ror, which has 2 components: systematic and random. Ran­
dom error is ever present, and its determination, based on 

repetition of measurements and simple statistical treatment, en­
ables a confidence interval to be established for the analytical 
result. Systematic error can be detected only when the result is 
different from the true value and lies outside the confidence 
interval determined by random error. Wilson (1) identified 4 
types of error: (i) in the calibration process or the measure­
ment system (for example, the use of standards that absorb hu­
midity); (2) direct interference from the sample matrix, de­
fined by Cardone (2) as any substance within the sample matrix 
that provokes a response that depends on the size of the sample 
and is greater or less than that due solely to the analyte, thus 
producing an unacceptably large systematic error; (3) con­
stants, due to response variations that are not attributable to the 
analyte and are independent of sample size; and (4) propor-
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tional, due to response variations that depend on the matrix-
analyte interaction and are proportional to the matrix-analyte 
relation present. 

The sources of errors (1) and (2) are clearly distinct from 
those of (3) and (4), because no statistical procedure is available 
to detect the former. It is also not possible to apply corrective 
techniques to eliminate errors (1) and (2) from the analytical 
result. On the contrary, the errors (3) and (4) may be detected 
by diagnostic statistical techniques and the resulting value may 
be used to correct analytical results. 

To test the validity of an analytical method, it is necessary to 
determine its trueness by evaluating whether it is free of sys­
tematic errors and by checking that results are not significantly 
different from the true value. If suitable reference materials or 
methods are not available, it is not possible to test the validity 
of the method directly. It is then necessary to resort to other 
methodologies, such as the standard additions method (2-8). 

The requirement for correct use of this methodology is the 
absence of systematic errors of types (7) and (2); that is, errors 
cannot be corrected. 

In a previous study, we developed a statistical protocol to 
test the accuracy of a method by using standard additions (9). 
The use of this method was based on the absence of propor­
tional systematic errors in the procedure; the presence of con­
stant errors did not prevent its application. Three calibration 
curves were established: one with standard solutions; one with 
standard additions to a constant sample volume; and a Youden 
calibration, obtained from continuous sample variations. The 
absence of proportional systematic errors was confirmed by ob­
serving that no significant differences were observed in the 
slope of the calibration curve established with standard addi­
tions with respect to the slope of the calibration curve estab­
lished with standard solutions. A f-test was applied to compare 
calibration slopes; the parallel lines showed the absence of ma­
trix-analyte interaction. 

Nevertheless, when this type of error is present, it is still 
possible to use standard additions methodology by measuring 
the saturation state of the interactive effect (7), that is, in a situ­
ation where a constant error level is obtained independently of 
the matrix-analyte relation, as described by Tyson (10). To test 
this saturation of the interactive effect, 2 standard additions 
curves, with different sample portions, are established and the 
slopes are examined to determine whether they are equal. By 
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this procedure, the matrix-analyte relation is modified and we ob­
serve whether the effect provoked is similar for the 2 cases (11). 

This paper proposes a rigorous methodology to validate an 
analytical result by using the standard additions method in the 
presence of both constant and proportional systematic errors. 
The protocol describes a statistical method that detects both 
types of error and, when proportional errors exist, seeks a com­
plete interval of sample portions for which saturation of the 
matrix-analyte interactive effect is obtained. It thus avoids the 
effects of this interference and arrives at a correct analytical 
result for the selected experimental region. The method, once 
validated, can be used in routine analysis with the standard so­
lution additions method, provided that the sample concentra­
tion introduced into the calibration curve lies within the satura­
tion interval of the matrix-analyte interactive effect. 

Experimental 

Three experiments are required to obtain the first data set 
necessary to check the presence of systematic errors. In each 
one, the same analytical procedure is applied: 

(a) Standard calibration (SC).—Established from several 
replicates of different analyte standard solutions, including the 
blank as an additional value. From the data set obtained, the 
performance characteristics of the analytical method can be de­
termined (12). 

(b) Youden calibration (YC).—With the Youden method 
(13), a calibration curve is established by using increasingly 
larger portions from a treated sample solution. In this curve, 
the value corresponding to sample portion "zero" is not in­
cluded. Replicates are not necessary. 

This calibration must be performed before those established 
with standard additions. When there is no evidence of the con­
tent of the analyte in the sample, the curve of such a calibration, 
together with the analytical signal values corresponding to the 
sample quantity, provides an indication of which sample por­
tions may be used for analysis without risk of insufficient re­
agents. Furthermore, with this calibration, it is possible to select 
2 sample portions that are suitable for establishing the standard 
additions calibrations, taking into account that the total quantity 
of analyte in each addition (sample content plus added content) 
must not create an analytical signal greater than that corre­
sponding to the highest concentration used to establish the 
standard solution calibration. Otherwise, there would be no cer­
tainty of working within the zone of linearity. 

(c) Standard additions calibrations (AC1 andACl).—Two 
calibrations can be obtained by the addition of continuous vari­
ations of the standard solution at 2 constant, different sample 
volumes and including the value of "zero" addition. It is not 
necessary to perform replicates for each addition. The sample 
portion and addition intervals should be as wide as possible to 
ensure the absence or the saturation of the interactive matrix-
analyte effect. 

By applying linear regression least-squares analysis, the 
slope, the intercept, and the regression standard deviation for 
each curve are calculated. 
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Figure 1. Different calibration curve plots: (a) SC, 
standard calibration; AC1 and AC2, standard additions 
calibrations with sample portions of 0.8 and 1.6 ug/mL; 
(b) YC, Youden calibration. 

Statistical Procedure 

The curves of the 3 different calibrations (standard calibra­
tion [SC], and standard additions calibrations with different 
sample portions [AC1, AC2]) can be represented by 4 spatial 
dispositions: (/) The 2 standard additions calibrations are dis­
placed parallel to the standard calibration (i.e., there is a con­
stant or translational bias in the selected sample portion inter­
val); (2) one standard additions calibration is displaced parallel 
to the other, but the 2 curves have slopes that are different from 
that of the standard calibration (i.e., there is a proportional or 
rotational bias, but the matrix-analyte saturation effect is 
achieved); (5) only one standard additions calibration is dis­
placed parallel to the standard calibration, whereas the other 
2 curves have a different slope (there is a constant bias for the 
sample portion corresponding to the first calibration, and ana­
lytical results free from proportional error can be obtained only 
if this sample portion is used); and (4) the 3 curves have dif­
ferent slopes (i.e., there is a combination of both error 
types) (2). 
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To test the similarity between the slopes, a statistical tech­
nique known as analysis of covariance (ANCOVA) is used. 
This technique combines the aspects of variance and regression 
analysis, and among its many uses is the comparison of regres­
sion lines (14). Here we are exclusively interested in the joint 
comparison of the calibration slopes with standard solutions 
(SC) and standard additions calibrations (AC1 and AC2). The 
mathematics model used is based on the equation: 

where i - 1,2,..., r indicates each of the calibration curves; j = 
1, 2, ..., n, is each of the experimental observations; a is the 
intercept; p is the slope; and e is the normally distributed error 
of the model. The statistic test that should be done establishes 
a null hypothesis: 

In this procedure, it is assumed that residual variances are 
homogeneous for all calibrations established and that the re­
gression standard deviation depends only on the value of the 
analytical signal (15). The realization of this test implies a se­
ries of steps: 

(a) Initial calculations.—When calibrations have been ob­
tained, application of ANCOVA requires establishing a series 
of corrected sums of squares and products for each individual 
regression that represent deviations with respect to average val­
ues for concentrations (c) or analytical signals (/?). The defini­
tion and brief expression of these, for purposes of calculation, 
may be represented, in simplified form, by the following equa­
tions: 

MS = 
SS 

(cc) = X ( c , - c ) 2 = X c ? - - ^ 

(RR) = £(/?,- - R)2 = J^RJ - ~^~ 

YcgRt 
(cR) = X(c ; - c)(Ri -K) = £c,fl, (3) 

(1) 

(2) 

(5) 

where n is the total number of pairs of data for each calibration, 
(c) Full regression deviations: sum of squares and full 

mean of squares of residuals.—Considering the 3 calibrations 
to be independent regressions, it is possible to obtain the full 
degrees of freedom as the sum of the degrees of freedom of 
each calibration and the full sum of squares, which is calculated 
by summing the sums of squares of each individual regression 
curve 

full DF = (ns ~2) + (nAl-2) + (nA2 - 2) 

= (ns + nM+nA2-6) (6) 

fullSS = (SS)s + (SS)A1 + (SS)A2 (7) 

where ns, nAl, and nA2 represent the number of pairs of values 
for each calibration curve, respectively. The full mean of 
squares is obtained by dividing the full sum of squares by the 
full degrees of freedom 

full MS: 
full SS 
full DF (8) 

(d) Reduced regression.—By summing all the sums of 
squares and regression products, it is possible to establish the 
deviations of a model in which all the data of the different cali­
brations fit a single curve with slope, bp, which is obtained by 
the following expression: 

(cR)s + (cR)M + (cR)A2 

bp-
(cc)s + (cc)M + (cc)A2 

(9) 

The reduced sum of squares is obtained from Eq. 4, in which 
each term has now been obtained from the sum of the corre­
sponding terms of each individual regression, according to 
Eq. 10: 

reduced SS = (RR)S + (RR)A] + (RR)A2 -

[(cR)s + (cR)M + (cR)A2]
2 

(cc)s + (cc)Al + (cc)A2 

(10) 

(b) Regression deviations: sums of squares and means of 
squares of residuals.—In each regression, the sum of the 
squares (SS) of the residuals represents the part of the total vari­
ability of the data set around the slope that is not explained by 
regression, depending instead on other variables and influences 
not considered in the linear model. The calculation is per­
formed by using the following equation: 

SS = (RR) - (cRf 
(cc) 

(4) 

and the reduced degrees of freedom, as a single pooled slope 
obtained for the 3 calibrations, are: 

reduced DF = [(ns - 1) + (nAl - 1) + (nA2 - 1) - 1] 

= ns + nAl+nA2-4 (11) 

The reduced residual mean of squares, considering a model 
to fit a single slope, is obtained from the following expression: 

reduced MS = 
reduced SS 
reduced DF 

(12) 

The means of squares (MS) of the residuals are obtained by 
dividing the sum of the squares by the degrees of freedom (DF) 
for each regression curve 

(e) Comparison of slopes.—An F-test comparing 2 means 
of squares was performed to detect whether significant differ­
ences exist between the slopes of the 3 calibration curves. The 
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statistic used with (k - 1, full DF) degrees of freedom was cal­
culated according to the following expression: 

F - £ * 
r c a l •) 

(13) 

sN is the mean of squares calculated as the difference between 
the full sum of squares and the pooled sum of squares, with 
(k-\) degrees of freedom (k is the number of slopes to be 
compared). This variance measures the contribution of the dif­
ference observed between the slopes of the 3 calibration curves 
to the sum of squares of the deviations from the linear model. 
SQ is the full mean of squares, obtained by Eq. 8 and with (full 
DF) degrees of freedom. This denominator measures the con­
tribution of the deviations from the linear model, considering 
the calibrations to be independent (the variance within each 
curve). The calculation of the 2 is performed by using Eq. 14 
andEq. 15: 

2 (reduced SS) 
sN = 

• (full SS) 

k-\ 

sj3 = (full MS) 

(14) 

(15) 

(e.l) Equal slopes (existence of a constant systematic er­
ror).—The null hypothesis usually cannot be rejected for a sig­
nificance level that is >5%. This means that the deviations in­
troduced into the model by the differences existing between the 
slopes compared do not exceed the total random error of the 
calibration curves obtained independently (Eq. 15). It is thus 
concluded that there is no significant difference between the 
slopes of the 3 calibration curves. It may be deduced that there 
is no proportional systematic error component, at least if the 
method is applied within the interval of the sample portion un­
der study (the maximum sample portion that may be used is 
given by the greatest sample concentration used in calibration 
by standard additions). 

In this case, the pooled slope, bp, obtained from Eq. 9, may 
be considered a representative value for the 3 calibration curves 
(with standard solutions and with standard additions). An esti­
mated value of the analyte content of the sample can be ob­
tained by dividing the corresponding slopes of the Youden cali­
bration and the standard calibration curves (9). 

From the value used for the slope, new intercepts of the ad­
dition curves Al and A2 are calculated by using Eq. 16: 

tions calibration with the largest sample portion (AC2; to 
evaluate the effect of the maximum sample portion used). The 
analyte content in the solution, cxS, is calculated from the SC 
calibration, by applying the calibration equation with the inter­
cept and slope values, as indicated in Eq. 17: 

Rx-aY 
(17) 

where the analyte content calculated from AC2 calibration, 
cx,A2> is obtained through Eq. 18: 

a A2 _ aY 
Lx, A2 - " (18) 

Both values can be checked by using a statistic with 
ns + nM ~ 3 degrees of freedom (there is an additional DF be­
cause the slope is the same for both curves), which is obtained 
by using the following expression derived from the Fieller 
theorem (16): 

t(c) = 
KTC.S C X , A 2 

(K s - ^A2 ) 
(19) 

b„ [ (cc)s + (cc)A2] 

where Rs and RA2 represent the means of the analytical signals 
for each data set of calibration curves SC and AC2, respec­
tively, and sp is the pooled standard deviation of regression of 
both calibrations, obtained from: 

(«S-2)4 + («A2-2)42 

W — (20> 
"S + «A2 - 4 

Using a simplified expression (Eq. 21), we obtain an ap­
proximate value that is always greater than that derived from 
the general expression (if the statistic is greater than the Stu­
dent's /-value, it is necessary to use Eq. 19): 

t(c) = 
1 1 

"S "A2 

(21) 

a'A=R-b cA (16) 

(e.1.1) Estimation of constant error component: Youden 
blank.—A difference between the intercepts of the curves SC 
and YC, a$ and aY, indicates the existence of a bias component 
due to the sample matrix effect. If aY is not included in the 
confidence interval value of as (9), the constant bias compo­
nent, the total Youden blank, can be subtracted from the whole 
analytical signal to estimate the analyte content of the solution. 

(e.1.2) Check oftrueness.—This is performed by compar­
ing the analyte content of the solution obtained from the stand­
ard calibration (SC) and that obtained from the standard addi-

If the null hypothesis is not rejected with a significance 
value of >5%, the 2 results are similar and the method is cor­
rect. This means that when the constant error component has 
been eliminated, the analyte content can be determined directly 
from the calibration curve established with standard solutions; 
this value is free from systematic errors, provided that the sam­
ple portion used in the analysis is equal to or less than the largest 
portion used in the calibration curve established with standard 
additions (AC2). 

(e.2) Different slopes (existence of a proportional system­
atic error). Comparisons by pairs.—If the slopes are not simi­
lar, it is necessary to perform a test of comparisons by pairs to 
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Table 1. Analytical signals obtained to establish 
standard calibration (SC), standard additions 
calibrations (AC1 and AC2), and Youden calibration (YC) 

Concn of std 
analyte soln 

Calibration added, ng/mL 

Concn of 
sample soln 

added, ug/mL Analytical signal 

SC 

AC1 

AC2 

YC 

0 

20 

40 

60 

80 

100 

0 

15 

30 

45 

0 

15 

30 

45 

22.1 

32.1 

43.7 

49.3 

58.4 

68.0 

21.6 

33.0 

44.2 

50.9 

59.6 

70.6 

21.7 

30.3 

40.5 

53.0 

60.9 

65.1 

0.8 

1.6 

0.8 

1.2 

1.6 

2.0 

2.4 

37.6 36.0 

43.9 42.6 

46.5 46.7 

51.6 52.5 

46.1 45.3 

51.8 50.9 

53.9 55.0 

60.5 58.8 

38.6 

42.7 

46.1 

51.5 

55.4 

identify which of them presents a significant variation from 
the others. For this purpose, the Bonferroni method (17) is 
used, in which all possible comparisons by pairs are made of 
the 3 slopes (bs vs bM,bs vs bj^, bM vs bA2). A Student's r-test 
is used; the expression of this for the first pair of slopes com­
pared is: 

t(b) = 
^ s - ^ A l | 

•%> 
1 1 

+ 

(22) 

(cc)s (cc)M 

This expression is similar for other comparisons, because in 
every case the standard deviation of the denominator is that 
corresponding to the total mean of squares, sD, which is a better 
estimator of the deviations from the linear model produced by 
all the calibrations. This method, with the aim of evaluating the 
pooled test error, uses a "penalized" Student's Mest; that is, it 
considers an error a divided among the q possible comparisons 
performed (error alq). The null hypothesis (that the 2 slopes 
compared do not differ significantly) is not rejected for a level 
of significance of >1% (because the test with the normal value 
of 5% is too severe). This comparison may have 3 results: 

(e.2.1) bs is different from bM and bA2, but bM and b^j are 
similar.—In this case, there is an interval of sample portions for 
which a saturation of the matrix-analyte interactive effect has 

occurred. To avoid this effect, the analyte content in the meas­
urement solutions is obtained from the 2 calibration curves es­
tablished with standard additions (AC1 and AC2), as deter­
mined by Eq. 23 and Eq. 24: 

_a A1—aY 

cx, A2 : aA2-aY 

(23) 

(24) 

In this case, a'Al and a'A2 are calculated as in Eq. 16, except 
that now bp is the pooled slope of calibrations AC1 and AC2 
(see Eq. 9). 

To obtain an acceptable estimate of the value of ay, using 
the Youden methodology (13), we can use the Youden calibra­
tion established for a particular range of sample portions, in­
cluding those used to prepare calibration curves AC1 and AC2. 
Because replicates are not necessary, the linearity has been 
checked by residual analysis. In this way, it is possible to con­
sider that this is the value of the Youden blank in the region of 
saturation of the interactive effect. 

An approximate value for the analyte content in the sample 
may be obtained as in section (e.l), by dividing the slope of the 
Youden calibration by the pooled slope of calibrations AC1 and 
AC2, bv. 

The analyte content of each sample portion used, cXi A1 and 
cx, A2» is m e n related to the final analyte concentration in the 
original sample, CA1 and CA2. The intention is to test the true-
ness of the results, comparing the 2 values by using a f-test with 
(nAi + nA2 ~~ 3) degrees of freedom, calculated according to the 
following equation: 

t(c) = 

I Qi _ cA21 

1 1 
"Al «A2 

( f t A l - ^ ) 2 ( 2 5 ) 

b\ [ (cc)M + (cc)A2] 

where sp is the pooled standard deviation of regression of cali­
brations Al and A2, obtained by: 

(«A1 - 2)«Al/i + ("A2 - 2 ) ^ / 2 

«A1 + «A2 ~ 4 
(26) 

where/j and/2 represent the respective dilution factors (num­
bers that multiply cXi A1 and cx? A2 to obtain CA1 and CA2, the 
final analyte content of the original sample). The simplified ex­
pression for the t(c) statistic (Eq. 27) is similar to Eq. 20, and 
the above-described considerations remain valid: 

t(c) = 

| C A 1 - C A 2 | 

L.-L 
V "Al «A2 

(27) 
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Table 2. Parameters for SC, AC1, AC2, and YC calibrations 

Parameter AC1 AC2 SC YC 

n 

a 
b 
s 
dp (SC, AC1, AC2) 
SS 
MS 

8 

37.31 
0.3273 

0.9793 
0.4345 
5.76 
0.959 

8 
46.05 

0.2997 
0.9164 

5.04 
0.840 

18 
22.81 ±2.19 

0.4604 
1.7972 

51.68 
3.230 

4 
29.9 
10.60 

Initial data and F-test 

Full SS 
Full MS 
Reduced SS 
Reduced MS 
k 

Fcal 

62.48 (28 DF) 

2.231 
143.29 (30 DF) 

4.776 
3 

40.40 
2.231 

18.11a(P= 0.002%) 

Bonferrani test for comparing slopes 

/tf>);bsvsbA1 

t(b)\ bs vs bA2 

t(b); bM vs bA2 

4.017" (P= 0.12%) 

4.849" (P= 0.01%) 

0.620" (P= 100%) 

Pooled slope and Youden blank 

bp(AC1,AC2) 
a' 
YB 

0.3135 
37.62 45.73 

7.09 

a Critical value, 3.340 (5%; 2, 28 DF). 
" Critical value, 3.208(1%; 28 DF); P, percentage of the Student's for F distributions (P value). 

The null hypothesis (the 2 results do not significantly differ) 
is not rejected with a level of significance that is >5%. This 
means the result is free from proportional systematic errors, 
provided the content is estimated from a calibration curve es­
tablished with standard additions to a sample portion lying 
within the tested concentration interval. In this case, it is impos­
sible to use the standard calibration curve (SC) to determine 
analyte content. 

(e.2.2) bs is similar to &A1 and not to bA2.—In this situation, 
we may conclude that the matrix-analyte interactive effect does 
not exist, provided that the sample portion used in the analysis 
is equal to that used to establish the first calibration curve with 
standard additions to the smaller sample portion. In this range 
of concentrations, it is possible to affirm the absence of any 
proportional systematic error component. The analyte content 
may be obtained from the standard solution calibration (SC) or 
from the standard additions calibration (AC1); the verification 
of trueness is achieved by applying the expressions used in sec­
tion (e.l). In this case, if the analyte contents compared, cK s 

and cx A1, do not differ significantly, it is possible to directly 
use the standard calibration (SC) for analyses, providing the 

sample portion is equal to that used for the AC1 calibration 
curve. 

(e.2.3) No pair of slopes compared presents similarity.— 
This case may arise when there is a matrix-analyte interactive 
effect, but the experimental region in which this effect is satu­
rated has not been localized. To find this saturation zone and to 
avoid a proportional systematic error, new calibrations must be 
performed with standard additions by using sample portions 
that are intermediate to those previously considered for the 
AC1 and AC2 calibrations. The object is to test whether, on 
varying the matrix-analyte relation, the saturation zone is 
bounded. When the new calibration has been established, the 
previously described statistical protocol is applied again. 

Results and Discussion 

To test the applicability of the statistical protocol estab­
lished, it was applied to the determination of oxalates by the 
formation of a fluorescent ternary complex with Alizarin Red 
S and Zr(IV) (Aybar Munoz et al., unpublished data). The 
standard calibration (SC) was obtained from the analytical sig-
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Table 3. Accuracy of analyte content obtained from 
different calibrations 

Parameter AC1 AC2 YC 

Cx, ng/mL 24.63 50.51 

f 1.250 0.625 

C, mg/g 30.79 31.57 33.81 

sp 0.9556 

t(c)a 0.512 ( P = 61.7%) 

* Critical value, 2.160 (5%, 13 DF). 

nal set for 3 replicates of oxalate standard solutions containing 
0,20,40,60, 80, and 100 ng/mL. 

A solution of pretreated sample with a concentration of 
0.4 mg/mL was prepared. To establish the Youden curve, sam­
ple solutions of 0.8, 1.2,1.6,2.0, and 2.4 p:g/mL were prepared. 
Finally, the standard additions curves were obtained to add con­
tinuous volumes of analyte concentrations of 0, 15, 30, and 
45 ng/mL to the same concentrations of sample solutions, 
0.8 Hg/mL (ACl) and 1.6 \igJmL (AC2). After the recom­
mended procedure was applied, all the analytical signals were 
obtained. The results are presented in Table 1. Figure 1 shows 
the corresponding calibration curves established according to 
the above-mentioned procedure. 

The parameters for 4 calibration curves are shown in Ta­
ble 2. The constant error component is detected and must be 
corrected. ANCOVA shows that the 3 slopes jointly compared 
(bs, bM, and bp^) are significantly different, meaning that a 
proportional systematic error exists. The pair comparison test, 
applying the Bonferroni method, only concludes with the null 
hypothesis when bM and bA2 are compared, which confirms 
that using the selected sample portions produces a saturation of 
the matrix-analyte interactive effect. It is possible to determine 
the oxalate content in these samples from the standard additions 
calibrations. 

Table 3 shows the analyte content of the solutions at concen­
trations of 0.8 and 1.6 (ig/mL, obtained from the AC 1 and AC2 
calibrations, respectively. By using the corresponding factors, 
the final analyte contents in the sample are obtained, which are 
then compared by the r-test (using the approximated expres­
sion 27). This reveals that there is no significant difference be­
tween the 2 values and that the results obtained by using the 
2 calibrations are free from systematic errors. From this study, 
it may be concluded that the oxalate content in this type of sam­
ple cannot be determined directly by using the calibration 
curve. However, if sample solutions are used with a sample 
concentration lying between 0.8 and 1.6 |ig/mL, it is possible 
to determine the oxalate content by using the standard additions 
calibration, because there is no doubt that, within this interval, 
the matrix-analyte interactive effect is saturated. In every case, 
the Youden blank must be eliminated from all measurements. 
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Glossary 

A C l Standard-additions calibration with test portion 1 
AC2 Standard-additions calibration with test portion 2 

OAI Intercept of A C l 
a A2 Intercept of AC2 
O'AI Corrected intercept of A C l 

a'A2 Corrected intercept of AC2 
as Intercept of SC 
a's Corrected intercept of SC 
ay Intercept of YC 

bM Slope of ACl 
bM Slope of AC2 
bs Slope of SC 

br Slope of YC 
ftp Pooled slope 
c Concentration level 
(cc) Corrected sum of squares of concentrations 

Ci, AI Concentration of added-standard set used in AC 1 
ci, A2 Concentration of added-standard set used in AC2 
CAI Average concentration of added standard set used in A C l 

CA2 Average concentration of added standard set used in AC2 

Ci, s Concentration of standard set used in SC 
cs Average concentration of standard set used in SC 

C A I Sample analyte concentration from A l 

C A 2 Sample analyte concentration from A2 

cx Solution analyte concentration 

cx, AI Solution analyte concentration from A C l 
Cx, A2 Solution analyte concentration from AC2 
cx, s Solution analyte concentration from SC 
(cR) Corrected crossed product of sum of squares of 

concentrations and analytical signals 
DF Degrees of freedom 
f\ Multiplicative factor to obtain CAI from cx, AI 
fi Multiplicative factor to obtain CA2 from cx, A2 
«AI Number of measurements used for ACl 
«A2 Number of measurements used for AC2 
ns Number of measurements used for SC 
ny Number of measurements used for YC 

R Measured analytical signal 
(RR) Corrected sum of squares of analytical signals 
Rs Average analytical signal for SC measurement set 

RAI Average analytical signal for ACl measurement set 
RA2 Average analytical signal for AC2 measurement set 
R, Each analytical signal value of calibration measurement set 

Rx Sample analytical signal 

SS Sum of squares 
MS Mean of squares 
SC Standard calibration 

SM Regression standard deviation of ACl 

•SA2 Regression standard deviation of AC2 
$s Regression standard deviation of SC 
SY Regression standard deviation of YC 
Sp Pooled standard deviation 

t(b) Statistic for slope 
f(c) Statistic for concentration 

YC Youden calibration 
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