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Objectives: The understanding of the mechanisms underlying thyroid cancer immune escape can
lead to the identification of newmolecular targets and/or efficacy biomarkers. For this purpose, we
performed immune expression profiling in thyroid cancers to obtain a comprehensive view on
immune mechanisms activated during cancer progression.

Methods: The study was conducted retrospectively in 25 papillary thyroid carcinomas (PTCs), 14
poorly differentiated thyroid carcinomas (PDTC), 13 anaplastic thyroid carcinomas (ATCs), and 7
normal thyroid (NT) tissue samples. Gene expression profiling was obtained on RNA samples using
the Nanostring platform and its nCounter PanCancer Immune Profiling Panel.

Results: Gene expression comparison of ATC, PTC, and PDTC vs NT showed high number of reg-
ulated genes in cancer samples. In detail, immune-related gene sets were significantly upregulated
(ATC . PTC . . PDTC). Most ATC and approximately half of PTC showed a microenvironment
infiltrated bymacrophages and T-cells with CD81 effector phenotype, part ofwhich appeared to be
functionally exhausted. Conversely, most PDTC, as NT samples, as the remaining part of PTC,
displayed a poor or absent infiltration by immune cells. Interestingly, an upregulation of inhibitory
immune checkpoint mediators, including PDL1, PDL2, PD1, LAG-3, TIM-3, PVR, and TIGIT, could be
detected in ATC and PTC.

Conclusions: These data indicated the existence of two major immune phenotypes in thyroid
carcinoma: an ATC-like one, including hot and altered–immunosuppressed tumors and a PDTC-like
one, including altered–excluded and cold tumors. Confirmation of the findings in locally advanced
or metastatic cancer tissues is expected to have important immunotherapeutic implications. (J Clin
Endocrinol Metab 104: 3557–3575, 2019)

There is clear evidence that solid tumors are composed
by a complex aggregation of different cell lineages.

Next to the cancer cells and cancer stem cells, the stroma

of the tumor is composed by endothelial cells, pericytes,
tumor-associated fibroblasts, myeloid progenitors, and
cells of the innate and adaptive immune system (1). In
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general, these cells appear to promote tumor growth and
progression. More in detail, gene expression profiling of
melanoma metastases allowed to detect two major phe-
notypes of tumor microenvironment: a T-cell inflamed
(hot) phenotype, characterized by the expression of T
lymphocyte markers and chemokines correlated with the
recruitment of T lymphocytes; a T-cell noninflamed (cold)
phenotypemissing the expression of immune-related genes
(2). Typically, the T-cell inflamed phenotype is also
characterized by high representation of immune-inhibitory
factors, including expression of the membrane protein
programmed death ligand 1 (PDL1), expression of the
tryptophan-catabolizing enzyme indoleamine 2,3-dioxy-
genase 1 (IDO1) and infiltration of FOXP31 T-regulatory
(Treg) lymphocytes, which indicate the occurrence of
immune-escape in the contest of an antitumor immune
response (3–5). Clinical data have shown that patients
presenting with T-cell inflamed tumors are those who re-
spond best to different immunotherapeutic approaches
such as anticancer vaccines, high-dose IL-2, and inhibi-
tory antibodies directed against cytotoxic T-lymphocyte
associated-4 (CTLA-4), programmed death 1 (PD1), and
PDL1 (6). Preclinical studies and in vivo analysis of specific
biomarkers have suggested that the therapeutic activity of
these immunotherapies is associatedwith the reactivation in
the tumor microenvironment of T lymphocytes capable of
recognizing tumor antigens (7). Interestingly, the presence
in solid tumors of CD81 activated T lymphocytes corre-
lates positively with a better outcome of the patients (8, 9).

An important immune-regulatory function is delivered by
additional cellular components of the stroma such as fi-
broblasts, cells of the myeloid lineage [myeloid-derived
suppressor cells (MDSC), neutrophils, mast cells], macro-
phages, and vascular endothelial cells (10). In particular, the
tumors characterized by a poor infiltration of T-lymphocytes
(T-cell noninflamed phenotype) have a denser stroma (10).

In recent time, a more complex classification of
the cancer immune contexture was proposed, including
four major immune coordination profiles: hot, altered–
immunosuppressed, altered–excluded, and cold. Altered
phenotypes represent intermediate states between hot
and cold. In detail, altered–immunosuppressed tumors
are characterized by a low degree of T-cell infiltration,
presence of soluble inhibitory mediators (i.e., TGF-b,
IL-10, vascular endothelial growth factor also known as
VEGF), presence of immune suppressive cells (i.e.,
MDSC, Treg), and presence of T-cell checkpoints. Con-
versely, altered–excluded tumors are characterized by
T cell at the edge/invasive margins of the lesion, with
no intratumoral (IT) infiltration, activation of oncogenic
pathways, epigenetic regulation and reprogramming of
the tumor microenvironment, aberrant tumor vasculature
and stroma, hypoxia (11).

Moreover, very recently, an extensive immunoge-
nomic analysis of more than 10,000 tumors comprising
33 diverse cancer types was performed by utilizing data
compiled by The Cancer Genome Atlas (TCGA). Across
cancer types, six immune subtypes—wound healing,
interferon (IFN)-g dominant, inflammatory, lymphocyte
depleted, immunologically quiet, and TGF-b dominant—
could be detected. They were characterized by differences
in macrophage or lymphocyte signatures, T helper (Th)1-
to-Th2 cell ratio, extent of IT heterogeneity, aneuploidy,
extent of neoantigen load, overall cell proliferation, ex-
pression of immunomodulatory genes, and prognosis (12).

In the last 30 years, thyroid carcinoma has shown a very
relevant increase of incidence. In detail, the number of new
cases of thyroid cancer rose inwestern countries to 13.9 per
100,000 men and women per year. At variance, mortality
is low with 98.1% of patients surviving 5 years (13). In-
deed, life-threatening traditional therapy-resistant aggres-
sive thyroid carcinomas are a minority with an incidence
estimated to be 4 to 5 per 1,000,000 men and women per
year (14). Novel molecular targeted therapies, such as
sorafenib and lenvatinib for differentiated thyroid carci-
noma or vandetanib and cabozantinib for medullary thy-
roid carcinoma, have been registered. However, lack of
strong cytotoxic action, fast development of resistance, and
occurrence of side effects limit their efficacy (15). Thus,
novel therapeutic approaches are needed for these ag-
gressive thyroid cancers, including immunotherapy.

Several evidences have supported the importance
of immune-escape in thyroid carcinoma development.
Tumor-associated lymphocytes and increased FoxP31
Treg cell densities were correlated with more aggressive
papillary thyroid cancers and were shown to be enriched
in tumor-involved lymph-nodes (16–18). Moreover,
PD11Tim-31 CD81 T lymphocytes were shown to
display varied degrees of functional exhaustion in
patients with regionally metastatic differentiated thyroid
cancer (19). Finally, density of tumor infiltrating lym-
phocytes and expression of PD1 and PDL1 appeared to
be higher in advanced differentiated thyroid carcinoma
and in anaplastic thyroid carcinoma (ATC) (20).

Increased density of tumor-associated macrophages was
shown to be associated with lymph node metastasis in
papillary thyroid carcinoma (PTC) (21) and with decreased
survival in advanced thyroid cancer (22, 23). Moreover,
tumor-associatedmacrophages (TAMs)were shown to form
an interconnected cellular supportive network in ATC (24).

PDL1 expression was evaluated by immunohisto-
chemistry (IHC) in various thyroid cancers and recently
also on a large scale. Tumoral PDL1 was expressed in
6.1% of PTCs, 7.6% of follicular thyroid carcinomas,
and 22.2% of ATCs. All PDL1-positive cases of follicular
thyroid carcinoma and ATC showed strong intensity,
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and the proportions of positivity in PDL1-positive ATCs
were more than 80%. Thus, PDL1 was highly expressed
in a subset of patients with advanced thyroid cancer, and
its identificationmay have direct therapeutic relevance (25).

The precise definition of the mechanisms that rule the
effects of inflammation and immunity on tumor devel-
opment is a very important achievement in cancer re-
search. The experience we have gained to date with the
immune checkpoint inhibitors (anti-CTLA-4, anti-PD1,
anti-PDL1 antibodies) represents the “proof-of-concept”
that interference on the immune evasion mechanisms
activated by cancer cells can be used to reactivate the
immune system against cancer and to cure the disease.
Unfortunately, among patients treated with a single agent
regimen, in average only 15% to 20% have shown ob-
jective and durable responses (26). In differentiated
thyroid carcinoma, the preliminary data show a picture
that is even worse: two objective responses among 22
patients with advanced DTC (9.1%) treated with the
anti-PD1 antibody pembrolizumab as single therapy
(27). The response of ATCs to monotherapy with the
anti-PD1 antibody spartalizumab is a little better: overall
response rate of 17% evaluated by RECIST 1.1 and
overall disease control rate of 33% evaluated by irRE-
CIST (28). This low response rate may depend on the
potential of tumors to co-opt a myriad of immunosup-
pressive mechanisms or on the lack of a sufficient number
of functioning antitumor T lymphocytes in the tumor
microenvironment (26). Therefore, a broader understanding
of the mechanisms of tumor immunosuppression, the
identification of new strategies to target these mechanisms,
and the development of newways to force the entry of more
antitumor T lymphocytes in tumors represent the new
challenges of immunotherapy in oncology (26).

In this paper, we report the results of an immuno-
profiling experiment using the NanoString technology
(NanoString Technologies, Seattle, WA) in a collection of
thyroid carcinomas. Interestingly, ATC, PTC, and poorly
differentiated thyroid carcinomas (PDTCs) showed each a
peculiar and specific pattern of interaction with the im-
mune system comparedwith normal tissue. Analysis of the
data allowed defining immune signaling pathways and
immune cell infiltration patterns involved in thyroid
cancer development and progression. This approach
yielded a more comprehensive view of the immune on-
cology strategies necessary to treat the different histotypes
of advanced thyroid carcinoma.

Materials and Methods

Tissue selection and histological revision
Retrospective samples [formalin-fixed/paraffin-embedded

(FFPE)] of 7 normal thyroids (NTs), 25 PTCs, 14 PDTCs,

and 13 ATCs from patients diagnosed and operated on between
2012 and 2018 were collected from the archives of Pathology of
the Universities of Pisa and Perugia. Clinical data (gender, age,
tumor size, tumor capsule infiltration, lymph node metastasis,
and extrathyroidal infiltration) were collected analyzing pa-
tients’ charts and pathology reports. Aggressiveness was esti-
mated taking into account known negative clinical prognostic
features of thyroid cancer such as age$ 45 years, bigger tumor
size, male gender, tumor capsule infiltration, lymph node me-
tastasis, and extrathyroidal infiltration (29). Inclusion criteria
comprised the absence of thyroiditis in the NT control tissues
and in the tissue surrounding the cancers, evaluated either
histologically or serologically. The diagnoses of all of the
thyroid lesions were reviewed and re-evaluated independently
by two pathologists (C.U. and F.B.) according to the World
Health Organization’s criteria (30). In detail, Turin criteria
were adopted for the definition of PDTC (31). The most rep-
resentative paraffin block of each sample was selected for
analysis. Tumor tissue was manually macro-dissected to
maximize the amount of tumor cells, putting peculiar attention
to exclude surrounding normal tissues, necrosis areas, or re-
gression zones. The density of tumor infiltrating leukocytes
(TILs) was not considered in this phase and did not bias the
selection of the samples. The study was conducted anony-
mously and in compliance with the principles of the Helsinki
Declaration of 1975.

Nucleic acids extraction and purification
For each sample, four unstained 10-mm sections and four

unstained 5-mmsectionswere used forDNAandRNAextraction,
respectively. Unstained sections were deparaffinized with xylene
and rehydrated in decreasing-grade ethanol solution. DNA was
extracted and purified by using the QIAamp DNA Mini Kit
(Qiagen, Hilden, Germany), according to the manufacturer’s
protocol. DNA was eluted in 50-mL of elution buffer. RNA was
isolated using the RNeasy FFPE Kit (Qiagen) in conformance to
the manufacturer’s instructions. RNA was eluted in 20-mL of
RNase-free water. RNA and DNA quantification and quality
were assessed by means of a spectrophotometer (Xpose Trinean,
Gentbrugge, Belgium).

Genotyping of the samples
Mutational status of BRAF (exon 15),NRAS (exon 3),HRAS

(exon 3), and TERT gene promoter was evaluated by PCR fol-
lowed by direct sequencing (3130 Genetic Analyzer, Thermo
Fisher Scientific,Waltham,MA), as described previously (32, 33).

Tumor mutational burden analysis
Twenty-seven DNA samples (14 PDTC and 13 ATC used in

gene expression profiling) were analyzed using NEOplus v2
RUO (NEO New Oncology GmbH, Cologne, Germany), a
hybrid-capture based next-generation sequencing assay, cov-
ering 340 genes to analyze tumor mutational burden (TMB).
DNA samples were subjected to an initial QC check. Good
quality DNA was sheared (Covaris, Woburn, MA) and sub-
jected to NEO plusv2 analysis (NEO New Oncology GmbH In
brief, after DNA shearing, adapters were ligated and individual
genomic regions of interest were enriched using complementary
bait sequences (hybrid-capture procedure). The selected baits
ensure optimal coverage of all relevant genomic regions. After
enrichment, all targeted fragments were amplified (clonal

doi: 10.1210/jc.2018-01167 https://academic.oup.com/jcem 3559

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/104/8/3557/5381919 by guest on 09 April 2024

http://dx.doi.org/10.1210/jc.2018-01167
https://academic.oup.com/jcem


amplification) and sequenced in parallel at high sequencing
depth. Computational analysis was performed using NEONew
Oncology’s proprietary computational biology analysis pipe-
line to detect relevant genomic alterations in a quantitative
manner and calculate TMB.

Immune-related gene expression analysis
Analysis of the expression profiles of more than 700 immune-

related genes was performed using the NanoString nCounter®

PanCancer Immune Profiling Panel (NanoString Technologies).
Detailed information about the panel, together with the gene list, is
available at https://www.nanostring.com/products/gene-expression-
panels/hallmarks-cancer-gene-expression-panel-collection/pancancer-
immune-profiling-panel.

In detail, 150 ng of RNA from each sample was hybridized
with the nCounter® PanCancer Immune Profiling Panel (GX
Assay) CodeSet. All procedures related to mRNA quantifica-
tion, including sample preparation, hybridization, detection,
and scanning, were performed following the manufacturer’s
instructions. The counts were normalized according to the
standard protocol. Raw NanoString counts for each mRNA
within each experiment was subjected to technical normaliza-
tion using the counts obtained for positive-control probe sets
prior to biological normalization referring to the 40 reference
genes included in the CodeSet. Normalized data were log2-
transformed and then used as input for differential expression
analysis. Data were filtered to exclude relatively invariant
features and features below the detection threshold (defined for
each sample by a cutoff corresponding to twice the standard
deviation of the negative control probes plus the means).

Gene expression data analysis
The PanCancer Immune Profiling Advanced Analysis

Module (NanoString Technologies) was used to perform the
statistical analyses of data obtained by the nCounter panel
analysis. This module includes unique analytical methods for
expression-based assessment of immune cell type activity.
Genes defined as being cell type-specific were used to calculate
cell type scores, and gene set analysis grouped genes into
functional immune-related categories. More in detail, the
PanCancer Immune Profiling Panel had 40 candidate nor-
malization genes (“housekeeping genes”) that had been selected
based on their stability in gene expression data from multiple
cancer types (34). However, normalization analysis used only
the most stable subsets of these genes. In detail, the normali-
zation was based on the geNorm algorithm (35) to identify an
optimal subset of housekeeping genes. Next, the covariates to
be used in the analysis were selected. In our project, the main
covariates were the histological diagnosis and the genetic profile
of the tumors. However, also clinical features of PTC and PDTC
and immunohistochemical data on CD681 or CD31 in-
filtrating cells were considered. Additionally, several technical
covariates were included either to confirm that they were not
influencing the results or to account for their effects in the
analysis. The PanCancer Immune Profiling Advanced Analysis
Module used linear regression to investigate differential gene
expression in response to multiple covariates simultaneously.
This approach isolated the independent effect of each covariate
on gene expression and avoided confounding due to technical
variables. The large number of genes in the CodeSet made
the use of raw P values problematic. Thus, the differential

expression module provided two methods for adjusting P
values: The Benjamini-Yekutieli (BY) false discovery rate and
the Bonferroni correction. Furthermore, to understand what
the immune cell profiling results represented, for each cell
population a set of genes were assumed to be specific (reference
genes) to that cell type. This assumption allowed to estimate a
cell type’s absolute and relative abundance simply by taking
the average log2 expression of its characteristic genes. In detail,
this approach was used to test the relative abundance of
B-cells, T-cells (helper T-cells, Treg, cytotoxic cells, CD81
T-cells, exhausted CD81T-cells, CD451T-cells), natural killer
cells, dendritic cells, macrophages, mast cells, and neutrophils.
For B-cells, abundance of TNFRSF17, BLK, CD19, andMS4A1
mRNA was evaluated. For T-cells, abundance of CD3G,
SH2D1A, CD6, CD3D, and CD3E mRNA was evaluated. For
macrophages, abundance of CD84, CD163, and CD68 mRNA
was evaluated. In detail, all three markers are specifically
expressed by macrophages, but unable to define alone M1 or
M2 polarization (36–38). For cytotoxic cells, abundance of
GZBM, PRF1, KLRK1, GZMH, KLRB1, KLRD1, GNLY,
GZMA, and CTSW mRNA was evaluated. For CD81 T-cells,
abundance of CD8A and CD8B mRNA was evaluated. For
exhausted CD81 T-cells, abundance of CD244, EOMES, and
LAG3 mRNA was evaluated.

Kyoto Encyclopedia of Genes and Genomes
pathway enrichment analysis

The software Pathview was used to overlay data on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
(39). In detail, for each KEGG pathway, genes within the panel
were mapped to the pathway, and differential expression in-
formation was overlaid on the protein-based KEGG pathway
image.

IHC and staining score
Immunohistochemical analysis of CD3, CD19, CD45,

CD68, CCL2, CCL3, and PDL1 expression was performed on
FFPE tumor sections using rabbit monoclonal anti-CD3 ready
to use antibody clone 2GV6, 1:100 dilution (Roche-Ventana
Medical Systems, Tucson, AZ); rabbit monoclonal anti-CD19
antibody clone EP169, 1:100 dilution (cell marquee); mouse
monoclonal CONFIRM anti-CD45, ready to use antibody
clone LCA (RP2/18) (Roche-Ventana Medical Systems); rabbit
monoclonal CONFIRM anti-CD68 ready to use antibody clone
KP-1 (Roche-Ventana Medical Systems); mouse monoclonal
anti-CCL2 (MCP-1) antibody clone 2D8, 1:100 dilution
(Thermo Fisher); rabbit monoclonal anti-CCL3 ABfinity anti-
body clone 1H20L19, 1:100 dilution (Thermo Fisher); rabbit
monoclonal anti-PDL1 antibody clone E1L3N, 1:200 dilution
(Cell Signaling Technologies, Danvers, MA). Sections were
stained using the BenchMark ULTRA IHC/ISH System (Roche-
Ventana Medical Systems).

Expression of the immune cell markers was evaluated in
leukocytes independently by two investigators (C.U. and F.B.)
following a four-step scoring system: 0: , 25 positive cells;
1: 25 to 50 positive cells; 2: 51 to 100 positive cells; 3 . 100
positive cells. The evaluation was performed on 10 HPFs (high-
power fields, 403 magnification) and then the mean of the
values of different fields was calculated. For the mRNA/protein
correlation analysis, the quantification of the cell densities was
performed on the whole sample. Conversely, for the analysis of
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the cell distribution in the tumors, IT and peritumoral (PT)
densities were separately scored. In the case of CD31 leuko-
cytes, the obtained IT and PT scores were used to stratify the
cancer immune contexture according to the four major immune
coordination profiles: hot, altered–immunosuppressed, altered–
excluded, and cold (11). In detail, a IT score $ 2 defined hot
tumors, a simultaneous IT and PT score of 0 defined cold tumors,
an IT score of 1 defined altered–immunosuppressed tumors, a 1 to
3 PT score associated with an IT score of 0 defined an altered–
excluded tumor.

Conversely, expression of chemokines and PDL1 was
evaluated independently by two investigators (R.C. and M.M.)
according to the H score system (40). In detail, intensity score,
evaluated as absent (0), low (11), moderate (12), or high (13),
was added to stained cell %, evaluated as 0% (0), 1% to 25%
(11), 26% to 50% (12), 51% to 75% (13), and 76% to 100%
(14). Among the 0 to 7 scoring range, a four-tiered classifi-
cation was extrapolated [0, 1 (2 and 3/7), 2 (4 and 5/7), and 3 (6
and 7/7)].

To estimate the correlations between mRNA data and im-
munohistochemical scores, the Nonparametric Spearman cor-
relation coefficient (r) was calculated using GraphPad Software
(San Diego, CA).

Results

Data normalization and data strength
The housekeeping genes selected for the normalization

of the experiment presented a steady expression level in
all the studied samples (41).

For each covariate included in the analysis, a histogram
of P values testing each gene’s univariate association with
the chosen covariate was created. The global distribution
of P values for the entire experiment was evaluated. A
significant mass of data showed a low P value, compatible
with a strong association between the covariates and the
gene expression data (41).

Sample clustering
None of the samples was excluded after data nor-

malization (41). Figure 1(a) shows a heatmap of the
normalized data generated via unsupervised hierarchical
clustering. Interestingly, the histological covariates seg-
regated in two major clusters: the one on the left,
characterized by a lower upregulation of immune-related
genes, included a subcluster of all the NT samples, two
subclusters of all the PDTC samples but one, a subcluster
of 10 PTCs, interposed between the two groups of PDTC,
and one ATC. Conversely, the cluster on the right,
characterized by a higher upregulation of immune-related
genes, included a subcluster of all ATC but one, 15 PTCs,
14 of whom included in a subcluster, and one PDTC.

Principal component analysis (PCA) of the gene ex-
pression data showed that the plotting of the first and second
components allowed a significant separation between ATC
and all other histotypes [Fig. 1(b)]. Conversely, the plotting

of the second and the third components allowed a significant
clustering of NT samples and of each of all the other three
cancer histotypes [Fig. 1(b)].

BRAF mutation, RAS mutation, TERT mutation,
BRAF1 TERTmutations, or RAS1 TERTmutations
did not segregate with the gene expression data [Fig.
1(c)]. However, a higher concentration of wild type cases
could be detected in the cluster characterized by a lower
upregulation of immune-related genes and specifically
in the PDTC cases (3 RASmutant cases, 1 TERTmutant
case, 1 TERT 1 RAS mutant case, 9 cases wild type for
all the considered mutations) [Fig. 1(c)].

Finally, in PTC and PDTC, although PDTC were
characterized by a bigger tumor size and an older age at
diagnosis (41), the clinical covariates age$ 45 years, bigger
tumor size, male gender, tumor capsule infiltration, lymph
node metastasis, and extrathyroidal infiltration did not
segregate with the gene expression data (41).

Interestingly, no difference in clinical aggressiveness and
genotype could be detected between PTC characterized by
higher or lower upregulation of immune-related genes (41).

Tumor mutational burden
A total of 27 DNA samples from 14 PDTC and 13 ATC

used in gene expression profiling experiment were provided
to NEO New Oncology for analysis. Three DNA samples
showed insufficient DNA material in the primary QC
check. Five samples showed insufficient exonic territory
coverage for robust TMB calling. One sample failed and
therefore could not be analyzed. Informative cases (7 PDTC
and 11 ATC) allowed to calculate a mean TMB of 7.40 6
5.72/Mb in PDTC and 4.41 6 2.86/Mb in ATC (41).

Gene expression data
Compared with NT samples, ATC presented a sta-

tistically significant expression change (P value BY ,
0.01) in 263/730 genes (36%), PTC in 146/730 (20%),
and PDTC in 63/730 (9%). The genes in common be-
tween ATC and PTC were 101, between ATC and PDTC
39, between PTC and PDTC 31, between ATC, PDTC,
and PTC 24 [Fig. 2(a)].

Figure 2(b) shows the heatmap displaying each sam-
ple’s directed global significance scores compared with
NT. In detail, 22 gene sets were considered (Table 1).

ATC showed the more extensive upregulation of all
the 22 gene sets compared with NT samples, followed by
PTC (19 upregulated gene sets, 1 downregulated one,
and 2 neutrals). Conversely, PDTC displayed a slight
upregulation only of 10 gene sets and the downregulation
of four (eight resulted neutral).

These findings were confirmed by the volcano plots of
all the data displaying each gene’s -log10 (P value) and
log-twofold change for the three histological covariates
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Figure 1. Sample clustering. (a) Heatmap of the normalized data, scaled to give all genes equal variance, generated via unsupervised clustering
according to histological covariates. Orange indicates high expression; blue indicates low expression. The histological covariates segregate in two major
clusters: the one on the left includes a subcluster of all the NT samples, two subclusters of all the PDTC samples but one, a subcluster of 10 PTCs,
interposed between the two groups of PDTC, and one ATC. Conversely, the cluster on the right includes a subcluster of all ATC but one, 15 PTCs, 14
of whom included in a subcluster, and one PDTC. (b) PCA. The first four principal components of the gene expression data are plotted against each
other and colored by the values of the selected covariate. The plotting of the first and second components allows a significant separation between
ATC and all other histotypes. Conversely, the plotting of the second and the third components allows a significant clustering of NT samples and of
each of all the other three cancer histotypes. (c) Heatmap of the normalized data, scaled to give all genes equal variance, generated via unsupervised
clustering according to genetic covariates. Orange indicates high expression; blue indicates low expression. Cancer genotypes, including wild type,
BRAF mutation, RAS mutation, TERT mutation, BRAF 1 TERT mutations, or RAS 1 TERT mutations, do not segregate with the gene expression data.
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comparedwithNT. In detail, ATC [Fig. 2(c)] and to a lower
extent PTC [Fig. 2(d)], showed a high density of statistically
significant (P value BY, 0.01) upregulated genes (ATC216
and PTC 135; Table 2) and only few statistically significant
(P value BY , 0.01) downregulated genes (ATC 47 and
PTC 11; Table 2). Conversely, PDTC [Fig. 2(e)] displayed a
far lower level of statistically significant gene expression
changes and a stronger equability between up-regulated and
downregulated genes (up 38; down 25; Table 2).

Table 3 summarizes the mean gene expression changes
of the functionally important genes upregulated in at
least one of the three thyroid cancer histotypes (Table 3).

PDTC lack chemokine and cytokine gene
sets upregulation

Volcano plots evaluating the gene expression data
for genes of the chemokines and cytokines gene sets of
the three thyroid carcinoma histotypes compared with
NT samples are shown in supplemental materials (41).
It clearly appeared that ATC (41) followed by PTC (41)
had a very robust (P value BY , 0.01) upregulation of
these gene sets (chemokines: ATC: up 46, down 7; PTC:
up 21, down 1; Cytokines: ATC: up 26, down 0; PTC:
up 15, down 1; Table 2). Conversely, PDTC (41)
showed a very poor regulation of these gene sets and a

Figure 2. Gene expression data. (a) Venn diagram of genes showing a statistically significant expression change. ATC presented a statistically
significant expression change (P-value BY , 0.01) in 263 genes, PTC in 146, and PDTC in 63. (b) Heatmap displaying each sample’s directed
global significance scores. Directed global significance statistics measure the extent to which a gene set’s genes are up- or downregulated with
the variable. Red denotes gene sets whose genes exhibit extensive overexpression with the covariate, blue denotes gene sets with extensive
underexpression. ATC show the more extensive upregulation of all the 22 gene sets compared with NT samples, followed by PTC (19 upregulated
gene sets, 1 downregulated one, and 2 neutrals). Conversely, PDTC display a slight upregulation only of 10 gene sets and the downregulation of
four (eight resulted neutral). (c–e) Volcano plots displaying each gene’s -log10 (P-value) and log-twofold change with the selected covariate.
Highly statistically significant genes fall at the top of the plot above the horizontal lines, and highly differentially expressed genes fall to either
side. Horizontal lines indicate various P-value thresholds. Genes are colored if the resulting P-value is below the given P-value threshold. The
40 most statistically significant genes are labeled in the plot. (c) ATC show a high density of statistically significant upregulated genes and only
few statistically significant downregulated genes. (d) PTC show a slightly lower density of statistically significant upregulated genes and only few
statistically significant downregulated genes. (e) PDTC display a far lower number of statistically significant gene expression changes and a clear
equability between up and downregulated genes.
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significant downregulation of considered mRNAs
(chemokines: up 9, down 9; cytokines: up 5, down 4;
Table 2).

Immune infiltrate cell type profiling
Genes previously shown to be characteristic of various

cell populations were used to estimate these populations’
absolute and relative abundance. Quality control plots
explored the validity of each cell type’s measurements
and showed a statistically significant finding for cyto-
toxic cells, macrophages, T-cells, CD81 T-cells, B-cells,
and exhausted CD81 T-cells (41). TIL score was ex-
trapolated from the measures of the abundance of all the
considered cell populations. In first instance, the esti-
mated abundance of TIL was compared in the different
thyroid cancer histotypes. As shown in Fig. 3(a), ATC
showed the highest median TIL score, followed by PTC.
Conversely, PDTC displayed the lowest median TIL
score, even lower than that of NT samples. However,
all cancer variants showed a wide range with one case
of ATC falling at the level of NT samples, or one case of

PDTC reaching the levels of ATC, or 10 PTC falling at
the level of PDTC or NT samples. Interestingly, a
comparison of TIL score in the analyzed thyroid samples
and the heatmap of the normalized data generated via
unsupervised clustering of Fig. 1(a) showed an association
between the TIL abundance of the samples and their
position in the cluster (41). In detail, the unique ATC
sample and the 10 PTC samples clustering in the NT and
PDTC cluster displayed TIL scores superimposable to that
of NT and PDTC. Similarly, the PDTC sample clustering
with ATC displayed a TIL score superimposable to that of
ATC. Finally, ATC and PTC samples clustering together
showed superimposable TIL score levels.

Moving to other cell types, median macrophage score
resulted significantly higher in ATC and slightly lower
in PTC compared with NT samples [Fig. 3(b)]. In PDTC
median macrophage score was below that of NT
samples [Fig. 3(b)]. Median B-cell score resulted sig-
nificantly higher in PTC and slightly lower in ATC and
PDTC compared with NT samples [Fig. 3(c)]. Median
T-cell score resulted significantly higher in ATC and
slightly lower in PTC compared with NT samples
[Fig. 3(d)]. In PDTC median T-cell score was below that
of NT samples [Fig. 3(d)]. Similarly, median cytotoxic
cell score resulted significantly higher in ATC and
slightly lower in PTC compared with NT samples
[Fig. 3(e)]. In PDTC median cytotoxic cell score was
below that of NT samples [Fig. 3(e)]. At regards of
CD81 T cells, median cell scores showed the following
trend: ATC . PTC . PDTC . NT [Fig. 3(f)]. Median
cell scores of exhausted CD81 T cells followed a similar
trend: ATC . PTC . PDTC 5 NT [Fig. 3(g)].

Relative abundance of the considered cell types in
relation to total TIL score (41) or of CD81 T cells in
relation to exhausted CD81 T cell score (41) was also
analyzed in the different thyroid cancer histotypes in
comparison with NT samples. It clearly appeared that
ATC have higher infiltration of macrophages and of
exhausted CD81 T cells. PTC showed a more equability
between cell types with a slight dominance of macro-
phages and B cells and lower levels of exhausted CD81
T cells. Finally, the very few TIL present in PDTC
appeared to include B cells, CD81 T cells, and possibly
exhausted CD81 T cells (41).

mRNA/Protein correlations for immune cell markers
To confirm the immune infiltrate cell type profiling

obtained by mRNA expression analysis, density of
CD681, CD31, CD451, and CD191 leukocyte was
evaluated by IHC. As shown in Fig. 4, a statistically
significant correlation of mRNA data and immunohis-
tochemical scores could be detected for CD68 [Fig. 4(a)],
CD3 (either CD3D [Fig. 4(b)]) or (CD3E [Fig. 4(c)]),

Table 1. List of the 22 Gene Sets Considered in the
Immunoprofiling Experiment

Transporter functions
TNF superfamily
Macrophage functions
Antigen processing
Adhesion
Regulation
T-cell functions
Cytokines
B-cell functions
Interleukins
TLR
Cytotoxicity
Pathogen defense
CT antigens
Complement
NK cell functions
Cell functions
Chemokine’s
Leukocyte functions
Cell cycle
Senescence
Microglial functions

Table 2. Numerosity of Statistically Significant
(P-Value BY < 0.01) Up- and Downregulated
Genes in the Different Histotypes

ATC PTC PDTC

Up Down Up Down Up Down

All 216 47 135 11 38 25
Chemokines 46 7 21 1 9 9
Cytokines 26 0 15 1 5 4
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CD19 [Fig. 4(d)], and CD45 [Fig. 4(e)]. Moreover, a nice
correlation between mRNA TIL score and CD45 immu-
nohistochemical score could be observed (41).

Immunohistochemical analysis of the distribution of
CD31 and CD681 leukocytes

Eleven ATC out of 12, characterized by a high upre-
gulation of the genes of the considered panel, showed
intense infiltration by CD681 leukocytes and always a
positive score for CD31 leukocytes with different degrees
of infiltration densities (41). Moreover, at IHC, 15 PTC,
characterized by the highest upregulation of the genes of
the panel between PTC, showed high frequency of a
positive score for CD681 and CD31 leukocytes with

different degrees of infiltration densities (41). Interestingly,
the unique PDTC with this expression type was charac-
terized by an intermediate CD681 cell infiltration. Con-
versely, the remaining cases, characterized by a low
upregulation of the genes of the panel, including 1 ATC, 10
PTC, and 13 PDTC cases, showed absent or poor staining
for CD68 or CD3, with the exception of 3 PDTC that
despite the low immune profile showed an intermediate/
high infiltration of CD31 and CD681 leukocytes (41).

Interestingly, specific quantitation of CD31 leuko-
cytes at IT and PT level allowed to estimate the presence
of 4/12 hot ATC (34%), 6/12 altered–immunosuppressed
ATC (50%), 1/12 altered–excluded ATC (8%), 1/12 cold
ATC (8%), 1/14 hot PDTC (7%), 2/14 altered–
immunosuppressed PDTC (14%), 2/14 altered–excluded
PDTC (14%), 9/14 cold PDTC (65%), 4/23 hot PTC
(17.5%), 7/23 altered–immunosuppressed PTC (30.5%),
3/23 altered–excluded PTC (13%), and 9/23 cold PTC
(39%) (Table 4) (41). The cold ATC belong to the low
immune gene expression cluster.Only 1 PDTC, a cold one,
belong to the high immune gene expression cluster. Six
cold and one altered–excluded PTC belong to the low
immune gene expression cluster. Four hot, six altered–
immunosuppressed, three altered–excluded, and three
cold PTC belong to the high immune gene expression
cluster (41).

KEGG pathway enrichment analysis
Figures 5 and 6 show the KEGG pathways displaying

the highest enrichment in upregulated genes of the ex-
periment. In first instance, an upregulation of the ex-
pression of most of CXC subfamily chemokines and of
some of their receptors could be detected in PTC and
ATC and to a lower extent in PDTC [Fig. 5(a)]. Of note,
all histotypes showed statistically significant upregula-
tion of CXCL9, CXCL10, IL-8, and CXCR4 [Fig. 5(a);
Table 3]. Similarly, several CC subfamily chemokines
and corresponding receptors resulted upregulated espe-
cially in ATC and to a lower extent in PTC [Fig. 5(b)].
Conversely, PDTC showed only the upregulation of
CCL17 [Fig. 5(b)]. Of note, CCL2, CCL3, CCL4, and
CCL5 resulted significantly upregulated in ATC and
CCL2 and CCL3 in PTC [Fig. 5(b); Table 3]. Regarding
the hematopoietin subgroup of cytokines and cytokine
receptors, again ATC and to a lower extent PTC dis-
played upregulation of many cytokine receptors, in-
cluding IL-6R [Fig. 5(c); Table 3]. Of note, IL-6 resulted
upregulated in all the cancer histotypes and represented
the only upregulated gene of this functional cluster in
PDTC [Fig. 5(c); Table 3]. ATC showed also upregu-
lation of IL-10 and IL-10RA and IFNG [Figs. 6(a)–6(c);
Table 3]. Regarding the activation of type I IFN path-
ways, IFNA1 and IFNB1 did not appear to be upregulated

Table 3. Statistically Significant Log-Twofold
Changes of the Functionally Relevant Upregulated
Genes in the Three Thyroid Carcinoma Histological
Types

ATC PTC PDTC

CXCL9 4.77 2.28 2.38
CXCL10 5.8 1.67 2.69
CXCR4 1.6 2 1.19
CCL2 3.58 1.44 —

CCL3 2.87 1.38 —

CCL4 2.34 — —

CCL5 2.25 — —

CCL17 2.5 7.43 2.26
IL6 4.7 5.71 2.66
IL6R 1.27 0.927 —

IL8 6.12 3.53 2.59
IL10 2.31 — —

IL10R 1.9 — —

TGFB1 3.33 2.08 1.77
IFNA1 — — —

IFNB1 — — —

IFNA7 1.21 — —

IFNG 1.78 — —

IFNAR1 — 0.407 —

IFNAR2 0.924 0.842 —

JAK1 — 0.445 —

JAK2 1.09 — —

JAK3 2.46 1.82 —

STAT1 2.06 1.22 —

STAT2 0.946 0,898 —

CD86 2.94 — —

CTLA4 2.29 2.11 —

PDL1 3.46 1.28 —

PDL2 4.06 — —

PD1 1.55 — —

PVR 1.03 — —

TIGIT 3.27 2.91 —

TIM3 3.63 1.91 —

LAG3 4.04 — —

IDO1 2.63 — 1.71
GITR 2.41 2.64 —

4-1BB 2.21 — —

OX40 2.23 — —

CD40 0.783 0.691 —

Abbreviation: —, not upregulated.
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Figure 3. Immune infiltrate cell type profiling. Genes previously shown to be characteristic of various cell populations are used to measure these
populations’ abundance. Covariates plots that compare cell type measurements to histological covariates are presented. (a) TILs. TIL score is extrapolated
from the measures of the abundance of the considered cell populations. ATC show the highest median TIL score, followed by PTC. Conversely, PDTC
display the lowest median TIL score, even lower than that of NT samples. (b) Macrophages. Median macrophage score results significantly higher in ATC
and to a lower extent in PTC compared with NT samples. In PDTC median macrophage score is below that of NT samples. (c) B cells. Median B-cell
score results significantly higher in PTC and to a lower extent in ATC and PDTC compared with NT samples. (d) T cells. Median T-cell score results
significantly higher in ATC and to a lower extent in PTC compared with NT samples. In PDTC median T-cell score is below that of NT samples. (e)
Cytotoxic cells. Median cytotoxic cell score results significantly higher in ATC and to a lower extent in PTC compared with NT samples. In PDTC median
cytotoxic cell score is below that of NT samples. (f) CD81 T cells. Median score of CD81 T cells shows the following trend: ATC . PTC . PDTC . NT.
(g) Exhausted CD81 T cells. Median score of exhausted CD81 T cells shows the following trend: ATC . PTC . PDTC 5 NT.
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in any thyroid cancer histotype [Fig. 6(b); Table 3].
However, in ATC and PTC, but not in PDTC, INFA/B
receptor molecules INFAR1 and INFAR2 resulted slightly

upregulated [Fig. 6(b); Table 3].Moreover, ATC showed a
significant upregulation of IFNA7, JAK2, JAK3, STAT1,
and STAT2, whereas PTC only of JAK1, JAK3, STAT1

Figure 4. mRNA/Protein correlation for immune cell markers. Immunohistochemical analysis of CD3, CD19, CD45, and CD68 expression was
performed on FFPE tumor sections. Expression of the immune cell markers was scored in leukocytes infiltrating the whole sample. The evaluation
was performed on 10 HPFs (403 magnification) and then the mean of the values of different fields was calculated. The correlation between
mRNA expression data and immunohistochemical score is shown for each sample. A statistically significant correlation of mRNA and protein data
could be detected for CD68 (a), CD3 [either CD3D (b) or CD3E (c)], CD19 (d), and CD45 (e).
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and STAT2 (Table 3). Interestingly, all the histotypes
showed upregulation of TGFB1 [Fig. 6(d); Table 3].

Finally, evaluation of molecules involved in the
adhesion/interaction of immune cells showed extensive
upregulation in ATC and to a lower extent in PTC
[Fig. 6(e)]. Again, PDTC were only marginally affected
[Fig. 6(e)]. Interestingly, among the upregulated genes the
following inhibitory immune checkpoint regulators
could be detected in ATC: CD86 and CTLA-4, PDL1/
PDL2 and PD1, PVR and TIGIT, and LAG3 and TIM-3
[Fig. 6(e); Table 3]. In regards of activating immune
checkpoint regulators, ATC showed upregulation of the
following molecules: GITR, 4-1BB, OX40, and CD40.
At variance, PTC showed upregulation only of PDL1,

CTLA4, TIGIT, TIM-3, GITR, and CD40 [Fig. 6(e);
Table 3]. Finally, from the analysis of the expression data
also upregulation of the inhibitory immune checkpoint
IDO1 could be detected in ATC (Table 3). Conversely,
IDO1 was the only immune checkpoint mediator to be
overexpressed in PDTC (Table 3).

mRNA/protein correlations for chemokines
and PDL1

To confirm the mRNA expression data for chemokines
and PDL1, protein expression of CCL2, CCL3, and PDL1
was evaluated by IHC. As shown in Fig. 7, a statistically
significant correlation of mRNA data and immunohis-
tochemical scores could be detected for CCL2 [Fig. 7(a)]

Table 4. Cancer Immune Contexture of the Cases Evaluated by IHC

Immune Contexture ATC PTC PDTC

Hot 4/12 (34%) 4/23 (17.5%) 1/14 (7%)
Altered–immunosuppressed 6/12 (50%) 7/23 (30.5%) 2/14 (14%)
Altered–excluded 1/12 (8%) 3/23 (13%) 2/14 (14%)
Cold 1/12 (8%) 9/23 (39%) 9/14 (65%)

Figure 5. KEGG pathway enrichment analysis. Chemokines and hematopoietins. For each KEGG pathway, genes within the panel are mapped
to the pathway and differential expression information is overlaid on the protein-based KEGG pathway image. Pathway nodes shown in white
have no genes in the panel that map to them. Pathway nodes in gray have corresponding genes in the panel; however, no significant
differential expression is observed. Nodes in blue denote downregulation relative to the selected baseline, whereas nodes in orange denote
upregulation relative to the selected baseline. (a) CXC subfamily of chemokines. Upregulation of the expression of most of CXC subfamily
chemokines and of some of their receptors can be detected in PTC and ATC and to a lower extent in PDTC. (b) CC subfamily of chemokines.
Several CC subfamily chemokines and corresponding receptors result upregulated especially in ATC and to a lower extent in PTC. Conversely,
PDTC show only the upregulation of CCL17. (c) Hematopoietins. The hematopoietin subgroup of cytokines and cytokine receptors result
upregulated in ATC and to a lower extent PTC. IL-6, upregulated in all the cancer histotypes, represents the only upregulated gene of this
functional group in PDTC.
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Figure 6. KEGG pathway enrichment analysis. IL-10, IFNs, IL-1, TGFB and molecules involved in adhesion/interaction. For each KEGG pathway,
genes within the panel are mapped to the pathway and differential expression information is overlaid on the protein-based KEGG pathway
image. Pathway nodes shown in white have no genes in the panel that map to them. Pathway nodes in gray have corresponding genes in the
panel; however, no significant differential expression is observed. Nodes in blue denote downregulation relative to the selected baseline, whereas
nodes in orange denote upregulation relative to the selected baseline. (a) IL-10 family. Only ATC show upregulation of IL-10 and IL-10RA. (b) IFN
family. Only ATC show upregulation of IFNG. IFNA and IFNB do not appear to be upregulated in any thyroid cancer histotype. However, in ATC
and PTC, but not in PDTC, INFA/B receptor molecules INFAR1 and INFAR2 result slightly upregulated. (c) IL1 family. Only ATC and PTC show
upregulation of IL-1 and/or IL-18 and their receptors. (d) TGFB family. All the histotypes show upregulation of TGFB1 (e) Immune system
adhesion/interaction mediators. ATC and to a slightly lower extent PTC show upregulation of genes of this group (see text). PDTC are only
marginally affected.
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and PDL1 [Fig. 7(b)]. For CCL3 a close to statistically sig-
nificant correlation could be shown [Fig. 7(c)].

Discussion

During the past decades, anticancer immunotherapy has
evolved from a promising therapeutic option to a robust
clinical reality (42). The more potent approaches in-
cluded the disruption of CD80/CD86-CTLA-4 and
PDL1-PD1 interactions using anti-CTLA4 and anti-PD1
and anti-PDL1 antibodies, respectively. The exclusion of
these inhibitory immune-checkpoints is associated with a
reactivation of an antitumoral adaptive immune reaction.
These responses are frequently rapid and durable, increase
median overall survival compared with chemotherapy,

and produce long-term survivors. However, despite these
very significant results, only aminority of patients (15% to
20%) really benefit from these approaches. This is because
of the potential for malignancies to co-opt myriad im-
munosuppressive mechanisms other than aberrant ex-
pression of PDL1 or of the lack of an adequate T-cell
infiltration (26). Thus, a broader understanding of the
interactions between tumor and immune system is in-
strumental to lead to the identification of new molecular
targets, novel immunotherapy approaches and new
efficacy biomarkers that may improve immunotherapy for
cancer. For this purpose, we performed immune expres-
sion profiling in thyroid cancers of the papillary, poorly
differentiated, and anaplastic histotype. Ultimate aim was
the gain of a comprehensive view on immune mechanisms

Figure 7. mRNA/Protein correlation for chemokines and PDL1. Immunohistochemical analysis of CCL2, CCL3, and PDL1 expression was
performed on FFPE tumor sections. Expression of chemokines CCL2 and CCL3 and PDL1 was evaluated. The correlation between mRNA
expression data and immunohistochemical score is shown for each sample. A statistically significant correlation of mRNA and protein data
could be detected for CCL2 (a) and PDL1 (b). For CCL3 a close to statistically significant correlation could be demonstrated (c).
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activated in the microenvironment of the tumors during
cancer progression.

NanoString technology appeared as a very robust
technique to analyze the expression changes of a specific
cancer immune gene expression panel starting from FFPE
archival material (43). As a matter of fact, none of the
analyzed samples was discharged due to low quality
results.

Interestingly, ATC, PTC, and PDTC showed each a
peculiar and specific pattern of interaction with the im-
mune system compared with NT samples. Indeed, either
unsupervised hierarchical clustering or PCA showed a
good differentiation of the histotype descriptors. In detail,
the differences were clearly related to the degree of
upregulation of the immune-related genes, high in almost
all ATC, low in almost all PDTC, high or low in two
subgroups of PTC, respectively.

In first instance, the question if the genetic background
of the cancers could drive the sample clustering was
addressed. For this purpose, a genotype analysis was
performed looking for mutations in BRAF, RAS, TERT
and their combination. Unexpectedly, BRAF, RAS, or
TERT mutations did not appear to segregate with the
gene expression clustering. Eventually, a higher preva-
lence of BRAF, RAS, and TERT wild type cases could be
detected in the PDTC subgroup. Thus, other not explored
genetic or epigenetic events might have driven progres-
sion of the PDTC considered in our study. Similarly, no
other negative clinical prognostic feature of PTC and
PDTC, including age$ 45 years, bigger tumor size, male
gender, tumor capsule infiltration, lymph node metas-
tasis, and extrathyroidal infiltration, segregated with the
gene expression data. In particular, no difference in
genotype or clinical behavior could be detected between
PTC samples clustering in the two groups of high or low
immune gene expression. These data appear to indicate
that there is a separation between degree of interaction of
tumor cells with the microenvironment and the genotype
or the clinical aggressiveness of the cancers, with the
exception of histotype for ATC and PDTC and their
intrinsic aggressiveness and the low rate of BRAF, RAS,
and TERT mutations in PDTC. However, because this
study was not designed to find correlations between the
immune gene expression data and genetic or prognostic
clinical features of the cancers, further studies are war-
ranted to definitely prove this finding.

Conversely, correlation between the position of the
samples in the cluster analyses and the estimation of TIL
score, according to the expression of genes previously
shown to be characteristic of the various cell populations,
indicated that TIL quantity and quality was a more
consistent determinant of the peculiar gene expression
profile of each sample. Due to the experimental design,

characterized by RNA extraction from tissue blocks, it
was not possible to know with certainty the precise
source of the differentially expressed mRNAs. However,
we were aware that mRNA fold changes were impacted
by the density of infiltrating immune cells and the
obtained results clearly confirmed this statement.
Independently of the origin of the differences in the gene
expression profiles, it appeared that each considered
histotype had its peculiar infiltration in TILs. In detail,
ATC and a subgroup of PTC had in average a rich TIL
infiltration. Conversely, PDTC and the remaining PTC
had a median TIL infiltration that was even lower than
that of NT samples. Interestingly, the rich TIL infiltration
was associated with the expression of multiple chemo-
kines capable of recruiting effector T cells (44, 45).
Conversely, the poor TIL infiltration was associated
with a poor upregulation or even downregulation of the
immune-related gene sets, including downregulation of
the one related to chemokines.

Analysis of specific immune cells subpopulations
showed a high density of macrophages in ATC and to a
lower extent in PTC, as previously reported (21–24).
Recruitment of macrophages and their conversion into
M2 TAM is expected to be mediated by the high ex-
pression of several cytokines/chemokines and their re-
ceptors, such as IL-6, IL-8, and CXCR4 (46, 47), which
were found to be upregulated in thyroid cancers in the
present experiment. Conversely, B cells appeared to be
more represented in PTC and to a lower extent in PDTC
and ATC. Either TAMs with an M2 polarization or
B lymphocytes with a regulatory phenotype (Breg) might
contribute to a microenvironmental immune suppression
by secreting the cytokines IL-10 and TGF-b1 (48, 49),
which were actually found to be upregulated in thyroid
cancers in the present experiment. In detail, TGFB1
resulted upregulated in ATC, PTC, and PDTC, whereas
IL-10 and its receptor IL-10RA were upregulated only
in ATC.

T-cell infiltration resulted higher than NT in ATC and
to a slightly lower extent in PTC and lower than NT in
PDTC. These data are clearly compatible with the gene
expression profile detected for the different thyroid
cancer histotypes. Indeed, high number of tumor in-
filtrating lymphocytes has been correlated with increased
expression of multiple chemokines capable of recruiting
effector T cells, including CCL2, CCL3, CCL4, CCL5,
CXCL9 and CXCL10 (44, 45). ATC showed the highest
expression of these chemokines followed by PTC.
Conversely, PDTC showed the lowest expression of these
genes. Thus, at NanoString analysis, most ATC could be
addressed as T-cell inflamed “hot” tumors. On the
contrary, most PDTC appeared as non–T-cell-inflamed
“cold” tumors. At variance, PTC could be either T-cell
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inflamed or non–T-cell-inflamed. Interestingly, an ad-
ditional support for this statement still came from the
analysis of the gene expression profile. Indeed, a func-
tionally relevant characteristic of T-cell inflamed tumors
is the expression of type I IFN and IFN-inducible genes
(44, 45). Although the expression of IFNA7 could be
detected only in ATC, a slight overexpression of IFN
receptor molecules INFAR1 and 2 and a significant
upregulation of their signaling mediators of the JAK and
STAT family could be detected in ATC and PTC, but not
in PDTC. Analysis of the abundance of cytotoxic cells
and of CD81 T cells clearly indicated that the T-cell
inflamed infiltration of ATC and PTC is characterized by
effector CD81 T cells. Although in general PDTC could
not be defined as T-cell inflamed tumors, due to the fact
that neither T cells nor CD81 T cells abundance was
different from that of NT samples, a relative over-
representation of CD81 T cells in their poor immune cell
microenvironment infiltration could be detected. This
finding might be correlated to the unexampled over-
expression of the chemokines CXCL9 and CXCL10 that
play a known role in CD81T-cell recruitment by binding
to their surface CXCR3 receptors (50). However, we can
speculate that the lack of overexpression and secretion of
other chemokines, related to a reduced or no activation
of a type I IFN response, might limit CD81 T-cell mi-
gration into most of these tumors.

Finally, based on the expression of peculiar mRNA
types (CD244, EOMES, and LAG3), exhausted CD81
T cells absolute and relative density was estimated.
Highest abundance of the considered markers was de-
tected in ATC and to a lower extent in PTC, followed by
PDTC. Considering the relative lack of specificity of all the
three considered markers (51–53), their low expression in
NT and PDTCmight have indicated a negligible density of
exhausted CD81 T cells in these samples.

Indeed, only in ATC and to a lower extent in PTC, the
increase in exhausted CD81 T cells was associated with
the overexpression of several inhibitory immune check-
point mediators such as CD86 and CTLA-4 (49), PDL1/
PDL2 and PD1 (54), PVR and TIGIT (55), LAG3 itself
(53), and TIM-3 (56) known to turn down CD81 T-cell
function. Interestingly, the primordial immune suppres-
sive enzyme IDO1, involved in the transformation of
tryptophan into kynurenine, and in a consequent
reduction in T-cell activation in the tumor microenvi-
ronment (57), resulted upregulated in ATC and PDTC.
Finally, ATC and to a lower extent PTC, but not PDTC,
also showed upregulation of stimulatory immune
checkpoint mediators, such as GITR, 4-1BB, OX40, and
CD40. Altogether, these data confirm the rich infiltration
of immune cells, including T lymphocytes, in ATC and a
subgroup of PTC and their lack in most PDTC.

Importantly, mRNA expression data were confirmed
by IHC analysis in the case of immune cell markers for
macrophages (CD68), T lymphocytes (CD3), B lympho-
cytes (CD19) and leukocytes (CD45), CCL2 and CCL3
chemokines, and PDL1. Moreover, a correlation between
mRNATIL score and CD45 IHC score could be observed.
Altogether, this information established the consistency of
the NanoString findings.

The accomplishment of the IHC analysis for CD31
leukocytes gave us also the possibility to analyze in
more detail the cancer immune contexture referred to
T lymphocyte infiltration (11). In detail, this analysis
confirmed a predominance of T-cell infiltration in ATC,
either in the form of a frank hot phenotype (34%of cases) or
an altered–immunosuppressed one (50% of cases). Con-
versely, PDTC appeared predominantly altered–excluded
(14%) or cold (65%), characterized by an absent IT
T-cell infiltration. PTChad amixed behavior: hot (17.5%),
altered–immunosuppressed (30.5%), altered– excluded
(13%), cold (39%). A clear overlap between the cancer
immune contexture and the immune gene expression data
could be confirmed specially for ATC and PDTC. More-
over, the gene expression data (i.e., those regarding the
immune checkpoints expression) strongly confirm the
proposed T-cell-based classification of the tumors.

In regards of the six immune subtypes recently de-
scribed using the TCGA data of 10,000 cancers (12),
most ATC of our casuistry could be ascribed to the INF-g
dominant subtype. PTC, as stated in the paper by
Thorsson et al. (12), belong to the inflammatory subtype.
Conversely, the framing of PDTC in one of the six im-
mune subtypes appeared difficult.

A question that arose from the analysis of our data
regarded the model of thyroid cancer progression that
could sustain these findings, characterized by the evi-
dence that differentiated thyroid carcinomas are inflamed
with different degrees of T-cell infiltration and the pro-
gression to ATC follows more often a “hot pathway”,
including altered–immunosuppressed cases, whereas the
progression to PDTC more often a “cold pathway,”
includingmore rarely altered–excluded cases. Interestingly,
the study of the TMB did not show any significant dif-
ference between PDTC and ATC. Both histotypes
presented a mean TMB at least 10 times higher than the
mean TMB (0.41/Mb) described for PTC in the TCGA
study (34). These data indicated that increase of TMB is
associated to thyroid cancer progression but is not directly
involved in thyroid cancer immune phenotype develop-
ment. A similar phenomenon has already been described in
melanoma and, in the case of a cold microenvironment
associated to high TMB, was ascribed to the lack of
BATF3-lineage dendritic cells (58). Moreover, no apparent
correlation between the searched driver mutation and the

3572 Giannini et al Immunoprofiling of Thyroid Carcinoma J Clin Endocrinol Metab, August 2019, 104(8):3557–3575

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/104/8/3557/5381919 by guest on 09 April 2024



gene expression data could be detected, especially in the
case of PTC. After taking into account all those consid-
erations, we proposed the following model: Genetic mu-
tations and epigenetic changes play a role in driving
transformation and progression/dedifferentiation of thy-
roid carcinomas, by deregulating growth, cell survival
and angiogenesis and stimulating invasion, metastasis, and
dedifferentiation. The interaction between tumor cells and
the microenvironment depends either on specific genetic
events, which trigger the expression of chemokines or
cytokines or on other factors such as individual shape of
the immune cells influenced by environmental features
including gut microbiome. Indeed, the mixed immuno-
logical behavior of PTC may be ascribed to the fact that
their tumor microenvironment is more often shaped by
activated oncogenic pathways that may or may not drive
specific chemokine expression than by an antigen-
mediated interaction between the tumor cells and the
immune system. Conversely, in the vision of a continually
changing immune/tumor interface during tumor progres-
sion, combination of dedifferentiating signals with a rich
antigen-mediated interaction between tumor cells and the
microenvironment, also maintained by a high TMB,
pushes progression in a prominently “hot pathway” that
ultimately drives the development of T-cell infiltrated
primary ATC or ATC-like tumors (hot or altered–
immunosuppressed) detectable at the time of histological
examination. Conversely, combination of dedifferentiating
signals with a poor interaction between tumor cells and the
microenvironment, including lack of specific dendritic cell
activation in the case of high TMB, drives the “cold
pathway” of PDTC-like tumors (cold). Aberrant tumor
vasculature and/or stroma may also be involved (rare
altered–excluded). Further studies are warranted to prove
this hypothesis.

In summary, in this immune gene expression profiling
experiment all but one ATC and three PDTC presented
a microenvironment infiltrated by macrophages and
T cells, showing a hot or altered–immunosuppressed
phenotype. These cancers appeared to express negative
immune checkpoint mediators involved in the functional
exhaustion of CD81 T cells. Moreover, infiltrating
T lymphocytes also appeared to express activating re-
ceptors. These phenotypes explain the peculiar clustering
of ATC in the immune profiling experiment. Immuno-
therapeutic approach for primary cancers or their
metastases with hot features should foresee combination
of inhibitory immune checkpoint disruptors and acti-
vating immune checkpoints stimulators. Conversely, in
the case of altered–immunosuppressed tumors the former
strategies should be combined with measures to inhibit
inhibitory soluble factors and immunosuppressive cells
or to activate innate immune response (12). Interestingly,

the response of ATCs to monotherapy with the anti-PD1
antibody spartalizumab showed a promising overall
response rate and overall disease control rate (28) that
could be improved by combinatorial therapy. Con-
versely, all PDTC but three, as one ATC, displayed a poor
or no IT infiltration by macrophages and T cells,
showing a cold or altered–excluded phenotype. These
phenotypes explain the peculiar clustering of PDTC in
the immune profiling experiment. Primary cancers or
their metastases with these PDTC-like features are not
expected to respond to the treatment with inhibitory
immune checkpoint disruptors alone. Immunotherapy
should in first instance foresee a strategy to increase
lymphocyte priming and/or immune infiltration of the
tumor microenvironment (26) such as radiotherapy,
chemotherapy, DNA-repair-based therapy, targeted
therapy, adoptive cell therapy, oncolytic therapy, or
vaccine-based therapy (12). It is possible to speculate that
the poor responses (2/22) in the first pembrolizumab
study as single therapy in advanced DTC (27) may be
related to the inclusion of patients harboring tumors of
the PDTC type. Combination of TKI and anti-PD1
antibody might overcome this limit. However, it is still
necessary to continue the characterization of thyroid
cancer microenvironment to identify and improve new
immunotherapeutic strategies and efficacy biomarkers.
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