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ABSTRACT: Precision animal agriculture is 
poised to rise to prominence in the livestock enter-
prise in the domains of management, production, 
welfare, sustainability, health surveillance, and 
environmental footprint. Considerable progress 
has been made in the use of tools to routinely 
monitor and collect information from animals 
and farms in a less laborious manner than before. 
These efforts have enabled the animal sciences to 
embark on information technology-driven dis-
coveries to improve animal agriculture. However, 
the growing amount and complexity of data gen-
erated by fully automated, high-throughput data 
recording or phenotyping platforms, including 
digital images, sensor and sound data, unmanned 

systems, and information obtained from real-time 
noninvasive computer vision, pose challenges to 
the successful implementation of precision animal 
agriculture. The emerging fields of machine learn-
ing and data mining are expected to be instrumen-
tal in helping meet the daunting challenges facing 
global agriculture. Yet, their impact and potential 
in “big data” analysis have not been adequately 
appreciated in the animal science community, 
where this recognition has remained only frag-
mentary. To address such knowledge gaps, this 
article outlines a framework for machine learning 
and data mining and offers a glimpse into how 
they can be applied to solve pressing problems in 
animal sciences.

Key words: big data, data mining, machine learning, precision agriculture, prediction

© The Author(s) 2018. Published by Oxford University Press on behalf of American Society of 
Animal Science. This is an Open Access article distributed under the terms of the Creative Commons 
Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which per-
mits non-commercial re-use, distribution, and reproduction in any medium, provided the original 
work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

J. Anim. Sci. 2018.96:1540–1550
doi: 10.1093/jas/sky014

1Based on a presentation at The Big Data Analytics 
and Precision Animal Agriculture Symposium entitled 
“Applications of data mining and prediction methods to ani-
mal sciences” held at the 2017 ASAS-CSAS Annual Meeting, 
July 12, 2017, Baltimore, MD.

2Corresponding author: morota@unl.edu
3S.C.F.  acknowledges a support from USDA – 

Agriculture and Food Research Initiative (AFRI) grant 
(2012-68002-19823).

4S.C.F., coauthor of this publication, has disclosed a signif-
icant financial interest in NuGUT LLC. In accordance with 
its Conflict of Interest policy, the University of Nebraska-
Lincoln’s Conflict of Interest in Research Committee has 
determined that this must be disclosed.

Received September 15, 2017.
Accepted January 12, 2018.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/96/4/1540/4828311 by guest on 24 April 2024

mailto:morota@unl.edu?subject=


1541Big data analysis in animal sciences

INTRODUCTION

Recent developments in technologies have ena-
bled them to make inroads into the livestock enter-
prise. Using these technologies, farmers, breeders’ 
associations, and other industry stakeholders can 
now continuously monitor and collect animal- and 
farm-level information using less labor-intensive 
approaches. In particular, the use of fully automated 
data recording or phenotyping platforms based on 
digital images, sensors, sounds, unmanned systems, 
and real-time noninvasive computer vision are gain-
ing momentum and have great potential to enhance 
product quality, management practice, well-be-
ing, sustainable development, and animal health, 
ultimately contributing to better human health. 
Combined with rich molecular information such 
as genomics, transcriptomics, and microbiota from 
animals, the implementation of what is known as 
precision animal agriculture is within reach, where 
an individual animal is monitored or managed with 
information tailored to it. A recent issue of Animal 
Frontiers featured this trend in detail by referring 
to it as “precision livestock farming” to develop a 
real-time monitoring and management system that 
help farmers make quick and evidence-based deci-
sions (Berckmans and Guarino, 2017). However, a 
new challenge to the successful implementation of 
precision animal agriculture stems from an unprec-
edented abundance of data streams. Accompanied 
with the enhanced capacity for data storage, 
high-throughput and fully automated technolo-
gies have been rapidly generating large-scale data 
in agricultural settings. The urgency of addressing 
this challenge requires a multifaceted approach to 
efficiently extract and summarize key information 
from “big data.” Furthermore, the growing global 
demand for animal products, expected to increase 
by 70% by 2050, calls for expanded and efficient 
production (FAO, 2009). Although scaling up to 
big data adds another layer of complexity, this 
challenge can be tackled by using techniques from 
machine learning and data mining. The objective of 
this article is to shed light on machine learning and 
data mining in the context of analyzing big data 
with particular emphasis on prediction. Specific 
examples of current forays of machine learning in 
animal science-related areas for predictive precision 
animal agriculture are also presented.

WHAT IS BIG DATA?

The advent of modern technologies permits 
us to collect ever more data at decreasing cost 
of acquisition. The term “big data” has received 

significant media attention in recent years; whereas, 
its definition tends to vary across disciplines. The 
number of rows (n) or columns (p), or both, in data 
is often large such that it limits visual inspection. 
Although classical statistical theories assume more 
data points than predictors, p frequently increases 
with n rather than staying constant. This results in a 
scenario where p is much larger than n (n << p), and 
requires appropriate statistical treatment to address 
the curse of dimensionality (Friedman et al., 2001). 
Moreover, big data are often not clean data: they 
may contain missing observations, confounding 
data, or outliers characterized as messy and noisy 
data. Thus, a considerable amount of data editing 
prior to model fitting may be required. Because the 
definition of “big” depends on the available com-
putational resources, big data can be defined as 
data that consume more than one-third of the ran-
dom-access memory of computing resources upon 
analysis owing to their large size. Thus, the defin-
ition of “big” is ever changing and there is the grow-
ing gap between the increasing size of big data and 
scientists’ data management skills (Barone et  al., 
2017). Moreover, although data visualization plays 
a crucial role in summarizing and identifying the 
characteristics of data, big data prevent the plot-
ting of the entire picture. In such a case, interactive 
visualization, with capabilities to zoom in and out, 
helps investigate both global and local structures 
of graphs. The recent availability of the Shiny R 
package and Plotly to construct interactive Web 
applications is one example (Plotly Technologies 
Inc., 2015; Chang et al., 2017). Furthermore, repro-
ducible research tools, such as Git/GitHub, R 
Markdown/Notebooks, and Jupyter Notebooks, 
need to be used so that big data analysis is repro-
ducible. Big data offer exciting opportunities for 
data science (Donoho, 2017). One approach to gain 
insight from big data or transforming big data into 
knowledge is to use data mining and machine learn-
ing methods, which is the focus of this article.

MACHINE LEARNING FRAMEWORK

Machine learning, also known as statistical 
learning, is a subfield of artificial intelligence ded-
icated to the study of algorithms for prediction 
and inference. Learning from data is at the core 
of machine learning. Data mining shares a similar 
spirit with machine learning and is often discussed 
in the same context. If  we are more stringent in def-
inition, data mining encompasses the study of data-
base systems, which becomes crucial in dealing with 
extremely large datasets. In most practical cases, 
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machine learning ultimately aims to learn, or choose 
from, a pool of candidate probability models that 
can best predict unobserved data. Technically, the 
selection is called the “training process.” However, 
how can we measure the prediction ability of the 
selected function? Suppose, for example, that our 
task is to predict a phenotype of an animal from 
a set of genotypes and that we have a dataset con-
sisting of pairs of phenotypes and corresponding 
genotypes. In machine learning, this type of task is 
called supervised learning, with the target of predic-
tion (phenotype) referred to as the supervisory sig-
nal. If  the phenotypes are discrete, such as disease 
status, the task here is more specifically called a clas-
sification task. If the phenotypes are quantitative, it 
is known as a regression task. In contrast, when the 
dataset is incomplete and only genotypes are avail-
able for the selected individuals (no phenotypes), 
the task is called unsupervised learning.

To choose a probability model with good pre-
diction ability in supervised learning, we begin by 
splitting the dataset into two sets, a training and a 
testing dataset, where the latter of which playing 
the role of the dataset that are not available to us at 
the moment. When we select a probability model, 
we use the information from the training dataset 
exclusively. In particular, we construct an objective 
function based exclusively on the training dataset 
to represent the user’s choice of desirable proper-
ties for the function. We then choose from the pool 
of probability models the one that maximizes the 
objective function. One naive property used in this 
specific example is the likelihood of the probability 
model observing phenotypes in the training dataset 
given the corresponding genotypes in the training 
dataset. The deviation in the model’s prediction of 
the testing dataset based on the content of a real 
testing dataset is called testing error and serves as 
the measure of prediction ability. This process is 
called cross-validation.

By construction, the selected probability model 
is good at reproducing phenotypes from genotypes 
on the training dataset, at least better than on the 
testing dataset. This is to say that the training error, 
or the error in the predictions of the probabil-
ity model on the training dataset, is bound to be 
smaller than that on the testing dataset. Thus, we 
see that the training error is not a good measure 
of the prediction ability of the probability model 
because there is no point in predicting what we 
have already observed. Ideally, we look at an error 
as a random variable that measures the deviation 
of the prediction from the random sample from 
the true underlying distribution. The expectation 

of this random error is called generalization error. 
The testing error, or the error on the testing dataset, 
serves as an empirical approximation of the gener-
alization error. In some of the literature, generali-
zation error refers to the difference between testing 
error and training error. The generalization ability 
of a probability model is considered high if  it yields 
low generalization error. By definition, generaliza-
tion ability is the ability of the probability model 
to generalize our given knowledge to as-yet-unseen 
observations and is used as a measure of the extent 
of overfitting. Figure  1 shows a flowchart of the 
cross-validation framework.

However, the definition of prediction ability 
might differ according to task. Not all experiments 
correlate each input with each output. For example, 
if  our task is to predict the spatial swarm distribu-
tion of microorganisms, the task falls into the cat-
egory of unsupervised learning. For this family 
of tasks, the target of our search is a probability 
distribution that closely resembles the observed 
empirical distribution. K-means (MacQueen, 1967) 
and principal component analysis (Pearson, 1901) 
were both developed for such tasks. Prediction abil-
ity here is measured by the extent to which sam-
ples from our selected probability distribution, as 
a set, resemble the observed set of samples. The 
deviation of the generated set of samples from the 
observed set is often quantified by a statistic called 
the Kullback–Leibler divergence (Kullback and 
Leibler, 1951).

Choice of Objective Function

In using machine learning techniques, it is crit-
ical to know the nature of the probability model 

Figure 1. Overview of the cross-validation framework.
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that is selected by the method, which is completely 
determined by the objective function, or the stand-
ard by which the selection is made. The most basic 
objective function is likelihood, which consists of 
the model’s evaluation of the likeliness of observ-
ing what has been observed. That is, we transform 
the problem into that of finding a good paramet-
ric function about parameter θ that maximizes the 
probability p(x, θ) of observation x. If  the mod-
el’s evaluation of the likelihood of the observa-
tion is small, it has little ability to reproduce the 
observation.

The choice of the parameter of the model 
using this principle is called maximum likelihood 
estimation. While the maximum likelihood princi-
ple is theoretically straightforward, it often suffers 
from overfitting. That is, the training process pri-
oritizes training error over testing error and, there-
fore, over the generalization error. A function with 
low generalization ability is useless in prediction. 
For instance, any observed dataset of size n can 
be perfectly reproduced by a polynomial of degree 
n − 1.  Polynomial fitting to the dataset, however, 
diverges outside a bounded domain, and such a 
function can result in extremely unnatural predic-
tions. If  observations are densely populated over 
regions of all possible observable values, overfitting 
is not a serious problem. However, naturally occur-
ring datasets are often sparse. In general, functions 
with high complexity tend to overfit without some 
countermeasure. The core of the problem is ill-pos-
edness (i.e., there are multiple [possibly infinite] 
probability models with different generalization 
ability that can approximate the observed val-
ues equally well). The problem of ill-posedness is 
especially clear when the number of parameters is 
greater than the number of samples, at the extreme 
one can even convert the parameters into observed 
values themselves. This is the essence of the n << p 
problem mentioned in the previous section.

Regularization and Generalization Ability

If  we have dense observation over regions of 
all possible observable values, overfitting is not a 
serious problem. Therefore, the ultimate counter-
measure against overfitting is to simply increase 
the size of  the dataset, particularly over the space 
on which the current dataset is sparse. However, 
this can be unrealistic and costly at times. One 
alternative countermeasure is to introduce a heu-
ristic penalty against the unnatural behavior of  the 
probability model, where the definition of  “natu-
rality” is determined by the user. By augmenting 

the penalty function to the objective function, one 
can manipulate the training process into favoring 
the natural probability model. A popular measure 
of  naturality is smoothness. This measure is built 
on the assumption that most naturally occurring 
phenomena are free of  discontinuity. For example, 
the well-known L2 (Tikhonov) regularization 
penalizes the L2 norm (Hoerl and Kennard, 1970) 
of  the parameter (i.e., the regression coefficient) 
and prevents the derivative of  the function with 
respect to the input from becoming too large. This 
renders the function to smooth everywhere and 
known as a ridge regression. LASSO (Tibshirani, 
1996) penalizes the L1 norm of the parameter. 
Group LASSO (Jacob et  al., 2009) groups the 
parameters into several subsets and penalizes their 
L2 vector norm with varying strength. For other 
variations, elastic net (Zou and Hastie, 2005) uses a 
mixture of  L1 and L2, and adaptive LASSO (Zou, 
2006) chooses the strength of  the penalty for each 
parameter in a controlled manner. All these meth-
ods have user-controllable hyperparameters that 
determine the strength of  the penalty, and setting 
these parameters too high renders the function flat, 
leading to over-shrinkage. Mathematically, one can 
often appeal to the theory of  Bayesian statistics to 
assign a probabilistic interpretation to the penalty 
function such that the maximization of  penalized 
likelihood can be considered equivalent to finding 
an appropriate probabilistic model (Gelman et al., 
2014). We can also prevent unnatural behavior 
of  the function by simply restricting the pool of 
candidate functions. That is, we can declare at the 
outset that we will only select from the set of  func-
tions exhibiting natural behavior. Mathematically, 
this idea is closely related to that of  the penalty 
presented above. For instance, one can consider a 
set of  probability models for which the strength of 
correlation between output samples is determined 
solely by the Euclidean distance between the cor-
responding inputs after some transformation. 
This family of  models is often defined using ker-
nel functions. The representer theorem (Kimeldorf 
and Wahba, 1970) claims that there exists a penalty 
function to be added to the likelihood such that 
the maximization of  the augmented likelihood is 
equivalent to searching a probability model from 
such a set of  models. This is the essence of  kernel 
methods.

The Choice of Pool of Candidate Functions

The measure of  naturality cannot be explained 
by smoothness alone in many applications. Yet 
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another countermeasure against overfitting and 
unnatural behavior involves using a physically 
sound probabilistic model. One can assume 
parameters from a specific known distribution 
based on the laws of  nature. The pool of  candi-
date functions built on specific prior knowledge 
is called the white-box model. In such models, 
every parameter has a specific biological mean-
ing. By searching from a set of  white-box mod-
els, one can not only rule out models that defy 
scientific laws but can also gain from the bio-
logical interpretation of  the components of  the 
selected model. However, if  one imposes too 
strong an assumption on the model, it suffers 
from underfitting.

The other extreme is black-box models, a pool 
of models whose parameters do not contain much 
biological meaning. Free from the bound of phys-
ical rules, many black-box models boast the ability 
to reproduce highly complex nonlinear phenomena, 
including those for which theories have not been 
proposed yet. The most popular family of black-
box models is neural networks (NN) or deep neural 
networks (DNN), a composition of many general-
ized regressions (Schmidhuber, 2015). One of the 
most popular generalized regressions is the logis-
tic regression. When outputs are binary responses, 
the logistic regression model uses an assumption 
p y k x( | )= , or that the probability of witnessing 

response y when the input is x is a composition of 
a linear function and an activation function, called 
the logistic function. The DNN is a simple but large-
scale extension of this framework that assumes that 
p y x( | )  is a composition of hundreds of linear 

and activation functions. Technically, an NN with 
more than three compositional layers (hidden lay-
ers) is called a DNN. This family of models is used 
in supervised and unsupervised learning. A  basic 
NN used for classification is the multilayer per-
ceptron. Recent NN-based unsupervised learning 
techniques include the autoencoder (Vincent, 2008) 
and a family of generative adversarial networks 
(Goodfellow et al., 2014a). In a model like the NN, 
it is extremely difficult to attach a specific biological 
meaning to the parameters, which can count up to 
thousands in number.

However, one can attempt to restrict the 
pool of  candidate models for NN by imposing 
some architectural restrictions. For example, con-
volutional neural networks (Krizhevsky et  al., 
2012) are a family of  architectures fitted to extract 
shift-invariant features from images and time 
series. Recurrent neural networks (Graves et  al., 
2009) form an architecture specialized to process a 

sequence of  inputs and are often used for voice and 
speech recognition.

The number of  parameters in a DNN can be 
tens of  thousands. As such, it can overfit easily 
with a small sample set and often requires appro-
priate regularization for successful performance. 
Regularization methods for a DNN include 
dropout (Srivastava et al., 2014) and adversarial 
training (Goodfellow et al., 2014b; Miyato et al., 
2015). We can also apply many of  the aforemen-
tioned regularization methods to the DNN. The 
recent development of  user-friendly open-source 
software libraries for machine learning, such 
as Chainer (Tokui et  al., 2015), Keras (Chollet, 
2015), and TensorFlow (Abadi et al., 2016), have 
allowed noncomputational scientists to set up 
NNs in a relatively straightforward manner. We 
can also mix the white-box and black-box models 
to balance complexity and generalization ability 
(Bohlin, 2006). For example, many linear mixed 
models in quantitative genetics fall into the inter-
mediate category of  grey-box models (Hauth, 
2008) and are yielding impressive performance in 
empirical prediction problems. A comprehensive 
review of  these models can be found in Morota 
and Gianola (2014). One can also ensemble mul-
tiple predictor functions so that prediction is not 
conducted by one overfitted function but a group. 
This approach is known as bagging. Random for-
est (Breiman, 2001a) is an application of  the bag-
ging philosophy. Finally, when choosing from a set 
of  these models, we can further seek to improve 
our choice by adopting an information criterion 
(Watanabe, 2009) relating to the likelihood-based 
objective function. This criterion considers the 
approximated generalization error. Figure  2 
summarizes the terminologies mentioned in this 
section.

Summary and Perspective

Because of  their success with big data, NNs 
and other machine learning models have gained 
a considerable amount of  interest as a promising 
framework for biology. However, as mentioned 
above, models of  high complexity tend to suffer 
from overfitting unless massive datasets are avail-
able. Naive applications of  complex models can 
easily fail owing to overfitting. When faced with 
sparse datasets, interpolation-type techniques like 
kernel methods can be much more powerful than 
NNs with thousands of  parameters. The key to 
applying machine learning techniques to animal 
science is therefore to 1) make continued efforts to 
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construct appropriate prior knowledge for regular-
ization and 2) continue accumulating datasets and 
unifying one with different modalities (i.e., data 
integration) to increase the sheer size of  samples 
that can be used for training. One must also keep in 
mind the computational load required to analyze 
large integrated datasets. Whenever possible, one 
should always consider ways to make the model 
compatible with parallel computing. For instance, 
GPU cloud computing services provided by Cyber 
infrastructures such as Microsoft Azure (https://
azure.microsoft.com/en-us/) and Amazon AWS 
(https://aws.amazon.com/) might prove useful. 
They also provide infrastructures to host, secure, 
and share big data. The next phase of  growth in big 
data will be guided in part by efficient application 
of  machine learning and data mining methods to 
inform all aspects of  management decisions in the 
animal sciences.

EXAMPLES FROM ANIMAL SCIENCES

We now introduce examples of predictive big 
data analysis using machine learning in animal 
science. An overview of how these examples are 
related to big data analysis is provided in Figure 3.

Genomic Prediction

Genetics has arguably made the earliest use 
of machine learning and data mining among the 
myriad of animal science fields, in the context of 
genome-enabled prediction of phenotypes using 
big data dating back to work by Long et al. (2007). 
Big data were referred to here as routine genetic 
evaluation at national- or company-level involv-
ing millions of animals with massive amounts of 

molecular information, such as SNPs. This contin-
ues to be a popular topic in genetics and has been 
extensively reviewed elsewhere (González-Recio 
et al., 2014; Pérez-Enciso, 2017).

Phenotype Fraud Detection

Outlier detection aims to identify profiles that 
may differ from all other members of a particular 
group. Genetic evaluation models used to com-
pare animals and identify genetically superior ones 
can be affected by animals that are outliers in the 
dataset. Madsen et al. (2012) tested the use of the 
Mahalanobis distance on a dataset consisting of 
observations of the Jersey dairy cow using routine 
Nordic genetic evaluation. They reported increased 
accuracy of predicted breeding values for animals 
with one or more edited records, in addition to bias 
reduction for animals from the same contempor-
ary group. Similarly, data electronically submit-
ted by producers to genetic evaluation programs 
around the world may contain errors incurred dur-
ing data-capture events. Outliers usually violate the 

Figure 3. Overview of big data analysis in animal science using 
machine learning and data mining tools.

Figure 2. Summary of terminologies, including models, regularization, supervised learning, and unsupervised learning.
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mechanism that generates typical data and cannot 
be classified as noise. Machine learning models such 
as kernel-based algorithms were previously investi-
gated successfully for outlier detection (Escalante, 
2005) and can be applied to data filtering prior to 
genetic evaluation routines. The determination of 
supervised or unsupervised methods must be bal-
anced according to the problem dimensions.

Genotype Imputation

Another demand for machine learning methods 
is related to the statistical inference of unobserved 
genotypes, a technique defined as imputation. 
Imputation accuracy, measured by the ratio of 
correct calls compared with the overall call rate, 
can only be determined by validation strategies 
that use masked genotypes from a high-density 
genotype panel, and not necessarily on commer-
cially targeted animals. The prediction of imputa-
tion accuracy, based uniquely on the relatedness 
of low-density genotypes to those in a reference 
dataset using a high-density panel, was investigated 
by Ventura et al. (2016). These results introduced 
a method for determining the imputed animals to 
be used for further genomic studies using imputed 
genotypes with sufficient accuracy without causing 
bias in the future analysis. This method was based 
on a single parameter and can be improved upon by 
machine learning models that contain other infor-
mation (e.g., the number of animals genotyped in 
both marker densities [low and high numbers of 
SNP markers], density of each panel, and breed 
composition of each animal from the reference and 
imputed set).

Mastitis Detection

According to De Vliegher et al. (2012), mastitis 
is a major disease in dairy cattle that affects produc-
tion and udder health in the first and subsequent 
lactations. This significant disease in dairy herds is 
associated with a complex set of events triggered 
by various biological causes and followed by bac-
terial infection that promotes certain physiological 
and behavioral effects (Wang and Samarasinghe, 
2005). Milking data such as electrical conductivity, 
milk yield, lactate dehydrogenase, and somatic cell 
scores are usually obtained over time by automatic 
milking machines and periodic lab tests as well as 
veterinarian diagnostic tests to determine the inci-
dence of mastitis. A type of NN trained using unsu-
pervised learning can be used to detect mastitis and 
provide farmers with diagnostic tools for managing 

mastitis. For instance, Sun et al. (2010) applied an 
NN to detect mastitis, with high accuracy, and to 
monitor the health status of a herd, especially for 
early intervention.

Image Analysis

Although animal behavior has been at the cen-
ter of digital image analysis in animal sciences (e.g., 
Nasirahmadi et al., 2017; Valletta et al., 2017), BW 
determination in livestock is an emerging area for 
image analysis. Livestock body weight is critical for 
nutritional and breeding management because it 
is a direct indicator of animal growth, health sta-
tus, and readiness for market. Therefore, accurate 
BW estimation is essential to livestock research. 
This domain separates itself  from the traditional 
method to record BW using ground scales, which 
is a more laborious and less accurate practice. The 
application of image analysis for BW determin-
ation is a suitable technique to minimize these lim-
itations, given that it is possible to automatically 
measure the dimensions of an animal’s images and 
use prediction equations to establish the relation-
ship between them and live BW.

Recently, machine vision systems have been 
successfully used under the above framework 
(Kongsro, 2014; Gomes et  al., 2016). In general, 
studies have reported the feasibility of  biometric 
index analysis based on digital images. Infrared 
light-based depth sensors, such as a Microsoft 
Kinect (MK) device (Microsoft Corporation, 
Redmond, WA), are an appropriate vision system 
for this purpose. The system minimizes the steps 
of  interferences in the captured images owing to 
ambient light and the animal’s hide color using 
depth mapping image technology (Kongsro, 2014). 
Images generated from an MK camera are ana-
lyzed through specific computational tools, such 
as the Image Acquisition Toolbox in MATLAB. 
In this tool, a depth map channel must be spec-
ified to ensure that good images can be acquired 
during the measurement process. For example, 
Kongsro (2014) and Gomes et al. (2016) assumed 
depth maps of  50 and 20 frames per acquisition, 
respectively, in BW studies on pigs and beef  cattle. 
The images composed by these frames were stored 
and used to close the measurement session for a 
particular animal.

Depending on the aims of  research, different 
sections of  images can be utilized. For instance, 
Gomes et  al. (2016) used section images of  the 
top view of  animals provided by the chest width, 
thorax width, abdomen width, body length, and 
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dorsal height. They found that the chest width 
section correlated well (0.85) with BW. Kongsro 
(2014) used selected image sections to estimate 
pig volume, which was posteriorly correlated with 
BW. They reported a small average error in BW 
prediction using pigs of  different sizes and breeds. 
Although the aforementioned studies indicate that 
digital images taken through the MK system have 
potential for use in BW estimation in livestock 
research, some challenges still exist. These include 
the automation of  image data storage and statis-
tical analysis. Along these lines, NN might be a 
feasible solution due to its flexibility and efficiency 
in terms of  image recognition and prediction 
performance.

Microbiome

With advancements in next-generation 
sequencing methods, many opportunities have 
emerged for developments in animal agricul-
ture. These include investigating complex traits, 
such as microbiome (Navas-Molina et al., 2017). 
Metagenomic investigations on species of  live-
stock (Hobson, 1988; Fernando et al., 2007, 2010; 
Brulc et  al., 2009; Pitta et  al., 2010; Hess et  al., 
2011; Berg Miller et  al., 2012; Anderson et  al., 
2016) have shed light on the importance of  the 
microbiome to feed efficiency, animal health, per-
formance, and productivity. However, although 
such metagenomic investigations have led to a bet-
ter understanding of  the microbiome in livestock 
health and productivity, a majority of  the micro-
bial genetic information generated is uncharac-
terized and underutilized. As such, the increasing 
number of  metagenomic studies published has 
thus far failed to uncover the critical role of  the 
microbiome and harness its metabolic capacity to 
increase animal productivity. This is mainly due 
to limitations in current bioinformatics-based 
approaches to identifying patterns of  gene covari-
ation to predict microbiome function (Blaser et al., 
2016). Novel data mining and machine learning 
approaches are critical for future investigations 
on the microbiome to improve animal production 
and phenotype prediction in animal agriculture.

At present, a number of  statistical approaches 
have been described to understand mechanis-
tic relationships between the host microbiome 
and the environment (Xia and Sun 2017). Such 
approaches have enabled the investigation of  the 
association between the host and environmental 
factors in the context of  microbiome compos-
ition. However, few studies to date have attempted 

to predict animal phenotypes using the micro-
biome. Shabat et  al. (2016) investigated a dairy 
cattle population of  78 animals representing the 
extremes of  feed efficiency and showed that both 
the species and the gene composition of  the rumen 
microbiome can be used to predict the feed effi-
ciency phenotype with an accuracy of  up to 91%. 
The species composition recorded an accuracy 
of  80%, whereas the gene composition was 91% 
accurate. These results underscore the impor-
tance of  investigation beyond species’ compos-
ition and exploration of  the functional features 
of  the microbiome, as such features are better 
predictors of  host phenotypes. Moreover, this 
study reported that features of  the microbiome 
were highly predictive of  physiological features, 
such as milk lactate and milk yield (Shabat et al., 
2016). Similarly, Ross et  al. (2013) reported the 
ability to predict the methane phenotype in dairy 
cattle populations. They reported an accuracy 
ranging from 0.163 to 0.553. The authors showed 
that training dataset size and training dataset 
variation have a significant effect on prediction 
accuracy (Ross et  al., 2013). Furthermore, this 
study compared predictive models and reported 
that linear mixed models outperform random for-
ests on metagenomic datasets. Such studies dem-
onstrate the value of  investigating large datasets 
for patterns in covariation to predict phenotypes. 
Developing such metagenomic prediction tools 
can yield global applications for disease predic-
tion and diagnosis, trace-back, functional pheno-
typing, and selective breeding.

Due to advancements in DNA sequencing 
technology, DNA sequence information can be 
generated at high rate, but tools to harness such 
rich datasets are lacking. For example, the ability 
to annotate the functional relevance of microbi-
ota in the gut is in its infancy. Furthermore, most 
studies identify correlations between shifts in the 
microbiota and host phenotypes but fail to identify 
causality. With the narrow ability of predicting how 
the microbiome reacts to changes and manipula-
tions of the gut ecosystem in livestock species, the 
opportunities for microbiome manipulations are 
limited and require a multidisciplinary approach 
as well as novel data mining and machine learning 
approaches.

SUMMARY AND CONCLUSION

A fully automated data collection or phenotyp-
ing platform that enables precision animal agricul-
ture is characterized not only by increasing amounts 
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of  data but also by the complex and dynamic 
nature of its collection in real time. With the sup-
port of data-intensive technologies, we can monitor 
animals continuously during production, and this 
information can be used to improve health, welfare, 
performance, and environmental load. The animal 
science community today often lacks the infrastruc-
ture and tools to make full use of these new types of 
data. When combined with molecular information, 
such as genomics, transcriptomics, and microbiota 
on individual animal basis, novel machine learning 
and data mining techniques can advance the imple-
mentation of precision animal agriculture to extract 
critical information and predict future observations 
from big data. To address such knowledge gaps, 
we have pointed to the availability of data mining 
and machine learning tools for analyzing big data, 
outlined their statistical framework, and illustrated 
examples from animal sciences. The cyberinfra-
structure to host, secure, and share data can also be 
utilized to exploit big data. It is expected that pre-
dictive big data analysis will become increasingly 
common across all animal science disciplines. We 
contend that the first steps along this path involve 
grasping the advantages and pitfalls of these tools 
when applied to animal science-specific domains. 
Furthermore, close collaboration among transdis-
ciplinary fields with complementary backgrounds, 
such as computer science, economics, engineering, 
mathematics, and statistics, along with industry, 
is indispensable to efficiently develop cutting-edge 
approaches to analyze high-throughput and heter-
ogeneous data. As Breiman (2001b) once argued, 
predictive modeling is oftentimes more relevant 
than making inferences about the data-generating 
mechanism in practical scenarios. Precision animal 
agriculture allows farmers to formulate prompt 
management practices, and a predictive machine 
learning approach for big data-driven agriculture 
can prove invaluable for addressing challenges lying 
ahead in animal sciences.
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