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Abstract
Pedigree information is often missing for some animals in a breeding program. Unknown-parent groups (UPGs) are assigned 
to the missing parents to avoid biased genetic evaluations. Although the use of UPGs is well established for the pedigree 
model, it is unclear how UPGs are integrated into the inverse of the unified relationship matrix (H-inverse) required for 
single-step genomic best linear unbiased prediction. A generalization of the UPG model is the metafounder (MF) model. 
The objectives of this study were to derive 3 H-inverses and to compare genetic trends among models with UPG and MF 
H-inverses using a simulated purebred population. All inverses were derived using the joint density function of the random 
breeding values and genetic groups. The breeding values of genotyped animals (u2) were assumed to be adjusted for UPG 
effects (g) using matrix Q2 as u∗

2 = u2 +Q2g before incorporating genomic information. The Quaas–Pollak-transformed 
(QP) H-inverse was derived using a joint density function of u∗

2 and g updated with genomic information and assuming 
nonzero cov(u∗

2,g
′). The modified QP (altered) H-inverse also assumes that the genomic information updates u∗

2 and g, but 
cov(u∗

2,g
′) = 0. The UPG-encapsulated (EUPG) H-inverse assumed genomic information updates the distribution of u∗

2. The 
EUPG H-inverse had the same structure as the MF H-inverse. Fifty percent of the genotyped females in the simulation had a 
missing dam, and missing parents were replaced with UPGs by generation. The simulation study indicated that u∗

2 and g in 
models using the QP and altered H-inverses may be inseparable leading to potential biases in genetic trends. Models using 
the EUPG and MF H-inverses showed no genetic trend biases. These 2 H-inverses yielded the same genomic EBV (GEBV). The 
predictive ability and inflation of GEBVs from young genotyped animals were nearly identical among models using the QP, 
altered, EUPG, and MF H-inverses. Although the choice of H-inverse in real applications with enough data may not result in 
biased genetic trends, the EUPG and MF H-inverses are to be preferred because of theoretical justification and possibility to 
reduce biases.
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Introduction
The theory of single-step genomic best linear unbiased 
prediction (ssGBLUP) (Aguilar et al., 2010; Christensen and Lund, 
2010) was developed assuming a complete pedigree. However, 
pedigree information is frequently missing for farm animals 
making the numerator relationship matrix (A) incomplete. 
Missing parents are assumed to be members of an unselected 
base-population, an incorrect assumption considering that most 
livestock populations are selected. Therefore, an incomplete 
relationship matrix fails to account for selection which may 
result in biased genetic trends (Kennedy et al., 1988). Unknown-
parent groups (UPGs) can be used to model non-zero breeding 
values for missing parents (Graser et  al., 1987; Westell et  al., 
1988). The breeding value of each animal is adjusted with genetic 
group effects weighted by the expected fraction of an animal’s 
genes originating from each group (Quaas, 1988). Although the 
UPG model is well defined for A−1, it is unclear how UPGs can be 
incorporated into the inverse of the unified relationship matrix 
(H−1) in ssGBLUP. We will refer to such an inverse as “H-inverse.”

Several H-inverses with UPGs are available (Tsuruta et  al., 
2011; Misztal et  al., 2013; Masuda et  al., 2019a). Some studies 

showed similar genetic trends among H-inverses (Matilainen 
et  al., 2018; Masuda et  al., 2019a), whereas others reported 
biased UPG solutions and genomic predictions (Bradford et al., 
2019b; Tsuruta et al., 2019). No theoretical justification currently 
exists for using a particular H-inverse with UPGs.

A generalization of a UPG model resulted in the metafounder 
(MF) model (Christensen, 2012; Legarra et  al., 2015). A  limited 
number of reports on comparisons between UPGs and MFs 
(Bradford et al., 2019b; Kudinov et al., 2020; Macedo et al., 2020) 
are available. However, despite a comprehensive explanation 
of MFs by Legarra et al. (2015), it is unclear how the MF model 
differs from the UPG model. Thus, the objectives of this study 
were to present formal derivations of 3 H-inverses with UPGs 
and to compare genetic trends among models with UPG and MF 
H-inverses using a simulated purebred population.

Materials and Methods
Animal Care and Use Committee approval was not requested for 
this study because data were simulated in a computer.

Derivation of H-inverses

The H-inverses were derived using the joint density-function 
approach (Quaas, 1988; Aguilar et  al., 2010). The density 
function p(u|A,σ2

u), where u is a vector of breeding values, A 
is the numerator relationship matrix, and σ2

u is the additive 
genetic variance, was modified by incorporating information 
from UPGs and genomic markers. The H-inverses were 
obtained using the joint density function of u and g after 
UPG and genomic information were incorporated into the 
density function. Figure 1 shows pathways for the derivation 
each H-inverse. A  brief description of the derivation of each 
H-inverse is presented below, and additional details are given in 
Supplementary Appendixes A1, A2, and A3.

Abbreviations:

EBV estimated breeding value
EUPG H-inverse unknown-parent-groups-

encapsulated H-inverse
GEBV genomic estimated breeding value
MF metafounder
MME mixed model equations
PCG preconditioned conjugate gradient
QP H-inverse Quaas–Pollak-transformed
ssGBLUP single-step genomic best linear 

unbiased prediction
TBV true breeding value
UPG unknown-parent group

Figure 1. Pathways for the derivation of the inverse of a relationship matrix and H-inverses with UPGs based on joint-density functions. For example, A∗
Σ is derived 

from the joint density p(u,g|A,Σ) = p(u|g,A) p(g|Σ). The genetic variance is omitted from the formulas. Symbols include u = a vector of breeding values, g = a vector of 

random UPGs, u∗ = u+Qg, where Q is a matrix relating animals to UPGs, A = numerator relationship matrix, G = genomic relationship matrix, H = unified relationship 

matrix with pedigree and genomic information, Σ = var(g), K = var
Äî
u∗′

2 g′
óä

 given genomic information, and subscripts 1 and 2  =  nongenotyped and genotyped 

animals, respectively. Details are given in Supplementary Appendixes A1, A2, and A3.
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Inverse of the numerator relationship matrix with 
random UPGs
Assume u ∼ MVN(0,Aσ2

u). When some pedigree information 
is missing and random UPGs are considered, u is adjusted as 
u∗ = u+Qg, where g is a vector of random genetic group effects, 
and Q is a known matrix relating individuals to UPGs (Quaas, 
1988). The conditional distribution of u∗ is assumed to be 
u∗|g,A,σ2

u ∼ MVN
(
Qg,Aσ2

u

)
. Also, we assume g ∼ MVN(0,Σσ2

u),  
where Σ =

{
Σjk

}
 is the additive relationship between UPGs j 

and k. Matrix Σ might be computed using a recursive algorithm 
(VanRaden, 1992; Aguilar and Misztal, 2008) to estimate 
inbreeding coefficients for UPGs and additive relationships 
among UPGs. Another option is Σ =I for non-inbred and 
unrelated UPGs.

Let A∗
Σ be the inverse of var

î
u∗′

g′
ó
 computed using the rules 

of the inverse of a partitioned matrix (Searle, 1982):

A∗
Σ =

Ç
var

ñ
u+Qg

g

ôå−1

=

ñ
A+QΣ Q′ Q˚

Σ Q′ Σ

ô−1

=

ñ
A−1 −A−1Q

−Q′A−1 Q′A−1Q+Σ−1

ô (1)

Omitting σ2
u. The matrix can also be derived from the posterior 

joint density p(u∗,g|A,Σ,σ2
u) = p(u∗|g,A,σ2

u) p(g|Σ,σ2
u) as shown 

in Supplementary Appendix A1.
The formula (1) shows var (u∗) = var (u+Qg) = A+QΣQ′ 

for incomplete A augmented with QΣQ′, the additional 
relationship matrix due to UPG contributions. Quaas (1988) 
derived the same inverse using a transformation of the 
mixed model equations (MMEs) and a joint density function 
of the vector of phenotypes (y), u, and g with UPGs assumed 
to be fixed effects, equivalently, Σ−1 → 0 (Supplementary 
Appendix A1).

Define u′ = [u′
1 u′

2], A =

ñ
A11A12

A21A22

ô
 and A−1 =

ñ
A11A12

A21A22

ô
, where 

subscript 1 is for nongenotyped and 2 for genotyped animals. 
Accordingly, Q′ = [Q′

1 Q′
2] and

A∗
Σ =




A11 A12 −
î
A11 A12

ó
Q

A21 A22 −
î
A21 A22

ó
Q

−Q′

ñ
A11

A21

ô
−Q′
ñ

A12

A22

ô
Q′A−1Q+Σ−1




=




A11 A12 A13

A21 A22 A23

A31 A32 A33
Σ


 ,

where subscript 3 refers to UPGs.

Inverse of the unified relationship matrix
We assume the standard animal model with u|A,σ2

u ∼ MVN
(
0,Aσ2

u

)
.  

After obtaining genotypes, the distribution of u2 is updated 
with u2|G,σ2

u ∼ MVN(0,Gσ2
u), where G is the matrix of genomic 

relationships. Christensen et al. (2010) and Aguilar et al. (2010) 
showed that the inverse of the unified relationship matrix for 
genotyped and non-genotyped animals is

H−1 = A−1 +

ñ
0 0
0 G−1 −A−1

22

ô
, (2)

which is derived from the posterior density 
p
(
u1,u2 | A, G,σ2

u

)
= p(u1|u2,A,σ2

u) p(u2|G,σ2
u).

The Schur complement of the block A11 of the matrix A−1 is

A−1
22 = A22 −A21(A11)

−1
A12. (3)

This formula consists of a series of sparse-matrix operations, 
and it reduces the computing cost for A−1

22  times an arbitrary 
vector, say A−1q, when solving MMEs by iterative algorithms 
(Masuda et al. 2017; Strandén et al. 2017).

Quaas–Pollak-transformed (QP) H-inverse
Misztal et  al. (2013) suggested the QP-transformation of the 
MMEs (Quaas and Pollak, 1981) with the following H-inverse:

H∗
QΣ = A∗

Σ +




0 0 0
0 G−1 −A−1

22 −(G−1 −A−1
22 )Q2

0 −Q′
2(G−1 −A−1

22 ) Q′
2(G−1 −A−1

22 )Q2


 . (4)

Misztal et  al. (2013) assumed fixed UPG effects, and their 
H-inverse did not contain Σ−1. We will refer to this inverse as 
the “QP H-inverse” regardless of fixed or random UPGs.

There are 2 ways to derive the QP H-inverse (4) using the 
joint density function. The first approach assumes that the 
joint density p(u1,u2|H,σ2

u) is known a priori, then incorporates 
g ∼ MVN(0,Σσ2

u) into the density. The posterior density is 
p
(
u∗
1,u

∗
2,g | H,Σ,σ2

u

)
= p(u1,u2|H, g,σ2

u) p(g|Σ,σ2
u). This means 

that genomic markers are obtained before UPGs are defined, 
or equivalently, that H is known a priori before defining 
g (Supplementary Appendix A1 and Figure 1). The second 
approach assumes that p(u∗,g|A,Σ,σ2

u) is known a priori, then 
incorporates c∗2|K,σ2

u ∼ MVN(0,Kσ2
u) into the density, where 

c∗
′

2 =
î
u∗′

2 g′
ó
. The matrix K is the genomic relationship matrix for 

u∗
2 and g given the genomic information. The posterior density 

is p
(
u∗
1,u

∗
2,g | A,K,Σ,σ2

u

)
= p(u∗

1|u∗
2, g,A,Σ,σ2

u) p(u
∗
2, g|K,σ2

u).  
It means that UPGs are defined before genomic markers are 
obtained, or equivalently, that A∗

Σ is known a priori before 
obtaining K. This approach leads to (4) assuming a covariance 
matrix between u∗

2 and g (Supplementary Appendix A2), whereas 
it also results in a separate H-inverse, shown below as formula 
(5), assuming no covariance between u∗

2 and g.

Altered QP H-inverse.
Masuda et al. (2018a, 2019a) suggested the following alternative 
QP H-inverse by eliminating G−1 in the UPG terms (i.e., 
eliminating terms G−1Q2 and Q′

2G
−1Q2) from the QP H-inverse:

H∗
AΣ = A∗

Σ +




0 0 0
0 G−1 −A−1

22 −(−A−1
22 )Q2

0 −Q′
2(−A−1

22 ) Q′
2(−A−1

22 )Q2


 . (5)

We will refer to this inverse as the “altered H-inverse” regardless 
of fixed or random UPGs.

The altered H-inverse was derived using the joint-density 
function as described as the second approach for the QP 
H-inverse. The matrix K is assumed to be block-diagonal, 
i.e., var (u∗

2) = Gσ2
u and var (g) = Σσ2

u but cov(u∗
2,g

′) = 0 
(Supplementary Appendix A2).

UPG-encapsulated (EUPG) H-inverse
A new H-inverse was derived when the joint density function 
of u∗ and g was updated in the same way as the altered 
H-inverse, but the genomic information updated u∗

2, i.e., 
u∗
2|G,σ2

u ∼ MVN(0,Gσ2
u), and g is indirectly updated through u∗

2, 
as shown in Supplementary Appendix A3:
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H∗
EΣ = A∗

Σ +




0 0 0
0 G−1 −A∗

22 0
0 0 0


 , (6)

where

A∗
22 = A22 −

î
A21 A23

ó ñ A11 A13

A31 A33
Σ

ô−1 ñ
A12

A32

ô
. (7)

The H-inverse can be derived from the posterior density 
p
(
u∗
1,u

∗
2,g | A,G,Σ,σ2

u

)
= p(u∗

1,g|u∗
2, A,Σ,σ2

u) p(u
∗
2|G,σ2

u). We will 
refer to this H-inverse as the “EUPG H-inverse,” defined only for 
random UPGs. Note that A∗

22 still consists of sparse matrices that 
can take advantage of existing iterative solvers.

MF H-inverse
Let gm be the random effect of MFs, and assume that 
gm ∼ MVN(0,Γσ2

u), where Γ =
{
γjk

}
 is the covariance matrix 

among MFs. Let uΓ
′ = [uΓ1

′ uΓ2
′ gm′] be a vector of additive 

genetic effects. The numerator relationship matrix with MFs 
(AΓ ) and its inverse (A−1

Γ ) are as follows:

AΓ =




AΓ11 AΓ12 AΓ1m

AΓ21 AΓ22 AΓ2m

AΓm1 AΓm2 Γ


 and A−1

Γ =




A11
Γ A12

Γ A1m
Γ

A21
Γ A22

Γ A2m
Γ

Am1
Γ Am2

Γ Amm
Γ + Γ−1




with subscript m for MFs. Legarra et al. (2015) showed that the 
H-inverse with MFs is:

H−1
Γ = A−1

Γ +




0 0 0
0 G−1

05 −A−1
Γ22 0

0 0 0




where G05 is the genomic relationship matrix with allele 
frequencies equal to 0.5 for all markers. We will refer to this 
H-inverse as the “MF H-inverse.” As shown in Supplementary 
Appendix A3, the MF H-inverse can be derived using the same 
approach as the EUPG H-inverse.

Applying the rules for the computation of the inverse of 
partitioned matrixes to AΓ and A−1

Γ  (Searle, 1982), we obtain:

A−1
Γ22 = A22

Γ −
î
A21

Γ A2m
Γ

ó ñ A11
Γ A1m

Γ

Am1
Γ Amm

Γ + Γ−1

ô−1 ñ
A12

Γ

Am2
Γ

ô
. (8)

This formula is identical to A∗
22 (7) except for the replacement of 

A∗
Σ with A−1

Γ . The above formula permits the application of MFs 
to a large genotyped population. Masuda et al. (2019b) applied 
MFs to 2.3 million genotypes using formula (8).

Simulation study

Simulated population
The simulation study aimed to demonstrate whether each 
H-inverse is robust in an extreme case where the pedigree has 
many missing parents in a purebred population. The population 
was simulated with software QMSim (Sargolzaei and Schenkel, 
2009). The genetic architecture and the historical population were 
the same as in the study by Tsuruta et al. (2019). The heritability was 
assumed to be 0.5, and only females had phenotypes. The founder 
population (generation 1) consisted of 50 males and 10,000 females 
sampled from the historical population. Each founder female had 
a phenotype. Parents of founders were assumed to be unknown.

In each subsequent generation, the following steps were 
performed to produce the progeny. Five thousand males and 
5,000 females were generated by random mating of selected 
animals in the previous generation. A phenotype was assigned 
to all the females born in the current generation. Estimated 
breeding values (EBVs) were calculated by a single-trait, 
pedigree-based animal model with the true heritability (the 
general mean as a fixed effect and the additive genetic effect as a 
random effect) using the data available at the time. The genomic 
information was not used for selection, and the EBVs of young 
males were parental average. The top 45 youngest males on the 
EBVs were selected as new sires, which replaced the bottom 45 
sires, whereas the top 50% females on the EBVs replaced the 
bottom 50% of the current dams. This strategy kept 50 selected 
bulls and 10,000 selected females as parents to produce the next 
generation. The simulation was terminated after the selection 
in generation 13.

As a result, the selected males had 100 daughters on average 
in each generation. We will refer to the males as proven bulls. 
Litter size was fixed to 1, and some selected females did not 
have progeny. The females in the last (13th) generation did not 
have phenotypes. Genomic information was collected from 
all animals born in generation 8 or later. The nongenotyped 
bulls without progeny (generations 2 through 7) were excluded 
from the data. The data included 65,000 phenotypes, 100,320 
pedigree animals, and 60,000 genotyped animals with 58,000 
SNP markers. All genotyped females (25,000) were phenotyped.

After generating the dataset, dam identification was 
randomly removed from the pedigree for 25% of females in 
generations 2 to 7, and 50% of females in generations 8 to 13. The 
unknown parents were replaced with UPGs. A  total of 7 UPGs 
were defined for unknown parents of animals. The 1st was for 
generations 1 and 2, the 2nd for generations 3 and 4, the 3rd for 
generations 5 and 6, the 4th for generations 7 and 8, the 5th for 
generations 9 and 10, the 6th for generations 11 and 12, and the 
7th for generation 13.

Five replicates were obtained with the above configuration. 
Because all replicates resulted in the same conclusion, we will 
only show the results from the first replicate.

Basic model comparison
Single-step GBLUP models with UPG (QP, altered, and EUPG) and 
MF H-inverses were used to predict genomic EBVs (GEBVs) and 
genetic group effects. We also tested a model where UPGs were 
applied only to A−1 in H−1, called “Omega” H-inverse after an 
omega constant (ω) used in previous studies (Tsuruta et  al., 
2011; Misztal et al., 2013). We used I as Σ for the UPG models. 
We estimated Γ by maximum likelihood (Garcia-Baccino et al., 
2017). The calculated matrix is

Γ =




0.034 0.027 0.032 0.034 0.036 0.037 0.038
0.067 0.039 0.046 0.046 0.045 0.045

0.067 0.067 0.069 0.070 0.070
0.096 0.101 0.104 0.104

0.125 0.136 0.139
Sym. 0.168 0.177

0.199




.

The pedigree best linear unbiased prediction (BLUP) model was 
also tested. This model included the overall mean as a fixed 
effect, and animal breeding value, genetic group, and residual 
as random effects. Variance components used in the simulation 
were also used for prediction.
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The genomic relationship matrix was calculated with the 
VanRaden’s first method (VanRaden, 2008). The raw genomic 
relationships were blended with the identity matrix as 
0.99G+ 0.01I. Allele frequencies were calculated from marker 
genotypes, thus, G was aligned to A22 (Chen et  al., 2011; Gao 
et al., 2012): βG+ α11′, where α and β were calculated using the 
following equations:

β diagG+ α = diagA22

β of fdiagG+ α = of fdiagA22

where diagX and of fdiagX are the averages of diagonals and off-
diagonals of matrix X, respectively. This alignment was expected 
to remove the bias of GEBV for genotyped animals in a selected 
population (Vitezica et al., 2011). The matrix A22 was calculated 
using the indirect method (Colleau, 2002) with inbreeding 
coefficients calculated using the method by Meuwissen and 
Luo (1992). We refer to such inbreeding coefficients as Standard 
Inbreeding.

We defined the true breeding value (TBV) as the simulated 
breeding value based on causal genotypes, and GEBVs as the 
prediction of u∗. Predicted genetic group effects and GEBVs 
were adjusted by the average GEBV of phenotyped animals in 
generations 1 and 2.  Then, models were compared in terms 
of predictions of genetic group effects, genetic trends, and 
predictive abilities of young males. Predictions of genetic group 
effects were compared with averages of TBVs of parents replaced 
with UPGs in the pedigree file. Trends of GEBV were compared 
with TBV genetic trends. Predictive abilities were defined as 
correlations between GEBVs and TBVs for males in generation 
12 and 13. We also computed linear regressions of TBVs on 
GEBVs for the same males, and utilized the slope coefficient (b1) 
as an inflation indicator.

Additional model comparisons
We examined additional factors that were expected to affect 
genetic trends and the inflation of GEBVs. Firstly, we estimated 
inbreeding coefficients and additive relationships between 
UPGs to calculate Σ (Aguilar and Misztal, 2008), and used 
these values in A∗

Σ as suggested by VanRaden (1992). We refer 
to this inverse as Ã

−1
Σ . The Ã

−1
22  matrix was formed indirectly 

during the construction of matrix Ã
∗
Σ using formula (3). Matrix 

G was aligned to A22 assuming Standard Inbreeding based 
on pedigree with missing parents. Figure 2 shows inbreeding 
trends across generations using inbreeding coefficients from 
the complete pedigree that is the original pedigree before 
removing the dam identifications (Complete Inbreeding), 
inbreeding coefficients from the pedigree with missing 
parents (Standard Inbreeding), inbreeding coefficients from 
the pedigree with UPGs estimated using VanRaden’s method 
(Estimated Inbreeding), and inbreeding coefficients from the 
pedigree with MFs (Metafounders).

Secondly, we aligned G to Ã22, which is equal to (Ã
−1
22 )

−1
,  

say M. Because the explicit calculation of M was expensive, 
we approximated the sum of all elements and the trace of 
M required to compute α and β. The sum of all elements is 
s = 1′M1, equivalent to a combination of two formulas: y = M1 

and s = 1′y. Vector y is a solution of M−1y = 1, i.e., Ã
−1
22 y = 1,  

which can be easily obtained using the preconditioned 

conjugate gradient method (PCG). The trace of M was 
approximated with a Monte-Carlo approach (Bai et al., 1996), 
a variant of PCG based on the symmetric Lanczos algorithm.

Computations
The preGSf90 program (Misztal et al., 2018; Lourenco et al., 2020) 
was used to calculate G. Custom programs were developed by 
Fortran and Julia for other computations. We used PCG to solve 
MMEs. The convergence criteria was ||Cx− b||2/||b||2 < 10−16, 
where C is the left-hand-side matrix of the MMEs, b is the right-
hand-side vector of the MMEs, x is the solution vector, and || · || 
is the Euclidean norm of a vector.

Results and Discussion

Theoretical development

All the H-inverses were derived by first incorporating UPGs into 
the pedigree relationship matrix (A−1) and then integrating 
genomic information into the unified relationship matrix (H−1)

. The QP H-inverse can also be obtained in the opposite way by 
firstly integrating genomic information into A−1, and secondly 
incorporating UPG information into H−1.

Differences among the H-inverses depend on how genomic 
information contributes to the density function. Undoubtedly, 
genomic information updates the distribution of u∗

2. However, 
there is a question about whether genomic information directly 
updates the distribution of g or not. The genomic information 
may add new knowledge that can change the distribution 
of g, and if this is true, we should simultaneously update the 
distributions of g and u∗

2. In such case, we should consider 
var(c∗2) = K, given genomic information. Under this condition, if 
cov(u∗

2,g
′) �= 0 we obtain the QP H-inverse, otherwise we get the 

altered H-inverse. When the genomic information is assumed to 
update the distribution of u∗

2, meaning that g is updated through 
u∗
2, the EUPG H-inverse is derived.

There is a clear separation in assumptions between the 
QP and the other H-inverses. The QP H-inverse assumes that 
G does not contain the variation due to UPG contributions, 
i.e., Q2Σ Q′

2 (Supplementary Appendix A2). Thus, K should be 
supplied to account for UPG variation already included in A∗

Σ. 
The other H-inverses assume that G already contains missing 
relationships, and that A∗

Σ also accounts for them, and therefore, 
a function of A−1

22  should eliminate overlapping information. 
Usually, G is expected to describe relationships among animals 

Figure 2. Inbreeding trends across generations. Inbreeding trends were 

calculated using inbreeding coefficients from the complete pedigree before 

removing parent identifications (Complete), inbreeding coefficients from 

the pedigree with missing parents (Standard), inbreeding coefficients from 

the pedigree with UPGs estimated with VanRaden’s method (Estimated), and 

inbreeding coefficients from the pedigree with metafounders (Metafounders).
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regardless of pedigree completeness (Christensen, 2012; Misztal 
et al., 2013; Legarra et al., 2015). Hence, the assumption of the QP 
H-inverse is inappropriate. The altered and the EUPG H-inverses 
share nearly the same assumptions; the only difference is 
whether the genomic information directly updates var(g) 
(altered H-inverse) or not (EUPG H-inverse).

When all animals in the pedigree are genotyped (i.e., A = A22),  
only the genomic information remains in the H-inverse. For 
example, without UPGs, A−1

22  completely offsets A−1, and H−1 
reduces to G−1, which contains the genomic information added 
to the joint-density function. With UPGs and A = A22, the 
H-inverse reduces to K−1 in the QP and the altered H-inverses 
and to G−1 in the EUPG H-inverse. For the QP H-inverse, K is 
inappropriate as discussed above. For the altered H-inverse, G−1 
contributes to prediction but Σ−1 does not, suggesting that Σ is 
redundant to be added to K. The EUPG H-inverse is reasonable 
because the prediction is based on G−1 that is the complete 
information of genomic markers.

In this study, we did not consider a residual polygenic effect, 
which accounts for the incomplete linkage disequilibrium 
between the genetic markers and QTL or genes (Liu et al., 2016). 
When the residual polygenic effect is consolidated into u as a 
separate effect, the genomic relationship matrix is blended with 
the pedigree relationships, Gw = (1−w)G+wA22 with a weight 
w (Liu et al., 2016). In the UPG model, applying G−1

w  to each of 
H-inverses, a portion of pedigree relationships could be merged 
into pre-existing A−1

22  in the H-inverse. Future research should 
cover further development on this topic.

A possible question is what is the unified relationship 

matrix (H-matrix) for 
î
u∗′

g′
ó
, i.e., the inverse of an H-inverse. 

The H-matrix is explicitly available for the QP H-inverse based 
on (1) or (17) in Supplementary Appendix A2, for the altered 
H-inverse based on (17), for the EUPG and the MF H-inverses 
based on (24) in Supplementary Appendix A3, and for the Omega 
H-inverse as shown by Martini et al. (2018). A diagonal element 
of the H-matrix should be required to compute the prediction-
error variance of individual GEBV. There is an efficient method 
to compute the diagonals of H (Legarra et  al., 2020), and this 
method would need to be extended to each H-matrix.

The EUPG and the MF H-inverses have the same structure, 
and the difference is in the modeling of the group effects. In 
the UPG model, a group represents a base population, and 
the group effect is the expectation of breeding values in the 
base population (Quaas, 1988). One can interpret a group as a 
virtual animal randomly sampled from the corresponding base 
population. Matrix Σ is the additive relationship matrix among 
groups. An MF is a proxy of animals in a base population so that 
the inbreeding coefficient of the MF is −1 for non-inbred base 
animals (Legarra et  al., 2015). Matrix Γ describes the genomic 
relationships among groups. An MF is treated as a real parent 
in the pedigree relationships, whereas a UPG is considered a 
missing parent.

Computations

All the PCG iterations converged. The number of iterations was 
273 for the Omega, 571 for the QP, 385 for the altered, 390 for the 
EUPG, and 357 for the MF H-inverses when the starting values 
were set to zero.

When (8) is used with Metafounder H-inverse, A11
Γ  can only 

have ancestors of genotyped animals, as in A−1
22  (3). The same 

principle can be applied to the EUPG H-inverse using Σ = I 
with Standard Inbreeding or an arbitrary Σ with Estimated 
Inbreeding. The sparse matrices in (7) should be constructed 

by the rapid algorithm (Quaas 1988) using the subset pedigree 
with genotyped animals and their ancestors with UPGs. With 
Estimated Inbreeding, the formula (7) results in the inverse of a 
subset of Ã22 for genotyped animals.

Further, when (7) is used with the EUPG H-inverse, a 
bottleneck occurs during the computation of the Cholesky 
decomposition of the 2 × 2 block matrix containing A11, which 
is performed once prior to solving for the MMEs (Masuda et al., 
2017; Strandén et  al., 2017). When A11 is large (e.g., 5 million 
non-genotyped animals), the Cholesky decomposition can still 
be executed because the matrix is extremely sparse; however, 
the operation becomes very slow. Two solutions to this problem 
could be to utilize only ancestors of genotyped animals to 
approximate A11, or to use MFs. Finding a practical solution to a 
large A11 in (7) is left for future research.

Simulation study

Inbreeding coefficients
Many animals had a missing dam in the simulated pedigree. 
Standard Inbreeding was underestimated, and the discrepancy 
with Complete Inbreeding became greater in later generations 
as expected. Estimated Inbreeding recovered the lost inbreeding, 
and the inbreeding trend was between the Complete Inbreeding 
and Standard Inbreeding trends, as Lutaaya et al. (1999) showed. 
In this method, an animal’s inbreeding is replaced with an 
estimated value even when one parent is missing, and the 
estimates will propagate from generation to generation rapidly.

With MFs, the animals in the earliest generations had non-
zero inbreeding, but compared with Standard Inbreeding, the 
rate of inbreeding was similar up to generation 7 and slightly 
greater in generation 8 or later. One possible explanation for 
this phenomenon is that the inbreeding rate could reflect the 
increase of γjk by generation. Assigning MFs to missing parents, 
an animal’s inbreeding coefficient is half of the additive 
relationship between the parents, say asd/2, regardless that one 
parent is an MF or a real animal (Legarra et al., 2015). Let us take 
a simple case where an animal has a known sire; the dam is 
MF j; the dam of the sire is MF j-1 (or j if the two dams are in 
the same group). The inbreeding coefficient of this animal is 
approximated as γj−1,j/2 (and γjj/2), and the inbreeding rate is 
roughly determined by a change of asd/2 and γj−1,j/2 (and γjj/2) 
from one generation to the next. Up to generation 7 associated 
with groups from 1 to 4 (25% of females had missing dam), based 
on the calculated Σ, the change of γj−1,j/2 (and γjj/2) ranged 
between 0.000 and 0.017, which is close to Standard Inbreeding, 
and the change of asd/2 can be at the same level as Standard 
Inbreeding. After generation 7 for groups from 4 to 7 (50% of 
females had missing dam), the change of γj−1,j/2 (and γjj/2) was 
from 0.015 to 0.022, which might be slightly compensated by 
a lower change of asd/2. The resulting inbreeding-rate can be 
similar to but slightly greater than Standard Inbreeding.

Trends for GEBV and genetic group effects
Figure 3A shows GEBV trends for proven bulls. We show only 
the results in generation 6 and later because the divergence 
among models is more apparent than in previous generations. 
The models using the EUPG and MF H-inverses and the pedigree 
BLUP model showed genetic trends similar to the true genetic 
trend with slight upward and downward biases in generations 6 
and 7. Models with the QP and altered H-inverses overestimated 
genetic trends up to generation 7 and underestimated genetic 
trends in generations 8 and 9.  In generations 10 and 11, all 
models except for the model with the Omega H-inverse showed 
a similar trend.
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Figure 3B shows GEBV trends for all genotyped bulls. Models 
with the QP and altered H-inverses overestimated genetic trends 
in generation 8. All models except for the model with the Omega 
H-inverse showed identical genetic trends up to generation 12. 
In generation 13, the models with the QP, altered, EUPG, and MF 
H-inverses slightly underestimated genetic trends relative to 
the true genetic trend, and the pedigree BLUP model yielded the 
lowest GEBVs.

Genetic trends for phenotyped animals were almost 
identical and close to the true genetic trend for all models, 
except for the model with the Omega H-inverse (results 
not shown).

Trends for predicted genetic group and true genetic group 
values are shown in Figure 4. Only the models using the EUPG 
and MF H-inverses gave genetic group predictions close to the 
true genetic group value. The pedigree BLUP model successfully 
predicted the group effects up to the 6th UPG but failed in the 
7th UPG (g7) because g7 had no information for prediction, i.e., 

no phenotypes of progeny and relatives. In fact, the raw solution 
of g7 was 0. Note that, in Figure 4, the predicted value appears 
to be greater than 0 because of the adjustment by the average 
prediction (u∗) of phenotyped animals in generations 1 and 
2. The model with the altered H-inverse showed a positive but 
underestimated genetic trend, whereas the model with the QP 
H-inverse produced a flat trend.

Results suggested that the models with the QP and altered 
H-inverses may prevent g from separating from u. This may 
occur because the QP and altered H-inverses were formulated 
based on the assumption that genomic information directly 
contributed to both u∗

2 and g. Matrix G−1 in the QP H-inverse 
creates a direct link between u∗

2 and g, most likely inseparable. 
Similarly, matrix A−1

22  in the altered H-inverse associates u∗
2 

and g. Further, genetic group effects are integrated into GEBVs 
in the QP and altered H-inverse models. Although the model 
with the altered H-inverse produced a GEBV trend with less 
bias than the model with the QP H-inverse, the bias still 

Figure 3. GEBV trends for proven bulls with phenotyped daughters (45 bulls in each generation; (A) and all genotyped bulls (5,000 bulls in each generation; (B) compared 

with the true genetic trends. Models include pedigree BLUP and single-step GBLUP models with Omega, QP, altered, EUPG, and MF H-inverses. The genetic trend was 

adjusted by the average prediction (u∗) of phenotyped animals in generations 1 and 2 in each model.

Figure 4. Trends for predicted genetic group effects and true genetic group values (True). Models include pedigree BLUP and single-step GBLUP models with Omega, 

QP, altered, EUPG, and MF H-inverses. The genetic trend was adjusted by the average prediction (u∗) of phenotyped animals in generations 1 and 2 in each model.
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remained. However, the genetic trend for u∗
2 with the altered 

H-inverse should be reasonable because G accounts for 
selection (Figure 3).

With the QP and altered H-inverses, a problem arose when 
a nongenotyped sire had genotyped daughters with missing 
dams in generation 7, and many animals were genotyped in 
generation 8.  In generation 7, daughters had GEBV (uo), but 
their sire predictions were approximately the traditional EBV. 
When daughters had UPGs as dams and UPG effects were 
equal to gd, daughter contributions to their sires (daughter 
deviations) are a function of uo − 0.5gd (VanRaden and 
Wiggans, 1991). If UPG effects are underestimated, daughter 
deviations are biased upward, and therefore the EBV of non-
genotyped sires will be overestimated. In generation 8, all 
animals were genotyped; the downward bias compensated for 
the overestimated trend in the previous generations. The bias 
continued for the next few generations because the sires of 
proven bulls had underestimated GEBV. Eventually, the genetic 
trend settled down to a certain level when many animals were 
genotyped.

The GEBVs from models using the EUPG and the MF 
H-inverses had smaller biases than those from models with the 
other H-inverses because u∗

2 and g were related only through 
the traditional A−1

Σ . In addition, the UPG equations were 
absorbed into A∗

22 and A−1
Γ 22, and these matrices contain the 

same information as A∗
Σ. Notably, the GEBVs were identical for 

these 2 models, implying that the models are closely related in 
a purebred population. This suggests that the stability of the 
genetic trends from the model with a MF H-inverse originated 
from the integration of UPG contributions into A−1

Γ22 when 
all animals are related in the pedigree. When Γ is not stably 
calculated (Calus and Vandenplas, 2019; Kudinov et  al., 2020), 
the model with the EUPG H-inverse can be a substitute for the 
model with the MF H-inverse.

Tsuruta et  al. (2019) applied the ssGBLUP models with the 
QP and altered H-inverses to simulated data and observed 
both overestimation and underestimation of genetic trends for 
proven bulls. However, their GEBV biases were much lower than 
the ones observed in this study, and they did not encounter 
severe biases for UPG predictions. Their results suggested 
that confounding may not always occur. The larger number of 
simulated animals (2,500 sires and 25,000 dams per generation) 
and genotypes (200,000 in the last 4 generations) by Tsuruta 
et  al. (2019) may have contributed to make their predictions 
for genetic group effects more stable than those in our study. 
In addition, Tsuruta et  al. (2019) showed that the model with 
the QP H-inverse did not give a unique prediction for the last 
UPG because they treated UPGs as fixed effects, indicating that 
the QP H-inverse was not full rank. The undetermined UPG 
effects in the model with the QP H-inverse caused a severe 
underestimation of GEBVs in the last generation. Based on UPG 
estimates, we numerically confirmed that the QP and the altered 
H-inverses may not be full rank for fixed UPGs. With random 
UPGs, all H-inverses are full rank.

The models with the QP, altered, MF, and Omega H-inverses 
gave reasonable genetic trends in real populations (Masuda 
et  al., 2018b; Tsuruta et  al., 2019; Kudinov et  al., 2020). In 
livestock populations, usually, the missing-pedigree rate is 
much lower than in our simulation, the number of genotyped 
animals is limited in the first genotyping generation, 
generations are overlapping, and possibly more data can 
be used for genomic prediction. Such conditions could lead 
to less extreme genetic trends for proven bulls than those 
observed in this simulation.

Predictions for young genotyped animals
Table 1 shows predictive abilities (correlations between TBVs 
and GEBVs), and inflation (regression coefficients of TBVs on 
GEBVs) values for young genotyped animals in generations 
12 and 13. All ssGBLUP models except for the model using the 
Omega H-inverse showed nearly the same predictive ability and 
inflation values. Tsuruta et  al. (2019) reported that the model 
with the altered H-inverse gave a better accuracy than the model 
with the QP H-inverse. Bradford et al. (2019a) showed that the 
model with the MF H-inverse yielded slightly better predictive 
ability, inflation, and bias values than the model with the QP 
H-inverse. In US Holstein, Masuda et  al. (2018a) reported low 
predictive abilities for young bulls with a model using the QP 
H-inverse. Kudinov et al. (2020) and Macedo et al. (2020) reported 
more desirable GEBV in actual populations with a model using 
the MF H-inverse than with models using the QP and Omega 
H-inverses.

Additional model comparisons
The first additional comparison involved using Estimated 
Inbreeding in the numerator relationship matrices of all the 
UPG models. Genetic trends for proven bulls, young genotyped 
animals, and phenotyped females were almost identical to those 
obtained with Standard Inbreeding (inbreeding coefficients 
from pedigree with missing parents) for models with each of 
the H-inverses (results not shown). Further, the predictive ability 
and inflation did not improve. We calculated and compared 
matrix elements from A22 and Ã22, and the average absolute 
difference between these two matrices was 0.02 for diagonals, 
and close to 0 for off-diagonals. Some diagonal elements from 
Ã22 were lower than 1.  The correlation between the diagonal 
elements of the 2 matrices was 0.95 and the correlation between 
the off-diagonals was 1.0. Thus, in our simulation, the 2 matrices 
were similar enough not to change genetic trends. Misztal et al. 
(2017), using US Holstein data, showed that Estimated Inbreeding 
removed the convergence issue in iterative solvers and reduced 
the inflation of GEBVs compared with Standard Inbreeding; 
however, accuracy remained unchanged. Further research is 
required to test Estimated Inbreeding in real populations.

The second additional comparison indicated that when 
G was aligned to Ã22 the resulting GEBVs were identical to 
those obtained when G was aligned to A22 for both genotyped 
and non-genotyped animals within the same UPG model. 
Additionally, we tested current allele frequencies and 0.5 
allele frequencies in G without alignment, and the adjusted 
GEBVs were numerically the same as the ones from the 
aligned G. This indicated that with any alignment, GEBVs 
are numerically identical except for the average GEBVs for 
genotyped animals (µg), and µg defines the average GEBVs 

Table 1. Correlations (r) between TBV and GEBV and regression 
coefficients of TBV on GEBV (b1) for young genotyped animals in 
generations 12 and 13

H-inverse

Generation 12 Generation 13

r b1 r b1

Omega 0.54 0.63 0.42 0.50
QP 0.59 0.82 0.51 0.76
Altered 0.60 0.82 0.51 0.77
EUPG 0.60 0.83 0.52 0.77
MF 0.60 0.83 0.52 0.78

Omega = UPG applied only to A−1; QP = Quaas–Pollak; 
altered = altered QP; EUPG = encapsulated UPG; MF = metafounder.
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for nongenotyped animals. The value of µg is determined by 
the average of all elements in G (Vitezica et  al., 2011). One 
hypothesis is that alignment of G may not be needed to 
obtain unbiased GEBVs when the matrix is large (i.e., (nearly) 
singular). When massive genomic information describes 
most of the additive variation in the population and there 
are enough phenotypes, the genotyped population giving µg 
would be the “base population” like genomic BLUP. In this 
case, µg would adjust u1 to be comparable with u2 regardless 
of the compatibility between G and A22. Additional research 
is needed to determine specific conditions where alignment 
is not required.

Conclusion
The QP H-inverse is based on an inappropriate assumption 
that makes GEBVs inseparable from UPG effects. Although the 
altered H-inverse is more reasonable in theory, it can still cause 
confounding. These 2 H-inverses could bias genetic trends 
when ungenotyped sires have many genotyped daughters. The 
EUPG H-inverse is a new approach to yield stable GEBV and 
genetic group trends. The EUPG H-inverse contains A∗

22, which 
is equivalent to A−1

Γ22 from the MF H-inverse, and models with 
these 2 H inverses give essentially the same GEBVs in a purebred 
population. GEBV predictive abilities and inflation values for 
young genotyped animals were similar among ssGBLUP models 
with all H-inverses. Models using any of the H-inverses in this 
study may yield unbiased GEBV and genetic group trends. 
However, models using the EUPG and MF H-inverses should 
be preferred because of theoretical justification and their 
possibility to reduce biases.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online. 
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