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Context: Vitamin D inadequacy is common in the adult population of the United States. Although
the genetic determinants underlying vitamin D inadequacy have been studied in people of Eu-
ropean ancestry, less is known about populations with Hispanic or African ancestry.

Objective: The Trans-Ethnic Evaluation of Vitamin D (TRANSCEN-D) genomewide association study
(GWAS) consortium was assembled to replicate genetic associations with 25-hydroxyvitamin D
[25(OH)D] concentrations from the Study of Underlying Genetic Determinants of Vitamin D and
Highly Related Traits (SUNLIGHT) meta-analyses of European ancestry and to identify genetic
variants related to vitamin D concentrations in African and Hispanic ancestries.

Design: Ancestry-specific (Hispanic and African) and transethnic (Hispanic, African, and European)
meta-analyses were performed with Meta-Analysis Helper software (METAL).

Patients or Other Participants: In total, 8541 African American and 3485 Hispanic American (from
NorthAmerica) participants from12 cohorts and16,124 Europeanparticipants fromSUNLIGHTwere
included in the study.

Main Outcome Measures: Blood concentrations of 25(OH)D were measured for all participants.

Results: Ancestry-specific analyses in African and Hispanic Americans replicated single nucleotide
polymorphisms (SNPs) in GC (2 and 4 SNPs, respectively). An SNP (rs79666294) near the KIF4B gene
was identified in the African American cohort. Transethnic evaluation replicated GC and DHCR7
region SNPs. Additionally, the transethnic analyses revealed SNPs rs719700 and rs1410656 near the
ANO6/ARID2 and HTR2A genes, respectively.

Conclusions: Ancestry-specific and transethnic GWASs of 25(OH)D confirmed findings in GC and
DHCR7 for African and Hispanic American samples and revealed findings near KIF4B, ANO6/ARID2,
and HTR2A. The biological mechanisms that link these regions with 25(OH)D metabolism warrant
further investigation. (J Clin Endocrinol Metab 103: 1380–1392, 2018)
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V itamin D inadequacy, defined by 25-hydroxyvitamin
D concentrations [25(OH)D] #20 ng/mL, affects

approximately half of the adults in the United States, with
an even higher prevalence in certain ethnic groups;.80%
of African American adults and .60% of Hispanic
adults have inadequate concentrations of 25(OH)D (1–3).
Vitamin D inadequacy has been associated with elevated
risk of autoimmune diseases, hypertension, dyslipidemia,
cardiovascular events, and cardiovascular mortality
(1, 4–6). Additionally, recent Mendelian randomization
studies have suggested a causal relationship between
vitamin D inadequacy and elevated risk of ovarian
cancer, hypertension, lower cognitive function, multiple
sclerosis, and all-cause and cancer mortality (7–12).
Furthermore, some clinical trials have shown that vi-
tamin D and calcium supplementation may reduce the
risk of fracture in postmenopausal women (13–15). The
high prevalence of vitamin D inadequacy in African and
Hispanic Americans and the associated risk for adverse
health outcomes could explain a portion of the health
disparities between racial and ethnic groups (16). In
fact, cross-sectional analyses from National Health and
Nutrition Examination Survey (NHANES) data found
that 25(OH)D concentrations explain one-quarter of
the disparity in systolic blood pressure and more than
one-third of the disparity in colorectal cancer mortality
and peripheral artery disease between African Ameri-
cans and people of European ancestry, even after ad-
justment for a wide range of factors typically related to
health disparities (17–19).

Two genomewide association study (GWAS) meta-
analyses of 25(OH)D concentrations in populations of
European ancestry have been conducted identifying loci
including group-specific component (vitamin D binding
protein) gene (GC), nicotinamide adenine dinucleotide
synthetase 1 gene (NADSYN1)/7-dehydrocholesterol
reductase gene (DHCR7), vitamin D 25-hydroxylase
gene (CYP2R1), and vitamin D 24-hydroxylase gene
(CYP24A1).GC transports the vitaminDmetabolites in
the blood. DHCR7 catalyzes the conversion of 7-
dehydrocholesterol in the skin to previtamin D3, a
precursor to vitamin D3. CYP2R1 codes for a cyto-
chrome P450 enzyme that hydroxylates vitamin D2/D3

to 25(OH)D. CYP24A1 codes for another cytochrome
P450 enzyme that degrades 25(OH)D to an inactive
metabolite, 24,25-dihydroxyvitamin D. However, no
large-scale GWAS has been performed in African or
Hispanic populations (1, 20). One study reported that
the heritability of 25(OH)D concentrations in Afri-
can Americans was 28%, and in two Hispanic cohorts
it ranged from 23% to 41% (21). A small GWAS in
229 Hispanic Americans found five independent single

nucleotide polymorphisms (SNPs) (three from nongenic
regions, one in A2BP1, and one in GPR114) that were
associated with 25(OH)D concentrations, with repli-
cation in the full set of 1,190 Hispanic Americans (22).
To provide additional evidence in African American and
Hispanic populations, we assembled the Trans-Ethnic
Evaluation of Vitamin D (TRANSCEN-D) GWAS
consortium, including 12,026 subjects from 12 cohorts
of African (n = 8541) and Hispanic (n = 3485) ancestry.
Through a genomewide meta-analysis of multiethnic
cohorts, we sought to confirm genetic associations
found in the European ancestry population and identify
genetic variants related to 25(OH)D concentrations in
African and Hispanic populations.

Materials and Methods

TRANSCEN-D consisted of 12 cohorts: 9 African American
(n = 8541) and 3 Hispanic from North America (n = 3485;
Table 1). Briefly, the African American cohorts included the
African American Diabetes Heart Study (AADHS; n = 531), the
Atherosclerosis Risk in Communities (ARIC) study (n = 2658),
the Bone Mineral Density in Childhood Study (BMDCS; n =
161), the Children’s Hospital of Philadelphia (CHOP) cohort
(n = 379), the Cardiovascular Heart Study (CHS; n = 303), the
Health, Aging and Body Composition (Health ABC) study
(n = 981),Mount Sinai BioMe BioBank (n = 361), the Jackson
Heart Study (JHS; n = 2132), and the Multi-Ethnic Study of
Atherosclerosis (MESA; n = 1035). The Hispanic American
cohorts included the Boston Puerto Rican Health Study
(BPRHS; n = 1360), Insulin Resistance Atherosclerosis Study
Family Study (IRASFS; n = 738), and MESA (n = 1387).
Additionally, as part of the transethnic meta-analysis,
data from 16,124 participants in the Study of Underlying
Genetic Determinants of Vitamin D and Highly Related
Traits [SUNLIGHT, the largest European ancestry GWAS
for 25(OH)D] were used. The data used in these analyses
were collected under guidelines from the relevant institu-
tional review boards, and all participants provided in-
formed consent, including consent for use of genetic data.
The TRANSCEN-D cohort characteristics are included in
Table 1.

Each TRANSCEN-D cohort followed the sample and SNP
quality control (QC) procedures specified in the TRANSCEN-
D uniform analysis plan. Sample QC excluded samples
with ,95% call rates. Additional sample exclusion criteria
applied by some cohorts are reported in Supplemental Table 1.
SNP-level exclusion criteria (at the cohort level) included mi-
nor allele frequency (MAF) ,0.01 (IRASFS cohort used
MAF ,0.05), call rate ,95%, and Hardy-Weinberg equilib-
rium P ,1026. Imputation was done with IMPUTE or the
Markov Chain–based haplotyper (MaCH). IMPUTE users
excluded SNPs with a proper info ,0.4, and MaCH users
excluded SNPs with an r2 ,0.3. Each cohort performed im-
putation with the phase 1 reference panels of the 1000Genomes
Project (23). 25(OH)D values were natural log transformed
because vitamin D values tend to be nonnormally distributed.
SNPs that passed QCwere tested for association with 25(OH)D
concentrations via an additive genetic model adjusted for age,
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sex, body mass index (BMI), ultraviolet (UV) index, and
principal components 1 to 10, obtained from genotype data.
Principle components were adjusted to account for population
structure. Two cohorts, AADHS and IRASFS, were family
studies and accounted for sample relatedness [AADHS: linear
mixed model (Genome-wide Efficient Mixed Model Associa-
tion, or GEMMA); IRASFS: variance component models (Se-
quential Oligogenic Linkage Analysis Routines, or SOLAR)]
and admixture proportions instead of principal components.
Site-specific UV index in the month of the blood draw was
calculated for 58 US cities by averaging of the previous
3 months’ UV indexes, based on data from the National
Weather Service Climate Prediction Center (24). Cohorts used
continuous UV index values for the city nearest the blood
draw location.

The cohort-specific genomewide association results were
meta-analyzed within each ancestral group with the sample
size–weighted z score approach in Meta-Analysis Helper
software (METAL) (25). The z score approach was used to
adjust for the heterogeneity of assays used by the individual
cohorts (1). The results from each cohort were corrected
with the genomic control inflation factor, lGC, before
meta-analysis. The ancestry-specific (African and Hispanic
ancestry) meta-analysis results were then combined with
previously published SUNLIGHT meta-analysis results via a
sample size–weighted z score method of log-transformed
25(OH)D values, resulting in transethnic meta-analysis re-
sults (1). The sample size–weighted z score method was
chosen over the inverse variance–weighted fixed-effects
model because of the differences in linkage disequilibrium
(LD) patterns between the common variants (MAF. 0.01) in
the diverse ancestries and differences in 25(OH)D assays
between the cohorts. The significance threshold was set to
P , 5 3 1028.

We used R version 3.1.1 software to draw regional associ-
ation plots showing –log10 P values in the y-axis for all SNPs in
the region (within 250 kb of the index SNPs). The index SNP for
the regional association plots was the SNP with the lowest
P-value from the transethnic meta-analysis.

We calculated statistical power to identify SNPs at the
significance threshold of 5 3 1028 for a two-sided test, as-
suming an additive genetic model in Quanto version 1.2.4.

With our transethnic sample size of 28,150, we have 80%
power (a = 53 1028) to detect an effect size of 0.012 (units in
log[25(OH)D]), assuming an average 25(OH)D level of
19 nmol/L (SE 0.136) and minor allele frequency of 0.1.

Results

Our transethnic and ancestry-specific meta-analyses rep-
licated findings from previous vitamin GWAS studies,
as summarized in Supplemental Table 3, and discovered
potentially novel findings near three genes: KIF4B,
HTR2A, and ANO6/ARID2.

Genetic variants inGCwere associatedwith 25(OH)D
concentrations in both the African and Hispanic ancestry
analyses at levels of genomewide significance (Table 2).
GC SNPs rs843005 (P = 1.0 3 10212, n = 7255) and
rs222040 (P = 1.1 3 10212, n = 7258) were associated
with 25(OH)D in the African ancestry cohort. These
SNPs were in low LD with the top SUNLIGHTGC SNP,
rs2282679 (LD as measured by coefficient of correlation
r2 = 0.08 for both rs843005 and rs222040, in 1000
Genomes Americans of African Ancestry in SW USA
(ASW) (1). For the Hispanic ancestry cohort, four GC
SNPs reached genomewide significance: rs1526692 (P =
2.6 3 10210, n = 2095), rs377687 (P = 6.2 3 1029, n =
2095), rs56003670 (P = 6.7 3 1029, n = 2099), and
rs3755967 (P = 9.03 1029, n = 2725). These SNPs were
not highly correlated with each other, and the LD be-
tween these four SNPs and the top SUNLIGHT GC SNP
ranged from 0.11 to 0.93 in 1000 Genomes Mexican
Ancestry From Los Angeles USA (MXL) and 0.097 to 1.0
in 1000 Genomes Puerto Ricans From Puerto Rico.

An SNP, rs79666294, near kinesin family member
4B gene (KIF4B) reached genomewide significance
(P = 2.7 3 1028, n = 3999) in the African ancestry
cohort. This SNP was not genotyped, nor imputed, in

Table 1. TRANSCEN-D Cohorts’ Specific Characteristics

Ethnicity Cohort n Female Age, y [Mean (SD)]
BMI, kg/m2

[Mean (SD)]
25(OH)D, ng/mL

[Mean (SD)]

African American AADHSa,b 531 56.8% 56.5 (9.6) 35.1 (8.5) 20.5 (11.8)
ARICa 2658 56.0% 56.3 (5.8) 30.0 (6.2) 19.0 (7.0)

BMDCSb 161 53.4% 17.2 (4.2) 23.6 (5.1) 16.3 (7.8)
CHOPa 379 55.1% 11.7 (4.7) 24.6 (9.1) 22.6 (13.1)
CHSa 303 70.0% 72.7 (5.5) 28.4 (5.5) 18.1 (8.7)

Health ABCb 981 57.2% 74.5 (2.9) 28.4 (5.5) 20.8 (9.0)
Mount Sinai BioMe BioBankb 361 73.4% 55.6 (14.7) 30.4 (8.4) 22.9 (13.5)

JHSa 2132 60.7% 49.9 (12.1) 32.3 (7.8) 14.9 (6.5)
MESAa 1035 55.0% 62.3 (10.1) 30.1 (5.8) 19.1 (9.2)

Hispanic BPRHSb 1360 70.1% 57.1 (7.5) 31.8 (6.6) 17.5 (6.8)
IRASFSb 738 58.9% 40.6 (13.7) 28.3 (5.7) 16.5 (7.2)
MESAa 1387 52.4% 61.4 (10.3) 29.5 (5.2) 24.7 (11.2)

Abbreviation: SD, standard deviation.
aChromatographic 25(OH)D assay was used.
bImmune-based 25(OH)D assay was used.
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the SUNLIGHT consortium. The SNPs in this region
were not associated with 25(OH)D concentrations in
SUNLIGHT or the Hispanic ancestry meta-analysis
(Supplemental Fig. 1).

The transethnic meta-analysis in METAL identified var-
iants in or nearGC, DHCR7, HTR2A, and ANO6/ARID2
as significantly associated with 25(OH)D. Overall, 100
SNPs reached genomewide significance in the transethnic
meta-analysis (Supplemental Table 2); however, many of
these were correlated with each other. After we consid-
ered LDwithin each ancestry [ASW,MXL, andNorthern
Europeans From Utah (CEU)], using 1000 Genomes
Project data to remove SNPs with ancestry-specific r2 .
0.05 (26), 13 SNPs remained (Table 3). Nine of these
SNPs were on chromosome 4 in or upstream of GC;
two were upstream of DHCR7, one was located be-
tween ANO6 and ARID2, and one was located near the
HTR2A gene region.

Regional association plots highlight genomic intervals
of interest near loci GC, DHCR7, HTR2A, and ANO6/
ARID2 (Figs. 1, 2, and 3 and Supplemental Fig. 2). The
black diamond in each figure represents the most strongly
associated SNP in that region from the transethnic meta-
analysis results in Table 3. The regional association plot
for theGC locus (Fig. 1) demonstrates strong associations
but different top SNPs in this locus for each ancestry. For
instance, the top SNP in this region in the European
ancestry was rs2282679 (P = 4.63 10263, MAF = 0.29),
whereas the top SNPs in the African and Hispanic an-
cestries were rs843005 (P = 1.0 3 10212, MAF = 0.42)
and rs1526692 (P = 2.6 3 10210, MAF = 0.31), re-
spectively. The top African and Hispanic SNPs were in
low LDwith rs2282679 (r2 = 0.08 and 0.17, respectively).
The top SNP differs by ancestry, probably because of
differences in the LD structure and variation in frequency
of the underlying functional SNPs between ancestries.

At the DHCR7 locus (Fig. 2), the top SNPs for the
European (rs7944926; P = 1.63 10213, MAF = 0.23) and

African (rs12792306; P = 4.8 3 1026, MAF = 0.41) an-
cestries were in strong LD (r2 .0.8) with the top SNP
from the transethnic analysis (rs7938885; P = 4.53 10216,
MAF = 0.37). For the Hispanic ancestry, only one cohort
(IRAFS) had this SNP, and the sample size dropped down
to 738; therefore, power was probably insufficient to detect
an association with this locus.

The locus HTR2A (rs1410656) was identified by the
transethnic GWAS (Fig. 3). In the European ancestry–
specificmeta-analysis, SNP rs1410656 is a low-frequency
variant (MAF = 0.01) associated with 25(OH)D con-
centrations (P = 1.2 3 1027) and the only strongly as-
sociated SNP in this region; no other SNPs with r2 .0.3
with rs1410656 are in this region. The plot for African
ancestry shows a weaker association with this SNP (P =
1.23 1023, MAF = 0.10) but a stronger association with
two other SNPs near theHTR2A gene that are not in LD
(r2 ,0.3) with the top transethnic SNP. The top trans-
ethnic SNP was not available in the Hispanic ances-
try cohorts, nor were there highly significant SNPs in
this region.

Another locus, ANO6/ARID2 (rs719700), was iden-
tified by the transethnic GWAS (Supplemental Fig. 2). In
the European ancestry–specific meta-analysis, SNP
rs719700 is a low-frequency variant (MAF = 0.01) as-
sociated with 25(OH)D concentrations (P = 1.7 3 1027)
and the only strongly associated SNP in this region; no
other SNPs with r2 .0.3 with rs719700 are in this region.
The plot for African ancestry shows a weaker association
with this SNP (P = 5.03 1023,MAF = 0.06) but a stronger
association with several other SNPs in or upstream of the
ARID2 gene that are not in LD (r2 ,0.3) with the top
transethnic SNP. The top transethnic SNP was not
available in the Hispanic ancestry cohorts, nor were there
highly significant SNPs in this region.

Regional association plots for KIF4B, CYP2R1, and
CYP24A1 are included in Supplemental Figs. 1, 3, and 4.
Quantile-quantile andManhattan plots for ancestry-specific

Table 2. Genomewide Significant Vitamin D SNPs in African and Hispanic Ancestry Populations

SNP Chromosome Position Reference Alternate

Reference
Allele

Frequency z-Score P Sample Size
Nearest
Locus

African ancestry GWAS meta-analysis
rs843005 4 72616327 T C 0.42 7.1 1.0 3 10212 7255 GC
rs222040 4 72616932 A G 0.42 7.1 1.1 3 10212 7258 GC
rs79666294 5 154426706 C T 0.99 5.6 2.7 3 1028 3999 KIF4B

Hispanic ancestry GWAS meta-analysis
rs1526692 4 72578724 A G 0.69 6.3 2.6 3 10210 2095 GC
rs377687 4 72569065 A G 0.38 5.8 6.2 3 1029 2095 GC
rs56003670 4 72572154 A C 0.75 5.8 6.7 3 1029 2099 GC
rs3755967 4 72609398 C T 0.77 5.7 9.0 3 1029 2725 GC

Genomewide significance is defined as P, 53 1028. The reference allele is the vitamin D raising allele. Position corresponds to build 37. The model was
adjusted for age, sex, BMI, UV index, and principal components.
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and transethnic analyses can be found in Supplemental
Figs. 5–10.

Discussion

In this study, we have examined ancestry-specific GWAS
meta-analyses and a transethnicmeta-analysis to evaluate
the genetic determinants of 25(OH)D concentrations in
people of African and Hispanic ancestries. In addition to
confirming findings from previous studies, we have
identified variants rs719700, near ANO6/ARID2, and
rs1410656, near HTR2A, by transethnic analysis and a
variant, rs79666294, near KIF4B by ancestry-specific
GWAS meta-analyses in the African American cohorts
(1, 20). Thus far little has been published on the genetic
architecture underlying 25(OH)D concentrations in
people of non-European ancestry. Therefore, this study
makes an important contribution to our knowledge.

Variants in GC, DHCR7, CYP2R1, and CYP24A1,
in order of significance, were the loci with the stron-
gest associations with 25(OH)D concentrations in
SUNLIGHT, a GWAS of 33,996 individuals of European
ancestry (1). Our transethnic meta-analysis replicated the
GC andDHCR7 findings: several SNPs in or upstream of
GC reached genomewide significance, and two addi-
tional genomewide significant SNPs were located up-
stream of DHCR7 (rs7938885 and rs10898223), in a
similar location to the top DHCR7 SNP from SUN-
LIGHT (3 kb and 60 kb away, respectively). Addition-
ally, ancestry-specific meta-analyses in African and
Hispanic Americans replicated the GC findings, under-
scoring that the GC locus is associated with vitamin D
concentrations for all three ancestries. Of note, the top
African and Hispanic ancestry SNPs are in low LD with
the top European SNP (r2 = 0.08 and r2 = 0.17,

respectively). Although the tagging (genotyped) SNP as-
sociated with vitamin D concentrations varies by ancestry
[because of differing LD (correlation) structures in dif-
ferent ancestries], the consistency of results indicates that
GC is biologically relevant to vitamin D concentrations.
Previously reported SNPs, rs4588 and rs7041, that are
nonsynonymous variants were significantly associated
with vitamin D levels in the transethnic evaluation [rs4588
(P = 2.33 10211) and rs7041 (P = 1.63 10249)] but not in
the ancestry-specific evaluations [Hispanic: rs4588 (P =
1.23 1026), rs7041 (P=1.63 1025),African (rs4588 (P=
1.7 3 1027), and rs7041 (P = 1.1 3 1027)]. Ancestry-
specific meta-analyses replicated the DHCR7 locus in
African Americans with only suggestive evidence for
replication in Hispanic Americans, probably because of a
reduced sample size in our Hispanic ancestry sample. The
top African ancestry SNP is in high LD (.0.5) with the top
European SNP. Additionally, our Hispanic ancestry meta-
analysis showed a consistent direction of effect for the five
genomewide significant SNPs (rs10141935, rs1507023,
rs4778359, rs9937918, and rs2806508) in a previously
conducted Hispanic ancestry GWAS, although our His-
panic ancestry sample included 192 of the Hispanic
Americans from the previous GWAS (22). None of the
previously reported genomewide significant SNPs were
found in the MESA cohort, and only two (rs9937918 and
rs2806508) were in the BPRHS cohort. However, the
direction of effect in the BPRHS cohort alone was con-
sistent with the previous GWAS, providing some evidence
for replication of two of the previously discovered SNPs.

Interestingly, neither ancestry-specific GWAS repli-
cated previous associations with loci in CYP2R1 and
CYP24A1 from the SUNLIGHT consortium. The top
SUNLIGHT SNP inCYP2R1was rs10741657 (P = 3.33
10220, discovery plus replication samples, MAF = 0.40).

Table 3. Genomewide Significant Vitamin D SNPs in a Transethnic Evaluation and Stratified by Ethnicity

SNP INFO Transethnic Z-Score METAL

SNP Chromosome Position Reference Alternate
Nearest
Locus

Reference
Allele

Frequency z-Score P
Sample
Size

rs2282679 4 72608383 T G GC 0.77 16.6 4.4 3 10263 24,497
rs7041 4 72618334 C A GC 0.44 14.8 1.6 3 10249 24,729
rs377687 4 72569065 A G GC 0.35 8.4 4.9 3 10217 23,402
rs6837549 4 72596821 T G GC 0.46 7.4 1.7 3 10213 21,193
rs1402155 4 72705908 G A GC 0.63 7.6 2.1 3 10214 24,431
rs17767445 4 72745267 A G GC 0.15 7.2 6.1 3 10213 20,417
rs13107347 4 72974748 C T GCa 0.33 6.1 8.0 3 10210 26,517
rs1352844 4 72647749 T C GC 0.13 5.7 1.5 3 1028 24,119
rs6814839 4 72751722 A G GC 0.88 5.6 2.0 3 1028 26,505
rs7938885 11 71170043 C T DHCR7b 0.63 8.1 4.5 3 10216 22,039
rs10898223 11 71219264 G A DHCR7c 0.84 5.6 1.9 3 1028 22,020
rs719700 12 46029209 T C ANO6/ARID2 0.96 5.6 2.8 3 1028 12,087
rs1410656 13 47542521 C T HTR2A 0.94 5.9 3.7 3 1029 12,841

(Continued)
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This SNP was not significantly associated with 25(OH)D
in the Hispanic (P = 0.17, MAF = 0.34) or African (P =
0.89, MAF = 0.27) ancestry-specific analyses.CYP2R1 is
responsible for conversion of vitaminD2/D3 to 25(OH)D;
this conversion happens in the liver and should not differ
by degree of skin pigmentation that can differ by ancestry.
Therefore, a lack of association in non-European ancestry
is unexpected. Power analyses for our transethnic sample
(n = 24,443 forCYP2R1) indicate that we have statistical
power ranging from 6.8% to 86.0% to detect an effect
size in CYP2R1 that is roughly equivalent to 0.06% to
0.17% of the trait variation explained by an SNP (R2)
withMAF 0.3575. This finding could explain whywe did
not observe replication of theCYP2R1 results reported in
SUNLIGHT. It is also likely that the SNP found in
SUNLIGHT is in strong LD with the underlying func-
tional variant in European ancestry but not inHispanic or
African ancestries, in which case the underlying func-
tional variant was not adequately tagged by any geno-
typed or imputed SNP. The top SUNLIGHT SNP in
CYP24A1, rs6013897 (P = 6.0 3 10210, discovery plus
replication samples, MAF = 0.21), was not replicated in
the Hispanic and African ancestry-specific analyses (P =
0.02, MAF = 0.35 and P = 0.30, MAF = 0.24, re-
spectively). CYP24A1 encodes an enzyme that degrades
25(OH)D to 24,25-dihydroxyvitamin D, an inactive
metabolite. Lack of replication is not unexpected for
CYP24A1 because the variant in this gene was found
only in the combined discovery and replication sample
(n = 33,996) in SUNLIGHT but not in a smaller GWAS

meta-analysis by Ahn et al. (20) (n = 4501) or in the
SUNLIGHT discovery sample (n = 16,124) (1). Calculated
statistical power for CYP24A1 is 0.01% for those of
Hispanic ancestry (n = 738) and 0.41% for those of African
ancestry (n = 7022), whereas the power is 65.72% for the
SUNLIGHT (discovery plus replication samples) and
4.55% for the SUNLIGHT discovery sample (n = 14,020).

The African American–specific GWAS meta-analysis
uncovered a genomewide significant association with a
low-frequency SNP, rs79666294, near KIF4B (Table 2),
although its signal is slightly below the genomewide
threshold in the transethnic meta-analysis (P = 1.2 3

1026, n = 4737). This variant was not significantly as-
sociated with 25(OH)D concentrations in the Hispanic
ancestry cohort (n = 738; P = 0.61; MAF = 0.03) and not
genotyped or imputed in SUNLIGHT (MAF in the Eu-
ropean 1000 Genomes population is 0.03), so the results
appear to be driven by the African American cohorts
(MAF = 0.01). Although the closest gene to SNP
rs79666294 is KIF4B, this SNP is an expression quan-
titative trait locus for another nearby gene, FAXDC2
[Genotype-Tissue Expression (GTEx) Portal accessed on
22 November 2017; GTEx Analysis Release V7, dbGaP
Accession phs000424.v7.p2]. FAXDC2 codes for the
fatty acid hydroxylase domain–containing protein 2,
which is involved in cholesterol and steroid biosynthesis.
Given that cholesterol (7-dehydrocholesterol) is a pre-
cursor to vitamin D (previtamin D3) produced in the skin,
this finding could have meaningful biologic implications.
According to the GTEx Project, the highest expression of

Table 3. Continued

AFA Z-Score METAL HIS Z-Score METAL SUNLIGHT Z-Score METAL

Reference
Allele

Frequency z-Score P
Sample
Size

Reference
Allele

Frequency z-Score P Sample Size

Reference
Allele

Frequency z-Score P
Sample
Size

0.91 3.6 2.7 3 1024 7097 0.80 4.9 1.0 3 1026 1361 0.71 16.8 4.6 3 10263 16,039
0.17 5.3 1.1 3 1027 7258 0.44 4.2 2.6 3 1025 1361 0.56 13.6 3.7 3 10242 16,110
0.34 2.5 1.3 3 1022 7258 0.38 5.8 6.2 3 1029 2095 0.34 6.8 8.0 3 10212 14,049
0.38 0.2 8.6 3 1021 5126 NA NA NA NA 0.49 8.4 5.1 3 10217 16067
0.46 1.5 1.3 3 1021 8290 0.67 4.7 3.1 3 1026 2100 0.72 7.2 8.6 3 10213 14,041
0.07 2.1 3.4 3 1022 7258 0.26 3.1 1.9 3 1023 2099 0.19 6.7 1.6 3 10211 11,060
0.23 2.7 6.4 3 1023 8293 0.35 1.4 1.8 3 1021 2102 0.37 5.5 4.6 3 1028 16,122
0.13 1.1 2.5 3 1021 7258 0.07 2.4 1.8 3 1022 738 0.13 5.7 1.4 3 1028 16,123
0.77 1.4 1.7 3 1021 8293 0.93 1.1 2.9 3 1021 2101 0.94 5.8 5.2 3 1029 16,111
0.39 4.2 2.7 3 1025 7258 0.51 0.8 4.4 3 1021 738 0.77 7.0 2.1 3 10212 14,043
0.80 1.7 8.4 3 1022 7251 0.83 1.6 1.2 3 1021 738 0.86 5.5 4.5 3 1028 14,031
0.94 2.8 5.0 3 1023 6727 NA NA NA NA 0.99 5.2 1.7 3 1027 5360
0.90 3.2 1.2 3 1023 7251 NA NA NA NA 0.99 5.3 1.2 3 1027 5590

Genomewide significance is defined as P, 53 1028. Position corresponds to build 37. Shading indicates that for the given race or ethnicity the SNP is in
LD (r2 . 0.05) with another SNP for that race; LD between the 106 SNPs was calculated for each ancestry (1000 Genomes data for MXL, ASW, and CEU
populations were used) with the LD Link Tool (SNP Clip), provided by the National Cancer Institute.

Abbreviations: AFA, African ancestry; HIS, Hispanic ancestry; NA, not available (not genotyped or imputed).
a304 kb upstream of GC in NPFFR2.
b11 kb upstream of DHCR7 in NADSYN1.
c60 kb upstream of DHCR7.
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FAXDC2 is in pituitary tissue. This
finding warrants replication in a larger
African ancestry cohort, when available.

Transethnic evaluation led to the
identification of a low-frequency SNP,
rs1410656, near the HTR2A gene.
HTR2A encodes a serotonin receptor.
Mutations in this gene affect seroto-
nin levels, which are associated with
mental health, such as schizophrenia,
obsessive-compulsive disorder, and
major depressive disorder (27). Addi-
tionally, vitamin D supplementation
has been shown to reduce depressive
symptoms and decrease the risk of
schizophrenia (28, 29). However, the
mechanism by which HTR2A func-
tions warrants further inquiry. Addi-
tionally, the transethnic evaluation
led to a second discovery, rs719700
(MAF = 0.04), on chromosome 12,
which is downstream of ANO6 and
upstream of ARID2 (Supplemental
Fig. 2); this SNP was found to be as-
sociated with 25(OH)D in the African
American and SUNLIGHT cohorts as
well but was monomorphic in the
Hispanic American cohort (Table 3).
Although rs719700 is the top variant
in this region in the transethnic analysis
and in SUNLIGHT, the most statisti-
cally significant SNP in this region for
African Americans is rs114330994.
SNPs rs719700 and rs114330994 are
not in LD, suggesting that the LD
structure around a putative underlying
functional variant is different between
African and European ancestry.
ANO6 activates a multipass trans-
membrane protein that is involved in
calcium transport primarily in the
bones (30, 31). Scott syndrome is a rare
congenital bleeding disorder caused
by amutation of this gene. There are no
studies available examining 25(OH)D
concentrations in this syndrome.
However, ANO6 has been shown to
have differential expression in periph-
eral blood cells between the first and
third trimester in pregnancy that is
modified by underlying vitamin D
concentrations (32). ARID2 is a mem-
ber of the adenine- and thymine-rich

Figure 1. Regional association plots for GC SNPs on chromosome 4 for European (EUR),
African (AFR), and Hispanic (AMR) ancestries. Log 10 P values of genotyped SNPs are plotted
against their position in the genome (build 37). The top SNP from the transethnic analysis is
shown with the black diamond, and shading of the circles corresponds to the LD with the
top transethnic SNP (measured with r2 and relevant populations from 1000G phase I data).
Because of the highly significant P values, the SUNLIGHT regional association plot is on
a different scale than the African and Hispanic plots are.
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interactive domain–containing family
of DNA-binding proteins that is a
subunit of a protein involved in ligand-
dependent transcriptional activation by
nuclear receptors. Mutations in this
gene are associated with hepatocellular
carcinomas (30, 31, 33). The relation-
ship between this gene region and 25
(OH)D concentrations is unclear.

Loci HTR2A, ANO6/ARID2, and
KIF4B were not associated with
25(OH)D concentrations in the SUN-
LIGHT European ancestry analysis.
SNP rs79666294 (KIF4B) was not
genotyped, and no other SNPs in the
region were significant in SUNLIGHT.
SNPs rs1410656 (HTR2A) and rs719700
(ANO6/ARID2) were not identified in
the European ancestry analysis because
it was not selected for replication in
SUNLIGHT because it did notmeet the
study’s criteria for replication (1).

There are limitations to our study.
Although the sample sizes are the
largest to date, they are small, espe-
cially for the Hispanic American co-
hort (N = 3485). Of note, our Hispanic
cohorts come from Mexican and
Puerto Rican backgrounds, and this
heterogeneity in the Hispanic samples
could have limited our ability to detect
associations. Additionally, not all co-
horts included in the analyses used the
same assay for 25(OH)D measure-
ment. We accounted for this limitation
by combining test statistics in the form
of z scores rather than performing a
fixed-effect meta-analysis of the ef-
fect estimates. Finally, the imputation
used may not have been dense enough
to capture the functional SNP or
in some cases (i.e., CYP2R1 and
CPY24A1) the SNPs in LD with the
functional SNP.

Conclusion

Investigators from the TRANSCEN-D
consortium performed the largest
multiethnic GWAS for genetic deter-
minants of 25(OH)D concentrations
to date. TRANSCEN-D consists of
data from 12 cohorts of African and

Figure 2. Regional association plots for DHCR7 SNPs on chromosome 11 for European
(EUR), African (AFR), and Hispanic (AMR) ancestries. Log 10 P values of genotyped SNPs are
plotted against their position in the genome (build 37). The top SNP from the transethnic
analysis is shown with the black diamond, and shading of the circles corresponds to the LD
with the top transethnic SNP (measured with r2 and relevant populations from 1000G phase I
data).
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Hispanic ancestry. By using the z score
approach, the transethnic evaluation
replicated previous associations be-
tween both GC and DHCR7 and
25(OH)D. The evaluation of individ-
ual non-European cohorts and the
transethnic meta-analysis identi-
fied SNPs near ANO6/ARID2 and
HTR2A and an SNP near KIF4B for
African ancestry. Additional inquiry
into the biological relationship be-
tween 25(OH)D and these regions is
warranted.
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