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Context: We previously reported an association between lysophosphatidylinositol (LPI) (16:1) and
risk for type 2 diabetes in a Chinese population using an untargeted analysis.

Objective: To examine the overall associations of LPIs and their related metabolites, such as
nonesterified fatty acids (NEFAs) and acylcarnitines, with incident and prevalent type 2 diabetes
using a targeted approach.

Design and Setting: A case-control study was nested within the Singapore Chinese Health Study.
Cases and controls were individually matched by age, sex, and date of blood collection. We used
both liquid andgas chromatography tandemmass spectrometry tomeasure serummetabolite levels
at baseline, including 8 LPIs, 19 NEFAs, and 34 acylcarnitines. Conditional logistic regression models
were used to estimate the associations between metabolites and diabetes risk.

Participants: Participants included 160 incident and 144 prevalent cases with type 2 diabetes and
304 controls.

Main Outcome Measure: Incident and prevalent type 2 diabetes.

Results: On the basis of a false discovery rate ,0.1, we identified 37 metabolites associated with
prevalent type 2 diabetes, including 7 LPIs, 18 NEFAs, and 12 acylcarnitines, and 11 metabolites
associated with incident type 2 diabetes, including 2 LPIs and 9 NEFAs. Two metabolites, LPI (16:1)
and dihomo-g-linolenic acid, showed independent associations with incident type 2 diabetes and
significantly enhanced the risk prediction.

Conclusions:We found several LPIs and NEFAs that were associatedwith risk for type 2 diabetes and
may improve our understanding of the pathogenesis. The findings suggest that lipid profiles could
aid in diabetes risk assessment in Chinese populations. (J Clin Endocrinol Metab 103: 671–680,
2018)
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Type 2 diabetes is a chronic metabolic disease char-
acterized by hyperglycemia, insulin resistance, and

relative insulin deficiency (1). The pathogenesis of di-
abetes is complex and involves the interaction of genetic
and environmental factors. Recent research efforts on
the association of circulating metabolites with risk for
type 2 diabetes have provided new insights into the
pathogenic mechanisms of type 2 diabetes. For instance,
the increase of branched-chain amino acids, including
leucine, isoleucine, and valine, has been widely reported
to be related to an increased risk for type 2 diabetes in
several Western and Asian populations (2–6). More-
over, the changes of fatty acids (7, 8) and acylcarnitines
(9) were associated with risk for type 2 diabetes as
well. Recently, in an untargeted metabolomics study of
type 2 diabetes risk assessment in a Chinese population,
we found a positive association between serum lyso-
phosphatidylinositol (LPI) (16:1) and risk for type 2
diabetes (10).

LPI is a bioactive lipid produced from membrane
phosphatidylinositol (PI) through the catalytic activity of
the phospholipase A (PLA) family of lipases, including
PLA1 and PLA2. PLA1 and PLA2 remove fatty acids
from the sn-1 and sn-2 positions of PI, respectively,
generating 2-acyl-LPI and 1-acyl-LPI (11). Over the past
few decades, LPI has been confirmed to affect various
cellular functions, such as cell growth, differentiation,
and motility (12). Recently, it was proposed as the
endogenous ligand of G-protein–coupled receptor 55
(GPR55) (13). The LPI/GPR55 axis has been shown to
be positively associated with obesity in human (14).
Notably, a recent study has demonstrated that GPR55 is

expressed in the endocrine pancreas and in pancreatic
b cells (15), and another study observed that the major
effect of GPR55 on LPI activation on b cells is to increase
insulin secretion, suggesting a role in glucose homeostasis
(16). With this evidence considered together, it is still
unclear whether LPI is a risk factor for type 2 diabetes.
Therefore, investigation of the potential links of LPIs and
their related metabolites in relation to the development of
type 2 diabetes is expected to enhance our understanding
of the pathogenesis of type 2 diabetes.

In this study, we thus aimed to estimate the overall
associations of LPIs and their related metabolites, in-
cluding nonesterified fatty acids (NEFAs) and acylcar-
nitines, with both incident and prevalent type 2 diabetes
by using targeted metabolomics strategies. Compared
with previous untargeted analysis (10), the present tar-
geted analysis can more accurately quantify metabolites.
Although several early studies focused on the relation-
ships of fatty acids (8) and acylcarnitines (9) with type 2
diabetes, the correlations of altered fatty acids and
acylcarnitines with LPIs during the development of type 2
diabetes remain unclear. This study can contribute to our
understanding of the pathogenesis of type 2 diabetes.

Materials and Methods

Study design and participants
A flowchart of study design and participant selection is

shown in Fig. 1. The participants were randomly selected from
the Singapore Chinese Health Study (SCHS), which is a
population-based study in Singapore. Detailed information on
recruitment and follow-up visits for SCHS has been reported

Figure 1. Flowchart of study design and participant selection.
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previously (10). Briefly, 63,257 Chinese men and women aged
45 to 74 years were recruited from 1993 to 1998. The first
follow-up visit was carried out from 1999 to 2004, and 32,575
participants donated morning blood samples. The second
follow-up visit was conducted from 2006 to 2010. In current
study, we randomly selected 304 cases who were free of di-
agnosed diabetes, cardiovascular disease, and cancer at baseline
(i.e., at the first visit when blood samples were collected) while
reported to have type 2 diabetes during follow-up (i.e., at the
second visit).Meanwhile, 304 controls who remained free of the
aforementioned diseases at both the first and second visits were
selected. The cases and controls were individually matched by
age (63 years), sex, and date of blood collection (66 months).
The baseline serum samples were used for current study. All
participants gave informed consent, and the study was ap-
proved by the Institutional Review Boards at the National
University of Singapore.

Prevalent and incident type 2 diabetes cases:
patient regrouping

In Singapore, the diagnostic tests for diabetes at the time of
two visits (1999 to 2004 and 2006 to 2010) were done
according to the 1997 American Diabetes Association criteria
(17), which were based on symptoms plus random glucose
concentrations, fasting glucose concentrations, or 2-hour glu-
cose tolerance tests. In 2010, the American Diabetes Asso-
ciation proposed a hemoglobin A1c (HbA1c) value $6.5%
(47.5 mmol/mol) as an additional diagnostic criterion (18). In
considering the update of diagnostic criteria, in this study we
divided the 304 cases into prevalent and incident type 2 diabetes
cases according to the baseline HbA1c levels: Patients with
HbA1c $ 6.5% (47.5 mmol/mol) at baseline were defined as
prevalent or undiagnosed cases (n = 144); those with HbA1c,
6.5% (47.5 mmol/mol) at baseline were classified as incident
cases (n = 160). HbA1c values in the controls were all ,6.0%
(42.1 mmol/mol).

Lipid assay
Blood concentrations of high-density lipoprotein (HDL)

cholesterol and triglycerides were measured by using colori-
metric method on a chemistry analyzer (AU5800; Beckman
Coulter, Brea, CA).

Serum metabolite quantification
A targeted metabolomics assay was performed at the Na-

tional University of Singapore. A total of 61 serum metabolites
were quantified or semiquantified, including 8 LPIs, 19 NEFAs,
and 34 acylcarnitines (Supplemental Table 1). The methods of
metabolite extraction, quantification, and validation are de-
scribed in detail in the Supplemental Methods. Briefly, the
metabolite extraction procedure was similar to the method
described previously (19, 20), with some minor modifications.
All the metabolites were quantified by using an Agilent 1200
HPLC system (Agilent Technologies, Santa Clara, CA) coupled
to a 6410 Triple Quadrupole (QQQ) mass spectrometer (Agilent
Technologies) exceptmyo-inositol, whichwasmeasured using an
Agilent 7890 GC system (Agilent Technologies) coupled to a
7000B QQQ mass spectrometer (Agilent Technologies). The
QQQmass spectrometer was operated in electrospray ionization
negative mode for LPI and fatty acid analyses and in positive
mode for acylcarnitine analyses. Mass spectra were acquired in

the multiple reaction monitoring mode, and the optimized
conditions are summarized in Supplemental Table 1.

All 304 paired samples were analyzed blindly in eight
completely independent batches (i.e., 38 paired samples in each
batch). Stable isotope–labeled internal standards were used in
all the sample extractions and for calibration. Quality control
(QC) was prepared by spiking a certain amount of native and
labeled standards into a pooled plasma from all participants,
and sixQCswere analyzed along with the samples in each batch
to ensure the reliability of the method and the instrument sta-
bility. The intrabatch and interbatch variations for all the
targets in QCs ranged from 0.05% to 19.27% and 0.15% to
18.50%, respectively.

Statistical analysis
Demographic and clinical variables of participants are

presented as mean 6 standard deviation for continuous data
and as proportions for categorical data. All the metabolites
measured in this study were detected in all 608 serum samples
except LPI (22:6), which was detected in 92.4% of all samples.
Undetectable values were assigned as a proxy value of half of the
lowest detected amount. Odds ratios with 95% confidence
intervals and P values for the association between metabolites
and type 2 diabetes were calculated by using conditional logistic
regression models, with adjustment for confounding factors,
including body mass index (BMI), history of hypertension,
smoking, physical activity, fasting status, triglycerides, and
HDL cholesterol. The P value was corrected for multiple testing
via false-discovery rate (FDR) using the Benjamini-Hochberg
method. The odds ratio was represented both as tertiles and per
standard deviation increment. Correlations between serum
metabolites were examined in controls by Pearson partial
correlation analysis, adjusting for age, sex, and BMI. The c-
statistic (also known as the area under the receiver-operating
characteristic curve [AUCROC]) was calculated to assess the
predictive utility of each metabolite by examining the im-
provement in discrimination (i.e., increment in AUCROC by
adding metabolites to a multivariable-adjusted logistic re-
gressionmodel with established diabetes risk factors as the basic
model). Because of a limitation of AUCROC—that it is in-
sensitive for detecting clinically important risk differences
(21)— we further evaluated the integrated discrimination im-
provement and category-free net reclassification improvement
(NRI) indexes. Statistical analyses were performed by using
SPSS Statistics 24 (IBM, Armonk, NY) and Stata software,
version 14.0 (Stata Corp., College Station, TX). A two-sided
P value , 0.05 and FDR , 0.1 were considered to indicate
statistically significant differences.

Results

Table 1 shows baseline characteristics of the participants.
Cases with prevalent and incident type 2 diabetes and
their matched controls are presented separately. Both
prevalent and incident cases had higher BMI and tri-
glycerides and lower levels of HDL cholesterol than
controls at baseline, and they were also more likely to
report a history of hypertension (P, 0.05). In this study,
only a small percentage of participants [27.3%, 166 of
608) had fasted at the time of blood collection. Although
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the proportion of fasting and nonfasting participants was
equally distributed between cases and controls (P .

0.05), metabolic changes due to fasting status were ob-
served in the controls (Supplemental Table 2). We thus
included fasting status in the model as a confounder. In
addition, we reasoned that smoking is an important
confounder and thus included it in the model.

The associations between 61 measured metabolites
and the risk for prevalent and incident type 2 diabetes are
shown in Supplemental Table 3. After adjustment for
potential confounders, including BMI, history of hy-
pertension, smoking, physical activity, fasting status,
triglycerides, and HDL cholesterol, 37 metabolites were
associated with prevalent type 2 diabetes at an FDR,0.1
(Table 2); 11 metabolites were associated with incident
type 2 diabetes at an FDR,0.1 (Table 3). Although 0.05
is commonly used as a cutoff limit for FDR in the dis-
covery of metabolic signatures, the metabolites with FDR
between 0.05 and 0.1 are still considered marginally sig-
nificant. To avoid missing potential biomarker candidates

associated with risk for type 2 diabetes, we applied 0.1 as
the cutoff value for FDR. All the 11 metabolites associ-
ated with incident type 2 diabetes were associated with
prevalent type 2 diabetes as well. The associations of
these 11 metabolites with prevalent type 2 diabetes were
stronger than those with incident type 2 diabetes, except
LPI (16:1) and (18:0), for which the associations with
incident type 2 diabetes were more evident. In addition to
the 11 common metabolites, we identified 26 metabolites
associated only with prevalent type 2 diabetes, including
5 LPIs, 9 NEFAs, and 12 acylcarnitines. No significant
associations between acylcarnitines and incident type 2
diabetes were observed. An aberrant metabolic network
in relation to prevalent and incident type 2 diabetes is
summarized in Fig. 2.

We assessed the correlations between baseline con-
centrations of 37 differential metabolites associated with
prevalent and/or incident type 2 diabetes in controls
(Fig. 3). Strong correlations were observed within
groups of related metabolites, such as LPIs, NEFAs, and

Table 1. Baseline Characteristics of Participants

Baseline
Characteristics

Prevalent Type 2 Diabetes Incident Type 2 Diabetes

Cases
(n = 144)

Controls
(n = 144)

OR
(95% CI) P Value

Cases
(n = 160)

Controls
(n = 160)

OR
(95% CI) P Value

HbA1c
% 7.7 6 1.6 5.6 6 0.3 5.9 6 0.4 5.5 6 0.2
mmol/mol 60.7 6 12.6 37.7 6 2.0 41.0 6 2.8 36.6 6 1.3

Random glucose (mmol/L) 8.8 6 4.2 4.9 6 1.3 1.98 (1.54–2.55) ,0.001 5.8 6 2.0 4.9 6 1.2 1.37 (1.18–1.60) ,0.001
Age (years) 62.7 6 6.1 62.7 6 5.9 1.00 (0.82–1.22) 0.99 61.6 6 5.6 61.9 6 6.0 0.96 (0.81–1.16) 0.70
Sex, n (%) 1.00 — 1.00
Male 62 (43.1) 62 (43.1) 79 (49.4) 79 (49.4)
Female 82 (56.9) 82 (56.9) 81 (50.6) 81 (50.6)

BMI (kg/m2) 24.6 6 3.6 23.1 6 3.3 1.15 (1.07–1.25) ,0.001 24.6 6 3.4 22.6 6 3.5 1.23 (1.11–1.37) ,0.001
History of hypertension, n (%)
No 84 (58.3) 99 (68.7) 1.00 — 75 (46.9) 118 (73.8) 1.00 —

Yes 60 (41.7) 45 (31.3) 1.80 (1.01–3.26) 0.049 85 (53.1) 42 (26.3) 5.21 (2.57–10.6) ,0.001
Smoking, n (%)
Never smoker 99 (68.8) 102 (70.8) 1.00 — 106 (66.3) 109 (68.1) 1.00 —

Past smoker 15 (10.4) 21 (14.6) 0.61 (0.24–1.54) 0.30 26 (16.3) 25 (15.6) 1.33 (0.51–3.45) 0.56
Current smoker 30 (20.8) 21 (14.6) 1.93 (0.89–4.17) 0.10 28 (17.5) 26 (16.3) 1.37 (0.61–3.10) 0.45

Alcohol consumption, n (%)
,1 drink/d 125 (86.8) 123 (85.4) 1.00 — 139 (86.9) 140 (87.5) 1.00 —

1–6 drinks/wk 13 (9.0) 17 (11.8) 1.15 (0.46–2.89) 0.76 16 (10.0) 13 (8.1) 2.39 (0.87–6.58) 0.09
$1 drink/d 6 (4.2) 4 (2.8) 1.78 (0.43–7.36) 0.43 3 (3.1) 7 (4.4) 0.99 (0.18–5.34) 0.99

Moderate to intensive
physical activity, n (%)

,0.5 h/wk 118 (81.9) 117 (81.3) 1.00 — 125 (78.1) 122 (76.3) 1.00 —

0.5–3.9 h/wk 16 (11.1) 16 (11.1) 1.13 (0.44–2.88) 0.80 26 (16.3) 15 (9.4) 2.82 (1.14–6.95) 0.02
$4 h/wk 10 (6.9) 11 (7.6) 1.10 (0.39–3.12) 0.85 9 (5.6) 23 (14.4) 0.21 (0.07–0.65) 0.007

Education, n (%)
None 37 (25.7) 31 (21.5) 1.00 — 29 (18) 26 (16.3) 1.00 —

Primary 59 (41.0) 66 (45.8) 0.63 (0.29–1.37) 0.25 77 (48.1) 77 (48.1) 1.09 (0.46–2.56) 0.84
Secondary and above 48 (33.3) 47 (32.6) 0.58 (0.23–1.47) 0.25 54 (33.8) 57 (35.6) 0.66 (0.26–1.66) 0.38

Fasting status, n (%)
Nonfasting 96 (66.7) 103 (71.5) 1.00 — 118 (73.8) 125 (78.1) 1.00 —

Fasting 48 (33.3) 41 (28.5) 1.31 (0.74–2.33) 0.35 42 (26.3) 35 (21.9) 1.28 (0.61–2.70) 0.52
HDL cholesterol (mmol/L) 1.1 6 0.2 1.2 6 0.3 0.11 (0.04–0.32) ,0.001 1.1 6 0.3 1.2 6 0.3 0.07 (0.02–0.21) ,0.001
Triglycerides (mmol/L) 2.6 6 1.9 2.0 6 1.3 1.43 (1.14–1.79) 0.002 2.4 6 1.3 1.7 6 0.9 1.96 (1.49–2.59) ,0.001

Data for continuous variables are presented as mean6 standard deviation for continuous variables; data for categorical variables are presented as n (%).
OR with 95% CI and P values were calculated by conditional logistic regression.

Abbreviations: CI, confidence interval; OR, odds ratio.
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acylcarnitines. Moreover, NEFAs showed moderate to
strong correlations with acylcarnitines. Notably, several
correlations were observed between LPIs with NEFAs
and acylcarnitines that had the same chain of fatty acids.
For example, positive correlations between LPI (16:0)
with palmitic acid (16:0) and hexadecanoylcarnitine

(C16) were observed. Additionally, we found nega-
tive correlations between L-carnitine and three NEFAs
(a-linolenic acid, b-linolenic acid, and mead acid), which
indicated an inverse relationship between their concen-
trations. However, the underlyingmechanisms need to be
explored further.

Table 2. The 37 Metabolites Associated With Risk for Prevalent Type 2 Diabetes (n = 144)

Metabolite

OR Across Tertiles (95% CI)a Per SD Incrementa

T1 T2 T3
P Value
for Trend OR (95% CI) P Value

Inositol and lysophosphatidylinositols
myo-Inositol 1.00 0.86 (0.43–1.74) 0.27 (0.12–0.65) 0.003b 0.38 (0.23–0.61) ,0.001b

Lysophosphatidylinositol (16:0) 1.00 1.69 (0.81–3.54) 2.02 (0.94–4.37) 0.041b 1.20 (0.88–1.64) 0.257
Lysophosphatidylinositol (16:1) 1.00 1.35 (0.51–3.57) 2.53 (1.05–6.06) 0.016b 1.24 (0.87–1.78) 0.228
Lysophosphatidylinositol (18:0) 1.00 1.84 (0.76–4.46) 2.99 (1.05–8.52) 0.053b 1.51 (0.95–2.39) 0.079
Lysophosphatidylinositol (18:2) 1.00 2.32 (1.07–5.01) 2.78 (1.29–5.98) 0.007b 1.30 (0.98–1.71) 0.066
Lysophosphatidylinositol (20:4) 1.00 1.83 (0.75–4.48) 4.05 (1.71–9.57) 0.001b 2.36 (1.57–3.55) ,0.001b

Lysophosphatidylinositol (22:6) 1.00 1.86 (0.85–4.09) 2.02 (0.82–4.97) 0.044b 1.30 (0.93–1.83) 0.129
Fatty acids
Myristic acid (14:0) 1.00 0.90 (0.35–2.28) 3.15 (1.38–7.20) 0.007b 2.04 (1.37–3.04) ,0.001b

Palmitic acid (16:0) 1.00 2.76 (1.11–6.86) 6.45 (2.52–16.51) 0.001b 2.18 (1.50–3.17) ,0.001b

Palmitoleic acid (16:1n-7) 1.00 4.43 (1.75–11.26) 7.70 (2.69–22.02) 0.002b 1.90 (1.29–2.81) 0.001b

Stearic acid (18:0) 1.00 2.98 (1.25–7.13) 4.74 (2.06–10.88) 0.002b 2.13 (1.45–3.12) ,0.001b

Oleic acid (18:1n-9) 1.00 2.38 (0.97–5.85) 4.44 (1.82–10.79) 0.009b 1.93 (1.35–2.76) ,0.001b

Linoleic acid (18:2n-6) 1.00 2.04 (0.91–4.59) 4.61 (1.94–10.98) 0.004b 1.65 (1.19–2.27) 0.002b

a-Linolenic acid (18:3n-3) 1.00 1.48 (0.67–3.30) 3.20 (1.43–7.15) 0.018b 1.54 (1.11–2.14) 0.009b

g-Linolenic acid (18:3n-6) 1.00 5.91 (2.18–15.99) 5.46 (1.85–16.10) 0.012b 2.07 (1.35–3.17) 0.001b

Gondoic acid (20:1n-11) 1.00 1.23 (0.53–2.84) 3.54 (1.57–8.02) 0.008b 2.20 (1.48–3.28) ,0.001b

Eicosadienoic acid (20:2n-6) 1.00 3.33 (1.39–8.00) 6.64 (2.72–16.23) ,0.001b 2.29 (1.55–3.38) ,0.001b

Dihomo-g-linolenic acid (20:3n-6) 1.00 1.35 (0.57–3.19) 5.02 (2.16–11.69) ,0.001b 2.20 (1.52–3.20) ,0.001b

Mead acid (20:3n-9) 1.00 1.76 (0.75–4.12) 3.14 (1.40–7.02) 0.031b 2.03 (1.40–2.96) ,0.001b

Arachidonic acid (20:4n-6) 1.00 1.82 (0.77–4.32) 3.86 (1.70–8.75) 0.004b 1.84 (1.31–2.58) ,0.001b

Eicosapentaenoic acid (20:5n-3) 1.00 3.96 (1.50–10.48) 4.34 (1.76–10.73) 0.009b 1.61 (1.17–2.23) 0.004b

Adrenic acid (22:4n-6) 1.00 3.14 (1.23–8.02) 6.87 (2.69–17.54) ,0.001b 2.52 (1.66–3.84) ,0.001b

Clupanodonic acid (22:5n-3) 1.00 1.66 (0.71–3.92) 4.79 (2.00–11.47) 0.001b 2.41 (1.62–3.57) ,0.001b

Osbond acid (22:5n-6) 1.00 1.51 (0.66–3.44) 4.20 (1.85–9.52) 0.003b 2.16 (1.49–3.12) ,0.001b

Docosahexaenoic acid (22:6n-3) 1.00 2.30 (1.01–5.21) 4.20 (1.83–9.66) 0.004b 1.98 (1.41–2.78) ,0.001b

Carnitine and acylcarnitines
L-Carnitine 1.00 0.39 (0.19–0.78) 0.17 (0.06–0.44) ,0.001b 0.57 (0.40–0.81) 0.002b

3-Hydroxybutyrylcarnitine (C4OH) 1.00 1.33 (0.61–2.91) 3.22 (1.48–7.03) 0.011b 1.46 (1.10–1.95) 0.009b

Octanoylcarnitine (C8) 1.00 1.63 (0.76–3.49) 3.13 (1.37–7.18) 0.050b 1.23 (0.91–1.68) 0.181
Decanoylcarnitine (C10) 1.00 1.59 (0.75–3.33) 3.01 (1.33–6.80) 0.052b 1.24 (0.91–1.68) 0.175
Dodecanoylcarnitine (C12) 1.00 1.43 (0.70–2.92) 2.86 (1.28–6.41) 0.053b 1.35 (0.97–1.88) 0.074
3-Hydroxydodecanoylcarnitne
(C12OH)

1.00 1.22 (0.58–2.56) 2.56 (1.16–5.63) 0.077 1.54 (1.12–2.12) 0.008b

Tetradecanoylcarnitine (C14) 1.00 1.16 (0.55–2.43) 4.79 (1.99–11.52) 0.005b 1.54 (1.11–2.15) 0.011b

3-Hydroxytetradecanoylcarnitine
(C14OH)

1.00 1.39 (0.62–3.09) 3.30 (1.59–6.85) 0.004b 1.83 (1.29–2.60) 0.001b

Hexadecanoylcarnitine (C16) 1.00 1.73 (0.87–3.43) 2.02 (0.95–4.29) 0.157 1.56 (1.10–2.21) 0.013b

3-Hydroxyhexadecanoylcarnitine
(C16OH)

1.00 1.58 (0.80–3.12) 2.80 (1.28–6.09) 0.029b 1.54 (1.10–2.14) 0.011b

3-Hydroxy-9-hexadecenoylcarnitine
(C16:1OH)

1.00 1.81 (0.85–3.46) 2.67 (1.16–6.16) 0.094 1.58 (1.13–2.20) 0.007b

C20:5-carnitine 1.00 1.77 (0.92–3.43) 5.71 (1.05–30.98) 0.049b 1.40 (1.03–1.91) 0.031b

Prevalent diabetes cases were defined as those who had HbA1c $ 6.5% (47.5 mmol/mol), did not report having diagnosed diabetes at baseline when
blood samples were collected (1999 to 2004), but were reported to have diagnosed diabetes during the follow-up (2006 to 2010).

Abbreviations: CI, confidence interval; OR, odds ratio; T1 tertile 1; T2, tertile 2; T3, tertile 3.
aOR with 95% CI and P values were calculated by conditional logistic regression after adjustment for BMI, history of hypertension, smoking, physical
activity, fasting status, triglycerides, and HDL cholesterol.
bFDR , 0.1.
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Among 11 metabolites associated with incident type 2
diabetes, we further adjusted for random glucose and
HbA1c levels and found that all metabolites remained
significantly associated with type 2 diabetes risk (Table 3).
We then evaluated the predictive performance of these
11 metabolites for the risk for incident type 2 diabetes
(Table 3). Compared with the AUCROC value of the base
model of BMI, history of hypertension, smoking, physical
activity, triglycerides, and HDL cholesterol, no metab-
olites led to a significant increase in AUC values, whereas
IDI and NRI statistics showed that dihomo-g-linolenic
acid and LPI (16:1) could significantly improve risk
reclassification of incident type 2 diabetes at P , 0.01.
The NRI table stratified for incident cases and matched
controls is presented in Supplemental Table 4.

In addition to LPI (16:1), we found that all seven
measured LPIs in prevalent type 2 diabetes cases were
relatively higher than those in incident type 2 diabetes
cases and controls, and they were relatively higher in
incident type 2 diabetes cases than in controls (Supple-
mental Fig. 1).

Discussion

Using a case-control design within the SCHS cohort
aimed at estimating the association of various lipid me-
tabolites with incident and prevalent type 2 diabetes, we

found that the accumulation of certain LPIs and NEFAs
was associated with an increased risk for type 2 diabetes,
independently of established risk factors. Moreover, the
significant correlations observed among LPIs, NEFAs,
and acylcarnitines indicated potential links of them in the
development of type 2 diabetes.

NEFAs can impair insulin action via the Randle cy-
cle, accumulation of intracellular lipid derivatives (e.g.,
diacylglycerol), oxidative stress, inflammation, and mi-
tochondrial dysfunction (22). In this study, we found
that a series ofNEFAswas associatedwith type 2 diabetes
risk. Specifically, we observed higher levels of omega-6
fatty acids (such as linoleic acid, dihomo-g-linolenic acid,
and adrenic acid) in both prevalent and incident type 2
diabetes cases. Omega-6 fatty acids play important roles
in regulation of inflammation as precursors of inflam-
matory mediators, such as eicosanoids (23). The increase
of omega-6 fatty acids observed from incident to prev-
alent type 2 diabetes could have indicated an important
role of omega-6 fatty acid–mediated inflammation in the
pathogenesis of type 2 diabetes (Fig. 2). Indeed, Perry
et al. (24) recently identified the connection between
inflammation and type 2 diabetes, showing that acetyl
coenzyme A was a key mediator of insulin action on the
liver and linking it to inflammation-induced insulin re-
sistance. Among these omega-6 fatty acids, dihomo-
g-linolenic acid had been reported to be associated with

Table 3. The 11 Metabolites Associated With Risk for Incident Type 2 Diabetes (n = 160)

Metabolite

OR Across Tertiles (95% CI)a Per SD Incrementa c-Statisticsb

IDI P
Value

P

NRI P
Value

PT1 T2 T3
P Value for

Trend OR (95% CI) P Value AUC (95% CI) P Value

Lysophosphatidylinositols
Lysophosphatidylinositol

(16:1)
1.00 1.70 (0.43–6.75) 5.33 (1.53–18.59) 0.016c 1.96 (1.15–3.34) 0.013c,d 0.77 (0.71–0.83) 0.111 0.002 0.003

Lysophosphatidylinositol
(18:0)

1.00 1.19 (0.53–2.68) 3.24 (1.29–8.10) 0.008c 1.97 (1.24–3.12) 0.004c,d 0.73 (0.68–0.78) 0.549 0.183 0.044

Fatty acids
Myristic acid (14:0) 1.00 1.10 (0.58–2.08) 2.10 (1.07–4.13) 0.067c 1.72 (1.25–2.37) 0.001c,d 0.75 (0.70–0.81) 0.173 0.005 0.094
Palmitic acid (16:0) 1.00 1.62 (0.81–3.23) 2.79 (1.33–5.86) 0.014c 1.48 (1.10–1.99) 0.010c,d 0.75 (0.70–0.80) 0.176 0.023 0.074
Palmitoleic acid (16:1n-7) 1.00 1.20 (0.58–2.48) 2.32 (1.19–4.55) 0.026c 1.44 (1.08–1.92) 0.013c,d 0.75 (0.70–0.80) 0.215 0.027 0.007
Stearic acid (18:0) 1.00 1.68 (0.80–3.50) 3.03 (1.37–6.71) 0.011c 1.59 (1.13–2.23) 0.008c,d 0.75 (0.69–0.80) 0.400 0.024 0.010
Eicosadienoic acid (20:2n-6) 1.00 2.41 (1.13–5.11) 3.11 (1.45–6.68) 0.010c 1.50 (1.12–2.02) 0.006c,d 0.75 (0.70–0.81) 0.144 0.010 0.094
Dihomo-gamma-linolenic

acid (20:3n-6)
1.00 1.56 (0.70–3.50) 5.64 (2.38–13.34) ,0.001c,d 1.86 (1.34–2.59) ,0.001c,d 0.76 (0.71–0.81) 0.099 ,0.001 0.001

Mead acid (20:3n-9) 1.00 2.66 (1.13–6.31) 4.91 (1.95–12.32) 0.001c,d 1.36 (1.02–1.83) 0.039c 0.75 (0.69–0.80) 0.383 0.082 0.074
Arachidonic acid

(20:4n-6)
1.00 1.81 (0.86–3.81) 2.21 (1.00–4.86) 0.093c 1.53 (1.09–2.14) 0.014c,d 0.75 (0.69–0.80) 0.517 0.127 0.180

Adrenic acid (22:4n-6) 1.00 1.86 (0.82–4.25) 3.41 (1.51–7.70) 0.016c 1.53 (1.11–2.11) 0.010c,d 0.75 (0.70–0.80) 0.201 0.078 0.019

Incident diabetes cases were defined as those who had HbA1c, 6.5% (47.5 mmol/mol) at baseline when blood samples were collected (1999 to 2004)
and were reported to have diagnosed diabetes during the follow-up (2006 to 2010).

Abbreviations: CI, confidence interval; IDI, integrated discrimination improvement; OR, odds ratio; T1 tertile 1; T2, tertile 2; T3, tertile 3.
aOR with 95% CI and P values were calculated by conditional logistic regression after adjustment for BMI, history of hypertension, smoking, physical
activity, fasting status, triglycerides, and HDL-cholesterol.
bArea under the curve increment of individual metabolite after adding in the basic model (area under the curve = 0.74; 95% CI, 0.68 to 0.79) of BMI,
history of hypertension, smoking, physical activity, fasting status, triglycerides, and HDL cholesterol.
cP , 0.05 with further adjustment for random glucose and HbA1c levels.
dFDR , 0.1.
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high insulin resistance (25) and increased risk for type 2
diabetes (26). In our study, we found it significantly im-
proved risk reclassification of type 2 diabetes and thus
could be a potential predictor of type 2 diabetes. Com-
pared with omega-6 fatty acids, previous prospective co-
hort studies in relation to the association between omega-3
fatty acids and type 2 diabetes risk were inconsistent. A
recent systematic review demonstrated that omega-3 fatty
acids had protective associations with risk for type 2 di-
abetes in Asian populations but was positively associated
with risk for type 2 diabetes in Western populations (27).
The possible protective role of omega-3 fatty acids on type
2 diabetes in Asians, particularly Chinese, was partly
supported by our findings that increased omega-3 fatty
acids, such as a-linolenic acid, eicosapentaenoic acid, and
docosahexaenoic acid, were observed only in prevalent
type 2 diabetes, which might elevate anti-inflammatory
effects for self-stress protection.

L-Carnitine affects insulin-mediated glucose uptake
and mitochondrial utilization of fatty acids (28). It
transports long-chain fatty acids from the cytosol into
mitochondria in the form of acylcarnitines for b-oxidation
and also facilitates the removal of short- and medium-
chain fatty acids from the mitochondria. Previous
studies indicated that the link of acylcarnitines with
lipid-induced mitochondrial stress led to or worsened

insulin resistance (29). Recently, Sun et al. (9) found that
acylcarnitines, especially those with long-chain fatty acids,
were associated with an increased risk for type 2 diabetes.
In accordancewith these studies, we observed higher levels
of acylcarnitines in prevalent type 2 diabetes cases, yet no
significant changes in incident cases, which indicated that
acylcarnitine-induced mitochondrial dysregulation may
exacerbate the progression of type 2 diabetes rather than
serve as a trigger (Fig. 2).

The positive association between LPI and risk for type
2 diabetes was an emerging finding in our previous
untargeted metabolomics study (10). In the current tar-
geted metabolomics study, we observed that prevalent
type 2 diabetes cases had the highest LPIs compared with
incident type 2 diabetes cases and controls, and LPIs were
positively associated with higher risk for both prevalent
and incident type 2 diabetes. In this study, we proposed a
hypothesis in relation to the pathogenic mechanisms of
LPI in type 2 diabetes development (Fig. 2), but further
studies are needed to confirm it. Briefly, in the devel-
opment of type 2 diabetes, particularly at the early stage,
LPI is accumulated, and it activates the GPR55 on b cells
to secrete additional insulin in response to insulin re-
sistance (16). The initially increase of insulin secretion
actually represents a relative deficiency of insulin, which
means that b-cell function starts to deteriorate. The

Figure 2. Major altered lipid metabolites and related pathways in b-cell during the development of type 2 diabetes. Abbreviations: CoA,
coenzyme A; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid.
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impairment of b-cell function further results in severe
insulin deficiency.When insulin secretion no longer keeps
pace with insulin resistance at the onset of diabetes, more
and more LPI will be accumulated to promote insulin
secretion, which further aggravates the metabolic burden
of b cells, leading to cell dysfunction that accelerates the
development of frank diabetes. By the time diabetes is
clinically diagnosed, b-cell function may be reduced
by $50% (30). Whether as cause and/or consequence,
LPI is clearly elevated in type 2 diabetes, and, impor-
tantly, it might occur earlier than glucose and HbA1c
changes. Therefore, accurate quantification of LPI
changes should significantly improve risk prediction
of type 2 diabetes. Indeed, in this study we observed that
LPI (16:1) significantly improved risk prediction of

type 2 diabetes, which also confirmed our previous
finding that LPI (16:1) can be an early predictor for type 2
diabetes (10).

The strength of this study is its prospective design and
hence the presumed lack of recall bias in exposure data
before type 2 diabetes diagnosis. Furthermore, the tar-
geted metabolomics used in this study were precise and
could quantify metabolite concentrations with a rela-
tively low measurement variation. However, the current
study had some limitations. First, although all blood was
collected in the morning, ;70% of blood samples were
nonfasting, a factor that may affect the metabolite levels.
However, we included fasting status in the model as a
confounder. Second, ;50% cases had undiagnosed type
2 diabetes at baseline (1999 to 2004) according to

Figure 3. Pearson partial correlation analysis of baseline serum metabolite levels in controls, with adjustment for age, sex, and BMI.
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updated diagnostic criteria, with HbA1c levels $6.5%
(47.5 mmol/mol). To avoid conflict, we redefined the
status and classified these patients as prevalent and in-
cident cases on the basis of baseline HbA1c levels and
explored the association separately. Third, evidence in-
dicates that certain fatty acids are clearly influenced by
the habitual diet; in this study we cannot fully exclude
confounders by dietary factors in analyzing differential
metabolites because dietary data were not included. Fi-
nally, the sample size was relatively small, and the
findings need to be validated externally in other ethnic
populations with larger samples sizes.

In summary, we investigated the associations of LPIs,
NEFAs, and acylcarnitines with both prevalent and in-
cident type 2 diabetes in a Chinese population by using
targeted metabolomics strategies. Overall, this study
demonstrated the strong associations between LPIs and
NEFAs with risk for type 2 diabetes and further confirms
the probability of LPI (16:1) for type 2 diabetes risk
prediction in this Chinese population. More important, a
hypothesis in relation to the pathogenic mechanisms of
LPI in type 2 diabetes development was brought forward,
which further studies are needed to validate.
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