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Conclusions: Due to remarkable improvements in childhood cancer treatment and supportive
care during the past several decades, 5-year survival rates for childhood cancer currently
are.80%. However, by virtue of their disease and its treatments, childhood cancer survivors are
at increased risk for a wide range of serious health conditions, including disorders of the en-
docrine system. Recent data indicate that 40% to 50% of survivors will develop an endocrine
disorder during their lifetime. Risk factors for endocrine complications include both host (e.g.,
age, sex) and treatment factors (e.g., radiation). Radiation exposure to key endocrine organs
(e.g., hypothalamus, pituitary, thyroid, and gonads) places cancer survivors at the highest risk of
developing an endocrine abnormality over time; these endocrinopathies can develop de-
cades following cancer treatment, underscoring the importance of lifelong surveillance. The
following guideline addresses the diagnosis and treatment of hypothalamic–pituitary and
growth disorders commonly encountered in childhood cancer survivors. (J Clin Endocrinol Metab
103: 2761–2784, 2018)
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List of Recommendations

Short stature/impaired linear growth in childhood
cancer survivors
Diagnosis and monitoring of short stature/impaired
linear growth in childhood cancer survivors

1.1 We recommend prospective follow-up of linear
growth for childhood cancer survivors at high
risk for short adult height, namely those exposed
to cranial radiation therapy, craniospinal irradi-
ation, or total body irradiation at a young age and
those with a history of inadequate weight gain or
prolonged steroid requirement. (1j���O)

1.2 We recommend measuring standing height and
sitting height in childhood cancer survivors treated
with radiation that included the spine (i.e., total
body irradiation, craniospinal irradiation, as well
as radiation to the chest, abdomen, or pelvis).
(1j��OO)
Technical remark: Sitting height is measured directly
using a sitting height stadiometer, and the lower
segment can be determined by subtracting sitting
height from standing height. Alternatively, the lower
segment can be determined by measuring from the
pubic symphysis to the floor, and the upper segment
can be determined by subtracting leg length from
height. The upper to lower segment ratio can then be
calculated but differs depending on the method used
and ethnicity. In situations where clinicians are
unable to measure sitting height, measuring arm
span and comparing it to standing height will
provide an estimate of spinal foreshortening due to
prior spinal radiation.

Treatment of short stature/impaired linear growth
in childhood cancer survivors

1.3 We suggest against using growth hormone in cancer
survivors who do not have growth hormone de-
ficiency to treat for short stature and/or poor linear
growth following spinal irradiation. (2j�OOO)

1.4 We suggest against treatment with growth hor-
mone in children with short stature and/or im-
paired linear growth who are being treated with
tyrosine kinase inhibitors. (2j�OOO)

Growth hormone deficiency in childhood
cancer survivors

Diagnosis of growth hormone deficiency in
childhood cancer survivors

2.1 We recommend lifelong periodic clinical assess-
ment for growth hormone deficiency in survivors

treated for tumors in the region of the hypothalamic–
pituitary axis and in those exposed to hypothalamic–
pituitary axis radiation treatment $18 Gy (e.g.,
various brain tumors, nasopharyngeal carci-
noma, acute lymphoblastic leukemia, lymphoma).
(1j���O)
Technical remark: The consensus of the writing
committee is to assess height in children every 6 to
12 months.

2.2 We recommend against relying solely on serum
insulin-like growth factor-1 levels in childhood
cancer survivors exposed to hypothalamic–pituitary
axis radiotherapy to make the diagnosis of growth
hormone deficiency. (1j��OO)

2.3 We advise using the same provocative testing to
diagnose growth hormone deficiency in child-
hood cancer survivors as are used for di-
agnosing growth hormone deficiency in the
noncancer population. (Ungraded Good Prac-
tice Statement)

2.4 We recommend against the use of growth hormone–
releasing hormone alone or in combination with
arginine in childhood cancer survivors to diagnose
growth hormone deficiency after hypothalamic–
pituitary axis radiation. (1j��OO)

2.5 We suggest against using spontaneous growth
hormone secretion (e.g., 12-hour overnight
sampling) as a diagnostic test in determining
GH deficiency in childhood cancer survivors.
(2j�OOO)

2.6 We recommend that formal testing to establish a
diagnosis of growth hormone deficiency is not re-
quired in childhood cancer survivors with three
other confirmed anterior pituitary hormone deficits.
(1j��OO)

2.7 We recommend retesting adult cancer survi-
vors exposed to hypothalamic–pituitary axis
radiation treatment and with a diagnosis of
isolated growth hormone deficiency in child-
hood. (1j��OO)

Treatment of growth hormone deficiency in
childhood cancer survivors

2.8 We recommend offering growth hormone treat-
ment in childhood cancer survivors with con-
firmed growth hormone deficiency based on the
safety and efficacy demonstrated in that pop-
ulation. (1j��OO)

2.9 We suggest waiting until the patient has been
1 year disease-free, following completion of ther-
apy for malignant disease, before initiating growth
hormone treatment. (2j�OOO)
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2.10 In childhood cancer survivors who have chronic
stable disease and thus may not ever be “disease-
free” (particularly survivors treated for optic
pathway tumors), we advise discussing the ap-
propriateness of growth hormone treatment and
its timingwith their oncologist. (UngradedGood
Practice Statement)

2.11 We advise treating growth hormone-deficient
childhood cancer survivors with similar growth
hormone treatment regimens as are appropriate
for individuals with growth hormone deficiency
from the noncancer population. (UngradedGood
Practice Statement)

Central precocious puberty in childhood
cancer survivors

Diagnosis of central precocious puberty in childhood
cancer survivors

3.1 We recommend periodically assessing childhood
cancer survivors for evidence of central precocious
puberty if they have a history of hydrocephalus,
tumors developing in or near the hypothalamic
region, and/or have been exposed to hypothalamic–
pituitary radiation. (1j���O)

3.2 We recommend against using testicular volume as
the primary or sole indicator of degree of sexual
development in male childhood cancer survivors
previously treated with gonadotoxic agents, such
as alkylating agents or testicular radiotherapy.
(1j���O)

3.3 We recommend measuring serum testosterone,
preferably using liquid chromatography–tandem
mass spectroscopy, and luteinizing hormone levels
prior to 10:00 AM to complement the clinical as-
sessment of male childhood cancer survivors who
are suspected of or are at risk for developing central
precocious puberty and were exposed to gonado-
toxic treatments. (1j��OO)
Technical remark:Clinicians need to interpret plasma
LH levels in patients exposed to gonadotoxic
treatments in the context of their medical history
and physical examination. Elevated LH levels in
such patients may be due to primary gonadal
injury rather than to the onset of central puberty.

Treatment of central precocious puberty in
childhood cancer survivors

3.4 We advise that the indications and the type of
treatment regimens for central precocious puberty
in childhood cancer survivors should be similar to
those used for central precocious puberty in the

noncancer population. (Ungraded Good Practice
Statement)

Hypogonadotropic hypogonadism in childhood
cancer survivors

Diagnosis of luteinizing hormone/follicle-
stimulating hormone deficiency in childhood
cancer survivors

4.1 We recommend screening for luteinizing hormone/
follicle-stimulating hormone deficiency in child-
hood cancer survivors exposed to hypothalamic–
pituitary axis radiation at doses $30 Gy and in
those with a history of tumors or surgery af-
fecting the hypothalamic–pituitary axis region.
(1j���O)

4.2 We advise using the same strategies to diagnose
luteinizing hormone/follicle-stimulating hormone
deficiency in childhood cancer survivors as are
used in the noncancer population. (Ungraded
Good Practice Statement)

Treatment of luteinizing hormone/follicle-
stimulating hormone deficiency in childhood
cancer survivors

4.3 We advise following the same treatment approach
to luteinizing hormone/follicle-stimulating hormone
deficiency in childhood cancer survivors as is ap-
propriate in the noncancer population. (Ungraded
Good Practice Statement)

Central hypothyroidism–thyroid-stimulating
hormone deficiency in childhood cancer survivors

Diagnosis of central hypothyroidism in childhood
cancer survivors

5.1 We recommend lifelong annual screening for thyroid-
stimulating hormone deficiency in childhood cancer
survivors treated for tumors in the region of the
hypothalamic–pituitary axis and those exposed to
$30Gy hypothalamic–pituitary radiation. (1j���O)

5.2 We advise using the same biochemical tests to
screen for thyroid-stimulating hormone defi-
ciency in childhood cancer survivors as are used
in the noncancer population. (Ungraded Good
Practice Statement)

5.3 We recommend against using serum triiodo-
thyronine, thyroid-stimulating hormone surge anal-
ysis, or thyrotropin-releasing hormone stimulation
to diagnose thyroid-stimulating hormone deficiency.
(1j��OO)
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Treatment of thyroid-stimulating hormone
deficiency in childhood cancer survivors

5.4 We advise using the same approach to treat
thyroid-stimulating hormone deficiency in child-
hood cancer survivors as is used in the noncancer
population. (Ungraded Good Practice Statement)

Adrenocorticotropic hormone deficiency in
childhood cancer survivors

Diagnosing adrenocorticotropic hormone deficiency
in childhood cancer survivors

6.1 We recommend lifelong annual screening for ad-
renocorticotropic hormone deficiency in child-
hood cancer survivors treated for tumors in the
hypothalamic–pituitary region and in those ex-
posed to $30 Gy hypothalamic–pituitary radia-
tion. (1j���O)

6.2 We suggest screening for adrenocorticotropic
hormone deficiency in childhood cancer survi-
vors exposed to between $24 Gy and 30 Gy
hypothalamic–pituitary radiationwho are.10 years
postradiation or develop clinical symptoms sug-
gestive of adrenocorticotropic hormone deficiency.
(2j�OOO)

6.3 We advise using the same screening and dynamic
testing procedures to diagnose adrenocortico-
tropic hormone deficiency in childhood cancer
survivors as are used in the noncancer population.
(Ungraded Good Practice Statement)
Technical remark: Clinicians should consider the
influence of oral estrogen on total cortisol levels,
as it can increase cortisol-binding globulin raising
total, but not free, cortisol levels.

Treating adrenocorticotropic hormone deficiency in
childhood cancer survivors

6.4 We advise that clinicians use the same gluco-
corticoid regimens as replacement therapy in
childhood cancer survivors with adrenocortico-
tropic hormone deficiency as are used in the
noncancer population with adrenocorticotropic
hormone deficiency. (Ungraded Good Practice
Statement)

6.5 We recommend that clinicians instruct all pa-
tients with adrenocorticotropic hormone de-
ficiency regarding stress dose and emergency
glucocorticoid administration and instruct them
to obtain an emergency card/bracelet/necklace
regarding adrenal insufficiency and an emer-
gency kit containing injectable high-dose glu-
cocorticoid. (1j���O)

Commissioned Systematic Review

The Guideline Writing Committee commissioned two
systematic reviews to support this guideline. The first
systematic review aimed to evaluate the effect of GH
treatment (GHT) in childhood cancer survivors on adult
height (AH), risk of type 2 diabetes mellitus (T2DM),
abnormal lipids, metabolic syndrome, quality of life,
secondary tumors, and disease recurrence. Studies
showed that GHT vs no GHT in this patient group
was associated with a significant gain in AH and no
significant association with the occurrence of secondary
tumors or tumor recurrence. Studies that compared
childhood cancer survivors receiving GHT to normal
age- or sex-matched controls or controls with idiopathic
GH deficiency (GHD) or short stature showed that
GHTwas associated with either improved or unchanged
risk of T2DM, lipid profile, or metabolic syndrome.
GHT was also associated with improvement in quality
of life.

The second systematic review aimed to determine the
best screening and diagnostic tests for GHD in childhood
cancer survivors exposed to hypothalamic–pituitary ra-
diation. The major challenge in this review was the lack
of a “gold” standard to diagnose GHD. There was high
variability in the confirmatory testing each study used.
The insulin tolerance test (ITT) seems to be the most
accepted reference test in the reviewed studies, either
alone or in combination with arginine; although stan-
dardization of the testing dose and strategy among dif-
ferent practice groups is lacking. Studies included in this
report spanned 4 decades; therefore, changes in clinical
practice and assay methods can account for some of this
variability. IGF-I and IGF-binding protein 3 had a sub-
optimal diagnostic accuracy, and their results were
correlated. The patterns of diagnostic accuracy of all the
tests evaluated suggested a similar pattern to what we see
in patients who are not childhood cancer survivors.

Introduction

Cancers are relatively rare in the pediatric age group and
account for only ;1% of the cancer burden in the entire
population (1). Due to improvements in treatment and
supportive care, current 5-year survival rates are .80%
overall (2). The number of childhood cancers survivors is
ever increasing and by the year 2020, it is estimated that
there will be half a million survivors of childhood cancer
residing in the United States. As the number of survivors
has increased, there has been a growing awareness that
survivors are at far greater risk of developing serious
medical complications compared with noncancer con-
trols (3). In particular, endocrine disorders are highly
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prevalent among cancer survivors; recent data indicate
that 40% to 50% of survivors will develop at least one
endocrinopathy over the course of their lifetime (4, 5).
Risk of developing endocrine disorders is dependent on a
wide range of variables, including host (e.g., age, sex,
genetic background), disease (e.g., diagnosis, tumor lo-
cation), and treatment (e.g., surgery, chemotherapy,
radiation) factors. Radiation exposure to key endocrine
organs (e.g., hypothalamus, pituitary, thyroid and go-
nads) is the single most important risk factor and puts
survivors at extremely high risk of developing an endo-
crine abnormality over time. Importantly, radiation-induced
abnormalities are, in general, both dose- and time-dependent
such that the higher the dose and the longer the interval
following treatment, the greater the risk. Thus, endocrine
disorders may not develop for decades after completion of
cancer treatment, underscoring the critical importance of
lifelong surveillance for those at risk (4, 5).

The current guideline focuses on the diagnosis and
treatment of abnormalities of the hypothalamic–pituitary
(HP) (Fig. 1) and management of growth disorders
commonly encountered in childhood cancer survivors.
Impaired linear growth and short AH can be due to both
endocrine [e.g., central precocious puberty (CPP), GHD]
and nonendocrine (e.g., medications, poor nutrition,
radiation to the spine) factors. Not surprisingly, those
diagnosed and treated for cancer at the youngest ages are
the most affected. Currently, the only proven therapies
for short stature are confined to the treatment of CPP and

GHD, which follow the same general principles used in
children without a cancer history.

Abnormalities of the HP are observed in survivors
with tumors in the region of the HP, following surgery in
the region of the HP, or, most commonly, following
radiation to the HP (Fig. 1). Although HP dysfunction is
generally observed acutely in individuals with tumors
and/or surgery in the region of the HP, HP dysfunction is
usually not observed for months to years following
HP radiation. Whereas CPP and GHD occur follow-
ing relatively low doses of HP radiation [e.g., $18 Gy
following standard fractionation, $12 Gy following
hyperfractionation in the setting of total body irradiation
(TBI)], deficits of the other anterior pituitary hormones
[LH/FSH, thyroid-stimulating hormone (TSH), adreno-
corticotropic hormone (ACTH)] develop almost exclusively
in survivors previously exposed to HP doses $30 Gy. For
the most part, the diagnosis and treatment of anterior pi-
tuitary deficits in cancer survivors follow the same general
principles as are used in the noncancer population.

Although there have been a large number of excellent
studies assessing disordered growth and HP abnormal-
ities in this population that have informed this guideline,
limitations exist. The focus of most studies has been on
understanding prevalence and risk factors for the various
outcomes, with fewer studies addressing diagnosis and
management. Most of the data are descriptive and often
limited to relatively small case series. Furthermore, much
of the data relate to survivors treated in prior decades

Figure 1. Common hypothalamic pituitary late effects in survivors of childhood cancer.
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with therapies that may have been abandoned [e.g.,
prophylactic cranial radiation therapy (CRT) for acute
lymphoblastic leukemia] or modified in the current era
[e.g., reduced dose craniospinal irradiation (CSI) for
medulloblastoma]. Data on the late effects of newer
treatments such as targeted biologicals, immune modu-
lators, and conformal radiation with protons are ex-
tremely limited. Additional areas requiring further research
include: management of impaired growth following spinal
radiation and in those receiving long-term therapy with
tyrosine kinases such as imatinib; optimal frequency and
duration of screening studies following HP radiation;
and risks and benefits of GHT in adult survivors of
childhood cancer.

1. Short Stature/Impaired Linear Growth in
Childhood Cancer Survivors

Epidemiology, morbidity, and mortality
Impaired growth is defined by a loss in height SD over

time and may be transient or progressive. Short stature is
characterized by a standing AH of .2 SD below the
mean for age and sex. Growth impairment and short
stature in childhood cancer survivors may result from:
alterations in HP hormone secretion due to tumors in the
suprasellar/optic pathway region, surgery or CRT in-
volving the HP axis, primary hypothyroidism (resulting
from thyroidal radiation or high-dose alkylating agent
chemotherapy) (6, 7), and radiation-induced impairment

of spinal growth. The effects of both cranial and spinal
radiation are dose- and time-dependent. Additional causes
of growth impairment may include a malnourished state,
growth suppressive effects of medications (e.g., gluco-
corticoids, tyrosine kinase inhibitors [TKIs]), and medi-
cations associated with accelerated epiphyseal/physeal
closure, such as retinoids.

The prevalence of adult short stature ranges from
;9% in studies of childhood acute leukemia survivors
(8–10) to as high as 40% among survivors of childhood
brain tumors (11).

Etiology and clinical manifestations
The major risk factors for impaired growth and short

stature in cancer survivors are CRT, CSI, TBI, and
younger age at the time of treatment (Table 1). Exposure
to 18 to 30 Gy CRT may result in GHD and precocious
puberty, whereas doses .30 Gy may result in multiple
pituitary hormone deficiencies (12, 13). Exposure to
CRT can also result in an earlier onset or altered tempo of
puberty, including onset of breast development between
ages 8 and 9 years, peak height velocity at age#10 years,
and early menarche (14–18). Importantly, children who
have both GHD and concomitant early or precocious
puberty may not demonstrate a significant growth de-
celeration due to the stimulatory effects of sex hormones
on linear growth, and the treating endocrinologist might
miss a diagnosis of GHD unless he/she is knowledgeable
in this regard.

Table 1. Established Risk Factors of Short Stature and HP Dysfunction in Childhood Cancer Survivors

Complication Host Factors High Risk Treatment Exposures

Short AH or
impaired
linear
growth

• Younger age at cancer/tumor treatment • Radiation fields involving the HP regiona

• Precocious puberty • Spinal irradiationb

• Genetic syndromes (such as neurofibromatosis type 1) • TBI
• Fanconi anemia • Glucocorticoids

• TKIs
• Retinoic acid

GHD • Younger age at cancer/tumor treatment • Tumor or surgery involving the HP region
• Greater elapsed time since cancer/tumor treatment • HP radiation $18 Gy

• TBI $10 Gy in single fraction
• TBI $12 Gy fractionated

CPP • Younger age at cancer/tumor treatment • Tumor or surgery involving HP region or optic pathways
• Female sex • Hydrocephalus
• Increased body mass index • HP radiotherapy $18 Gy
• Neurofibromatosis type 1

LH/FSHD • Greater elapsed time since cancer/tumor treatment • Tumor or surgery involving the HP region
• Presence of other HP deficits • HP radiation $30 Gy

TSHD • Greater elapsed time since cancer/tumor treatment • Tumor or surgery involving the HP region
• Presence of other HP deficits • HP radiation $30 Gy

ACTHD • Greater elapsed time since cancer/tumor treatment • Tumor or surgery involving the HP region
• Presence of other HP deficits • HP radiation $30 Gy

aCranial, infratemporal (ear), nasopharyngeal, orbital (eye), and Waldeyer’s ring.
bAlso includes fields involving the abdomen, chest, mediastinum, and pelvis.
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Boney structures previously exposed to radiation may
be at risk for poor growth; this effect is potentially greater
with higher radiation doses and younger age at exposure.
Exposure to spinal radiation can result in dispropor-
tionate short stature due to impaired spinal growth,
which helps differentiate spinal radiation–related growth
impairment from the symmetrical impairment caused by
other etiologies, such as GHD.

Systemic therapy with retinoic acid and its derivatives is
associated with premature epiphyseal closure in both an-
imal models and human studies of noncancer populations
(19). Studies of survivors of high-risk neuroblastoma
reveal a significantly greater incidence of advanced bone
ages in those treated with cis-retinoic acid (20, 21). This
premature advancement and earlier closure of growth
plates may explain, at least in part, the short AH seen in
survivors treated with multimodality therapy that includes
systemic cis-retinoic acid.

TKIs are targeted cancer therapies designed to disrupt
specific signaling pathways involved in cellular growth
and proliferation. Despite their intended specificity,
nonselective, off-target effects on various protein kinases
involved in chondrocyte accrual, as well as the GH/IGF-I
signaling pathway, may result in growth deceleration and
the potential for subsequent short AH (22).

Diagnosis and monitoring of short stature/impaired
linear growth in childhood cancer survivors

1.1 We recommend prospective follow-up of linear
growth for childhood cancer survivors at high
risk for short AH, namely those exposed to CRT,
CSI, or TBI at a young age and those with a
history of inadequate weight gain or prolonged
steroid requirement. (1j���O)

1.2 We recommend measuring standing height and
sitting height in childhood cancer survivors
treated with radiation that included the spine (i.e.,
TBI, CSI, as well as radiation to the chest, ab-
domen, or pelvis). (1j��OO)
Technical remark: Sitting height is measured directly
using a sitting height stadiometer, and the lower
segment can be determined by subtracting sitting
height from standing height. Alternatively, the lower
segment can be determined by measuring from the
pubic symphysis to the floor, and the upper segment
can be determined by subtracting leg length from
height. The upper to lower segment ratio can then
be calculated but differs depending on the method
used and ethnicity. In situations where clinicians
are unable to measure sitting height, measuring
arm span and comparing it to standing height will
provide an estimate of spinal foreshortening due to
prior spinal radiation.

Evidence
The risk of growth impairment and adult short

stature (height SD , 22 SD) in survivors of childhood
leukemia is significantly higher among survivors
treated before puberty, at younger ages, and at CRT
doses .20 Gy (10, 23, 24). Among studies of survivors
of leukemia, lymphoma, and a broad group of pediatric
cancers (e.g., osteosarcoma, Wilms’ tumor, neuro-
blastoma, and soft tissue tumors of the head and neck),
younger age at diagnosis and higher doses of CRT
remained significant risk factors for adult short stature
(9, 18). In a large study of 921 brain tumor survivors
exposed to high-dose CRT, Gurney et al. (11) found
that a significant number of adults diagnosed at
younger ages had an AH ,10th percentile, including
53% of those diagnosed before age 5 years, 46% of
those diagnosed between 5 and 9 years, and 26% of
those diagnosed between 10 and 20 years. Independent
of age, those exposed to higher doses of CRT were
more likely to have adult short stature than those not
treated with CRT, with a threefold increased risk
among those treated with .20 Gy and a fivefold in-
creased risk among those treated with .60 Gy. These
findings may be due to the development of multiple
hormone aberrations, as detailed in subsequent sections
of these guidelines.

Spinal radiation is an independent risk factor for short
AH (10) and is associated with progressive growth im-
pairment (25, 26). Survivors treated with higher doses of
spinal radiation (.20 Gy) at younger ages, and to a
larger volume of the spine, are at increased risk of short
AH (11, 27). Compared with the proportionate short
stature seen in GHD children resulting from CRT only,
short AH associated with spinal irradiation results in
disproportionate short stature, which is evident in the
greater loss of spinal height SD relative to lower leg
length SD (28–30). This disproportionate growth may be
evident as early as 1 year following spinal radiation and
becomes progressively more evident during puberty (26).
Survivors treated with high-dose CSI (e.g., .30 Gy for
medulloblastoma) demonstrate the most significant losses
in seated and standing AH (17, 25, 31).

Treatment of short stature/impaired linear growth
in childhood cancer survivors

1.3 We suggest against using GH in cancer survivors
who do not have GHD to treat for short stature
and/or poor linear growth following spinal irra-
diation. (2j�OOO)

1.4 We suggest against treatment with GH in children
with short stature and/or impaired linear growth
who are being treated with TKIs. (2j�OOO)
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Evidence
Studies on using GH to treat cancer survivors who do

not have GHD are limited to a few small case series. In a
study of 13 survivors of acute leukemia treated with
cyclophosphamide and TBI, three of whom were not GH
deficient, there was a progressive decline in height SD and
impaired spine and leg growth despite GHT during a
3-year period (32). In a report of 51 high-risk neu-
roblastoma survivors treated with multimodal therapy
(including TBI), Cohen et al. (33) described GHT in
seven of these survivors. One had GHD, and six were
initially thought to have GH neurosecretory dysfunction.
Although short-term response to GH was good, the long-
term response was not; of the two that achieved AH,
even the patient with GHD remained .2 SD below
midparental height.

Studies of GHD childhood cancer survivors treated
with GH who were exposed to spinal irradiation also
suggest a reduced benefit of GHT after spinal irradiation.
Ciaccio et al. (34) found that among GH-deficient me-
dulloblastoma survivors treated with 26 to 38 Gy CSI,
the mean adult standing height decreased from21.38 SD
to21.9 SD at AH in those treated with GH, whereas the
standing height of those not treated with GH decreased
from 21.55 SD to 23.4 SD. However, spinal heights in
both groups were similar at AH, that is, 24.56 SD
and 24.85 SD, respectively. In another study of 100
survivors with GHD treated with GH, those exposed to
CSI had significantly lower growth responses to GHT
(4.2 cm/y vs 6.7 cm/y) and significantly greater height loss
from time of radiation to AH (23.6 SD vs21.6 SD) than
those not exposed to spinal radiation (35). Any benefit to
AH of GHT may be at the expense of further dispro-
portionate growth (17, 31). Thus, full disclosure of this
risk should be made and individual preferences consid-
ered when counseling survivors and their families about
GHT in patients who have received spinal radiation
treatment (RT).

Childhood cancer survivors exposed to TBI are also at
risk for reduced spinal height, with the greatest risk
among those treated at a younger age and with
unfractionated TBI (29, 36, 37). Members of this patient
subgroup who receive GHT for GHD may improve AH
by preventing further height loss (38, 39); however, they
may experience a worsening disproportion due to lack of
spinal height gain (37, 40).

TKIs (such as imatinib and dasatinib) are mainstay
treatments for chronic myelogenous leukemia and other
malignancies that possess the BCR-ABL1 fusion protein;
patients generally are treated with them for the long term
to maintain molecular remission (41). Most studies re-
port decreased growth in children who are using TKIs,
with greater effects observed in prepubertal children and

conflicting evidence of catch-up growth in pubertal
children (42–44). Although the precise mechanisms un-
derlying the growth deceleration associated with TKI
therapy are unknown, reports of low serum IGF-I levels
in children on TKI therapy suggest a possible disruption
of the tyrosine kinases involved in the GH signaling
cascade (44). Additional proposed mechanisms for
growth failure include disrupted platelet-derived growth
factor receptor-b, leading to altered recruitment and
activity of chondrocytes.

We consider patients on continuous TKI therapy as
having an active malignancy, as many will develop
molecular evidence of persistent disease when TKI
therapy is discontinued. Data on the safety and efficacy of
GH use in these patients are quite limited (41); therefore,
we cannot generally recommend GHT in this setting.

2. GHD in Childhood Cancer Survivors

GHD is characterized by inadequate GH secretion from
the pituitary and is defined using different diagnostic
tests. GHD can result from damage to the HP area due to
tumors, surgery, and/or HP axis RT (8, 45–47). Addi-
tionally, researchers have described a few cases of GHD
associated with the TKI imatinib (48, 49), and the immune
modulator ipilimumab can cause hypophysitis (50).

GHD is the most common endocrine late effect in
childhood cancer survivors treated with CRT (46, 51,
52). The prevalence of GHD varies depending on the type
of tumor and treatment and is most frequent in survivors
of suprasellar tumors and after high-dose HP axis RT
(45–47). Adults with hypopituitarism on conventional
hormone therapy that does not include GHT have an
increased cardiovascular mortality in comparison with
the general population (53, 54).

Clinical manifestations
GHD that develops in childhood usually affects linear

growth (8, 55, 56). GHD in the cancer population has
similar symptoms as we see in the noncancer population
and may be associated (particularly in adults) with re-
duced lean body mass and increased fat mass, an adverse
lipid profile, increased cardiovascular morbidity, im-
paired bone mineral density, impaired quality of life, and
psychosocial problems (57–61). In a large cohort of 695
survivors of childhood cancer enrolled in the St. Jude
Lifetime Cohort study, survivors with untreated GHD
were more likely to have an increased weight-to-height
ratio, decreased lean muscle mass, low energy expendi-
ture, muscle weakness, and poor exercise tolerance
compared with individuals without GHD (47).
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Diagnosis of GHD in childhood cancer survivors

2.1 We recommend lifelong periodic clinical assess-
ment for GHD in survivors treated for tumors in
the region of the HP axis and in those exposed to
HP axis RT $18 Gy (e.g., various brain tumors,
nasopharyngeal carcinoma, acute lymphoblastic
leukemia, lymphoma). (1j���O)
Technical remark: The consensus of the writing
committee is to assess height in children every 6 to
12 months.

2.2 We recommend against relying solely on serum
IGF-I levels in childhood cancer survivors ex-
posed to HP axis radiotherapy to make the di-
agnosis of GHD. (1j��OO)

2.3 We advise using the same provocative testing to
diagnose GHD in childhood cancer survivors as
are used for diagnosing GHD in the noncancer
population (Table 2). (Ungraded Good Practice
Statement)

2.4 We recommend against the use of GHRH alone
or in combination with arginine in childhood
cancer survivors to diagnose GHD after HP axis
radiation. (1j��OO)

2.5 We suggest against using spontaneous GH se-
cretion (e.g., 12-hour overnight sampling) as a
diagnostic test in determining GHD in childhood
cancer survivors. (2j�OOO)

2.6 We recommend against formal testing to establish
a diagnosis of GHD in childhood cancer survivors
with three other confirmed anterior pituitary
hormone deficits (Table 2). (1j��OO)

2.7 We recommend retesting adult cancer survivors
exposed to HP axis RT and with a diagnosis of
isolated GHD in childhood (Table 2). (1j��OO)

Evidence
HP axis radiation is a potent cause of GHD and the

risk is directly related to the total dose delivered, the dose

Table 2. Related Guidelines Content

Recommendation Number Guideline Title Organization Publication Year

Guidelines relevant to the diagnosis content of this guideline
2.3, 2.6, 2.7 Guidelines for Growth Hormone and Insulin-Like

Growth Factor-I Treatment in Children and
Adolescents: Growth Hormone Deficiency,
Idiopathic Short Stature, and Primary Insulin-Like
Growth Factor-I Deficiency

Pediatric Endocrine Society 2017

4.2, 5.2, 6.3 Hormonal Replacement in Hypopituitarism in
Adults: An Endocrine Society Clinical Practice
Guideline

Endocrine Society 2016

Guidelines relevant to the treatment content of this guideline
2.11 Evaluation and Treatment of Adult Growth

Hormone Deficiency: An Endocrine Society
Clinical Practice Guideline

Endocrine Society 2011

Hormonal Replacement in Hypopituitarism in
Adults: An Endocrine Society Clinical Practice
Guideline

Endocrine Society 2016

Guidelines for Growth Hormone and Insulin-Like
Growth Factor-I Treatment in Children and
Adolescents: Growth Hormone Deficiency,
Idiopathic Short Stature, and Primary Insulin-Like
Growth Factor-I Deficiency

Pediatric Endocrine Society 2017

4.3 Testosterone Therapy in Men with Hypogonadism:
An Endocrine Society Clinical Practice Guideline

Endocrine Society 2018

Treatment of Symptoms of the Menopause: An
Endocrine Society Clinical Practice Guideline

Endocrine Society 2015

Hormonal Replacement in Hypopituitarism in
Adults: An Endocrine Society Clinical Practice
Guideline

Endocrine Society 2016

5.4 Hormonal Replacement in Hypopituitarism in
Adults: An Endocrine Society Clinical Practice
Guideline

Endocrine Society 2016

6.4 Hormonal Replacement in Hypopituitarism in
Adults: An Endocrine Society Clinical Practice
Guideline

Endocrine Society 2016

Diagnosis and Treatment of Primary Adrenal
Insufficiency: An Endocrine Society Clinical
Practice Guideline

Endocrine Society 2016
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per fraction, and the time interval postirradiation
(62–64). HP axis RT in children frequently causes ab-
normal HP function later in life (65). HP axis RT initially
affects the hypothalamus, which is more sensitive to ir-
radiation than is the anterior pituitary, based on responses
to anterior pituitary–releasing hormone stimulation in
patients with anterior pituitary hormone deficiencies (65,
66). GHD is usually the first established endocrine sequela
of HP axis RT (51, 63). The prevalence varies depending
on the population studied, follow-up time, type of stim-
ulation test used, and peak GH cut-off levels (67).

GHD is a frequent consequence in childhood cancer
survivors treated for tumors in the region of the HP (45,
68) and in brain tumor and nasopharyngeal carcinoma
survivors exposed to HP axis radiotherapy $30 Gy (47,
62, 69). Furthermore, GHD is also reported in some
acute lymphoblastic leukemia and lymphoma survivors
exposed to 18 to 24 Gy to the HP axis (23, 70–72). In the
even lower doses used for hematopoietic stem cell trans-
plantation, GHDmay occur after a single TBI dose of 10 Gy
or fractionated doses of 12 Gy (73); however, with repeated
assessments over time, there can be recovery (40).

In children, auxologic data collected every 6 to
12 months should be considered as the initial screen for
GHD. Clinicians should further investigate for GHD
when there is either linear growth deceleration or no
linear growth acceleration during puberty and when they
have ruled out other potential etiologies of growth failure
(e.g., undernutrition, spinal compromise, hypothyroid-
ism, hypogonadism). Age-adjusted IGF-I levels measured
in an accredited laboratory may be useful in screening for
severe GHD but have limited utility when using a cut-off
of22 SD (52, 59, 74, 75). For example, Weinzimer et al.
(74) found a sensitivity of 73% for IGF-I for the pre-
diction of GHD in children with brain tumors. Addi-
tionally, clinicians need to interpret IGF-I levels in the
context of sex steroid exposure (precocious puberty and
hypogonadism). In adults, symptoms of GHD are non-
specific. GH testing should be considered in at-risk in-
dividuals with fatigue, increased abdominal fat mass,
weight gain, low energy level, or hyperlipidemia. As for
children, IGF-I levels may be useful in screening for
severe GHD.

Clinicians who suspect GHD in childhood cancer
survivors should perform provocative testing unless there
are three other pituitary hormone deficiencies (76). In the
general population, GHD is established via stimulation
testing using the ITT, glucagon, arginine, levodopa,
clonidine, or GHRH-arginine (if available) (77–79).
Clinicians should not administer GHRH alone when the
damage is primarily hypothalamic, as after radiation
therapy, because it may give false-negative results (i.e.,
normal GH responses despite true GHD). Likewise, the

GHRH-arginine test can give a falsely normal GH re-
sponse (71, 78, 80). Both ITT and glucagon testing allow
evaluation of the complete hypothalamic–somatotroph
axis (81). Based on a recent meta-analysis, the ability to
diagnose GHD by different provocative tests after CRT is
similar to the general population, with the ITT being
most reliable; however, data are limited (82).

The same GH cut-off levels to stimuli are used in
childhood cancer survivors as in the general population.
Comparing studies to assess prevalence or incidence of
GHD is problematic due to the use of different GH
antibodies, GH standards, and GH assays (83), as well as
the poor reproducibility of these tests (84). Data in
noncancer pediatric populations suggest that clinicians
often misdiagnose children as having GHD, especially
when using peak GH values of 5 to 10 mg/L (83).

Older studies suggested that some children have
GH neurosecretory dysfunction after cranial radiation,
especially after low doses, where there is subnormal
spontaneous GH secretion despite normal GH responses
to stimulation testing (85). However, Darzy et al. (86)
demonstrated normal physiologic GH secretion in adults
who received cranial radiation in childhood, suggesting
that this particular entity (radiation-induced GH neu-
rosecretory dysfunction) either does not exist or is very
rare. Additionally, due to the poor reproducibility of
12-hour overnight GH sampling and the overlap of
responses in normal children and nonchildhood cancer
survivors with GHD (76), as well as the impracticality
of this test in clinical practice, we suggest against using
spontaneous GH sampling, for example, 12-hour over-
night sampling, as a diagnostic test in determining GHD in
the childhood cancer survivors. In adults, the peak GH
cut-off levels to diagnose GHD range from 3 to 5 mg/L for
ITT and 3 mg/L for glucagon (52, 87, 88). Obesity, sex-
steroid deficiency, and hypothyroidism can blunt GH
secretion and yield a false-positive result (e.g., falsely
lowGH levels) (83); for example, in an obese individual,
the cut-off of 1 mg/L is used for glucagon (89, 90).

Treatment of GHD in childhood cancer survivors

2.8 We recommend offering GHT in childhood
cancer survivors with confirmed GHD based on
the safety and efficacy demonstrated in that
population. (1j��OO)

2.9 In childhood cancer survivors, we suggest
waiting until the patient has been 1 year
disease-free following completion of therapy
for malignant disease, before initiating GHT.
(2j�OOO)

2.10 In childhood cancer survivors who have chronic
stable disease and thus may not ever be “disease-
free” (particularly survivors treated for optic
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pathway tumors), we advise discussing the ap-
propriateness of GHT and its timing with their
oncologist. (Ungraded Good Practice Statement)

2.11 We advise treating GH-deficient childhood
cancer survivors with similar GHT regimens as
are appropriate for individuals with GHD from
the noncancer population (Table 2). (Ungraded
Good Practice Statement)

Evidence
GHT is approved for both children and adults with

confirmed GHD. GH dosing guidelines in the transition
period after growth cessation are not well established.
However, as GH secretion and IGF-I levels peak in pu-
berty and decline overtime thereafter (91, 92), the ef-
fective GH dose needs to be higher in the transition
period after growth cessation than in adulthood.

Childhood cancer survivors with GHD who receive
GHT have a significant gain in height as compared with
those who are not treated [see accompanying meta-
analysis (82)]. However, those childhood cancer survi-
vors with GHD who were also treated with CSI or TBI
may have impaired spinal growth and not achieve target
height. Higher spine radiation doses and radiation at a
younger age are associated with impaired spinal growth
(see section 1. “Short Stature/Impaired Linear Growth in
Childhood Cancer Survivors”). GHT results in either an
improvement or no difference in the risk of T2DM,
dyslipidemia, and metabolic syndrome [see accompa-
nying meta-analysis (82)]. The discrepant results between
studies may be due to metabolic improvements being
offset by the effect of GH on increasing insulin resistance.
Likewise, quality of life after GHT is either improved or
unchanged (58, 60, 93).

Concerns have been raised regarding the long-term
safety of GHT in childhood cancer survivors, as GH and
the target hormone, IGF-I, have in vitro proliferative
effects, and IGF-I also has proangiogenic and anti-
apoptotic properties (94). Available data on the safety of
GH in childhood cancer survivors are based on obser-
vational studies with selection bias and a lack of ran-
domized placebo-controlled studies. Childhood cancer
survivors have an increased risk of developing menin-
gioma and glioma due to radiation exposure (95, 96);
they also are at risk for GHD and will be potential
candidates for GHT (67). Previous data on GH-treated
childhood cancer survivors indicated that GHT might
potentially induce a small increase in the relative risk of
developing second neoplasms compared with survivors
not receiving GHT (97, 98), with research indicating that
meningiomas are the most common second neoplasm
(97). However, the elevated risk decreased over time (99).

Although the reason for this decrease is unknown, it has
been speculated that GH-treated individuals may have
been subjected to earlier and increased surveillance (100).
Recent studies have shown no significant association
betweenGHT and the development of a second neoplasm
of the central nervous system (CNS) in childhood can-
cer survivors (100–102). In the systematic review and
meta-analysis conducted for this guideline, there was no
statistically significant difference in the occurrence of
secondary tumors in survivors treated with GH com-
pared with those not treated (OR, 1.34; 95% CI, 0.92 to
1.96). Similarly, studies show no significant change in the
risk of tumor recurrence in survivors treated with GH,
compared with those not treated (overall OR, 0.57; 95%
CI, 0.31 to 1.02) [see accompanying meta-analysis (82)].
At a recent workshop, the Growth Hormone Research
Society concluded that there are no indications of an
increased risk of recurrence of primary cancers after
GHT in children, and the association between GHT and
risk of second tumors is insufficient to make recom-
mendations against GHT (103).

However, few data are available to provide recom-
mendations when to initiate GHT after cancer treatment
(103). Traditionally, clinicians start GHT for survivors of
malignant tumors at least 1 year after a childhood cancer
survivor is disease-free; thus, the safety of GHT prior to
that time is not clear. An exception is craniophar-
yngiomas (which are considered benign tumors); in these
cases, GHT has been safely initiated earlier (as early as
0.7 year from diagnosis) (104). Additionally, there are
patients who may have stable disease, rather than being
disease-free. This is often the case in subjects with optic
pathway gliomas (low-grade tumors frequently found
in association with neurofibromatosis type 1). In these
cases, disease can remain stable for prolonged pe-
riods, despite radiation and/or chemotherapy treat-
ments (105). For these patients, clinicians should
discuss whether to initiate GHT and its timing with the
patient’s oncologist.

It is important to note that GHT in children with GHD
who had been treated with CSI and TBI may result in
improvement in leg length but not spinal height (see
section 1. “Short Stature/Impaired Linear Growth in
Childhood Cancer Survivors”). Additionally, GHT may
exacerbate an existing scoliosis, a condition not un-
common following either spinal surgery and/or spinal
RT. GHT in the noncancer population is associated
with an increased incidence of slipped capital femoral
epiphysis (SCFE) (76). GHT in the noncancer pop-
ulation also commonly results in a decrease in insu-
lin sensitivity and a compensatory increase in insulin
secretion (76). As childhood cancer survivors are at
increased risk for both SCFE (106) and metabolic
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syndrome (107, 108) (particularly after TBI), the po-
tential risk for SCFE and T2DM should be a factor when
clinicians consider GHT in survivors. Therefore, when
considering GHT, clinicians need to carefully weigh the
potential risks against the potential benefits. Similar to
the Pediatric Endocrine Society’s recommendations for
the noncancer population (76), we recommend that
clinicians monitor serum IGF-I concentrations in pa-
tients on GHT and ensure they are kept within the
normal range for sex, age, and pubertal status.

3. Central Precocious Puberty in Childhood
Cancer Survivors

Epidemiology, morbidity, and mortality
The prevalence of CPP in childhood cancer survivors is

estimated at 11.9% to 15.2% (109, 110). CPP in the
context of a CNS insult may be associated with the
accelerated fusion of the growth plates and potentially
significant losses in AH (109, 111). Early sexual devel-
opment may also result in challenges regarding the
psychosocial adjustment of patients (112).

Etiology and clinical manifestations
CPP is defined by the onset of pubertal development

before the age of 8 years in girls and 9 years in boys as a
result of the premature activation of the HP gonadal axis
(109, 113). Table 1 summarizes the risk factors of CPP in
childhood cancer survivors.

Diagnosis of central precocious puberty in childhood
cancer survivors

3.1 We recommend periodically assessing childhood
cancer survivors for evidence of CPP if they have a
history of hydrocephalus, tumors developing in or
near the hypothalamic region, and/or have been
exposed to HP radiation. (1j���O)

3.2 We recommend against using testicular volume as
the primary or sole indicator of degree of sexual
development in male childhood cancer survivors
previously treated with gonadotoxic agents, such
as alkylating agents or testicular radiotherapy.
(1j���O)

3.3 We recommend measuring serum testosterone,
preferably using liquid chromatography–tandem
mass spectroscopy, and LH levels prior to 10:00 AM

to complement the clinical assessment of male
childhood cancer survivors who are suspected of or
are at risk for developing CPP and were exposed to
gonadotoxic treatments. (1j��OO)
Technical remark: Clinicians need to interpret
plasma LH levels in patients exposed to gona-
dotoxic treatments in the context of their medical

history and physical examination. Elevated LH
levels in such patients may be due to primary
gonadal injury rather than to the onset of central
puberty.

Evidence
CPP is among the most common endocrine compli-

cations in children with tumors arising near the hypo-
thalamus or optic pathways (such as low-grade gliomas),
and it is often associated with neurofibromatosis type 1
(109, 111, 113–115). The prevalence of CPP in patients
with these tumors is between 26% and 39% (109, 111,
115). Exposure to HP axis radiation at a wide range of
doses (20 to 50 Gy) has also been associated with CPP,
albeit with a lower frequency (6.6%) (109). Additional
risk factors for CPP include hydrocephalus (113), young
age at HP axis RT, and (in patients exposed to HP
axis RT) female sex and increased body mass index
(110, 116).

The clinical diagnosis of pubertal onset in female
childhood cancer survivors primarily relies on the ob-
servation of breast development (as in the noncancer
population). The diagnosis of pubertal onset in male
childhood cancer survivors previously exposed to gona-
dotoxic treatments (e.g., alkylating agents, testicular
radiation) requires a different approach than in males in
the noncancer population, in whom increasing testicular
volume is an early clinical indicator of the onset of
puberty. Testicular volume is known to be affected by
gonadotoxic cancer treatments because of germ cell and
Sertoli cell injury (117–119). Research has indicated that
testicular size plots below the 10th percentile for chro-
nologic age in up to 50% of male survivors of acute
lymphoblastic leukemia treated with CRT and extended
abdominal radiotherapy (117), and it averages 22.0 SD
in pediatric hematopoietic stem cell transplant recipients
exposed to TBI (119). Studies have shown that the testes
of adult childhood cancer survivors are significantly
smaller than controls (118) and correlate with impaired
germ cell function (120).

Given the limited reliability of testicular volume as a
means of pubertal staging in male childhood cancer
survivors treated with gonadotoxic modalities, labora-
tory markers such as AM serum testosterone and LH
plasma levels may allow an earlier and more accurate
assessment in this subset of patients whose Leydig cell
function is less frequently affected than their germ cell
function (117, 119). Liquid chromatography–tandem
mass spectroscopy should preferably be used to measure
serum testosterone levels (79). Medical providers should
be aware that serum LH elevations could be due to
primary gonadal injury rather than to the central onset of
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puberty in patients exposed to gonadotoxic treatments,
and clinicians should interpret laboratory data in the
context of the patient’s cancer history and clinical pre-
sentation (121). Measuring serum testosterone is espe-
cially helpful in boys exposed to gonadotoxic therapies
and who are at risk for CPP given the challenges in the
interpretation of clinical parameters (e.g., testicular
volume) and LH values. In girls with elevated gonado-
tropins, the assessment of pubertal progression based on
Tanner staging (breast development), the measurement
of estradiol levels, and the assessment of uterine length
and shape via ultrasound can help distinguish between
CPP and primary gonadal insufficiency (122).

As discussed in section 1 (“Short Stature/Impaired
Linear Growth in Childhood Cancer Survivors”), the
interpretation of growth velocity in childhood cancer
survivors should be based not only on chronological age,
but also on pubertal stage because of the frequent as-
sociation between CPP and GHD (109, 111). Patients
with genetic syndromes (such as neurofibromatosis type
1) and those exposed to craniospinal radiotherapy may
also experience CPP (26, 123). GHD may compromise a
patient’s ability to experience linear growth acceleration
during puberty in general and CPP in particular. Oth-
erwise, the diagnostic work-up of childhood cancer
survivors suspected of CPP follows the general steps
followed in the general pediatric population (Table 2)
(121, 124–126).

Treatment of central precocious puberty in
childhood cancer survivors

3.4 We advise that the indications and the type of
treatment regimens for CPP in childhood cancer
survivors should be similar to those used for CPP
in the noncancer population (Table 2). (Ungraded
Good Practice Statement)

Evidence
Historical data on patients with tumor-related CPP

who were not treated with pubertal suppression are
scarce but suggest poor AH outcomes; although these
patients may not have received treatment for other
complications, including GHD (127). Studies have
shown that pubertal suppression with gonadotropin-
releasing hormone agonist (GnRHa) improves the AH
of patients with CPP (not necessarily childhood cancer
survivors) in comparison with their predicted AH at
baseline (128–131). One study compared a cohort of
26 patients with CPP (31% related to a CNS insult)
diagnosed at a young age (median 5 years) and treated
with GnRHa to historical controls matched for de-
mographic factors and etiology (131). The report

showed a significant improvement in final or near AH
in the treated group (20.96 0.3 SD in females,21.76

1.6 in males) in comparison with nontreated his-
torical controls (21.9 6 0.2 in females, 23.2 6

6.4 SD in males; P = 0.01 for both) (131). These data
allow speculation that childhood cancer survivors with
CPP most likely benefit from pubertal suppression
with GnRHa (109, 113). Available AH data have
nevertheless indicated that patients may not experi-
ence a complete recovery of their growth, and patients
and families should be informed of the multifactorial
nature of growth impairment in childhood cancer
survivors (109, 129). Children with a history of hy-
drocephalus, HP tumors, and/or radiotherapy may
experience nonprecocious but early onset puberty (8 to
9 years in girls or 9 to 10 years in boys) or rapid tempo
of puberty (132, 133). Data are limited regarding the
benefits of treatment with GnRHa on these forms of
puberty in childhood cancer survivors, except in pa-
tients who also have GHD and in whom pubertal
suppression, in association with GH therapy, seems to
result in improved height outcomes (17, 132). There
are no data supporting the use of GnRHa to augment
the AH prospects of childhood cancer survivors ex-
periencing normal pubertal development. The overall
course of treatment of CPP in childhood cancer sur-
vivors can follow the advice in place for noncancer
populations (121, 134).

4. Hypogonadotropic Hypogonadism in
Childhood Cancer Survivors

Epidemiology, morbidity, and mortality
The estimated prevalence of LH/FSH deficiency (LH/

FSHD) in childhood cancer survivors is 10.8% (47).
Depending on the age of onset, LH/FSHD may manifest
as delayed puberty (absence of signs of puberty after the
ages of 13 years in girls and 14 years in boys) (135) or
interrupted puberty, or LH/FSHD may manifest during
adulthood as amenorrhea (females) or symptoms related
to low testosterone (males). Untreated LH/FSHD in older
childhood cancer survivors may be associated with ad-
verse cardiovascular and bone health outcomes (47).
Confounders related to the interpretation of low tes-
tosterone levels in obese men have complicated the un-
derstanding of the true impact of this problem (47, 136).

Etiology
LH/FSHD may occur within the context of pan-

hypopituitarism following the direct anatomical injury of
the HP area due to tumor growth or surgery. LH/FSHD
may also occur as a late effect of HP axis radiation,
especially at doses $30 Gy (47, 65, 137).
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Diagnosis of LH/FSHD in childhood cancer survivors

4.1 We recommend screening for LH/FSHD in child-
hood cancer survivors exposed toHP axis radiation
at doses $30 Gy and in those with a history of
tumors or surgery affecting the HP axis region.
(1j���O)

4.2 We advise using the same strategies to diagnose
LH/FSHD in childhood cancer survivors as are
used in the noncancer population (Table 2).
(Ungraded Good Practice Statement)

Evidence
Childhood cancer survivors who are at risk for de-

veloping LH/FSHD because of their tumor or treatment
history require periodic evaluation of their HP gonadal
function (47, 65, 137–139). These assessments are im-
portant given the potential occurrence of LH/FSHD as
a late effect and the rather nonspecific symptoms associated
with this deficiency, especially in males (47, 79, 136).

The diagnosis of LH/FSHD in the general pediatric and
adolescent population is complicated by the high prevalence
of constitutional delay of growth in boys and by the
presence of several congenital causes for LH/FSHD such as
Kallmann syndrome, pituitary stalk interruption, and
midline defects (140). Although such considerations may
pertain to childhood cancer survivors experiencing
pubertal delay, exposure to HP axis radiation and the
presence of other pituitary deficiencies are generally
robust indicators of LH/FSHD (135). Undetectable,
low, or declining serum testosterone levels (males) or
undetectable or low estradiol levels (females) in the
setting of low or inappropriately normal levels of go-
nadotropins past 13 years of age in girls and 14 years of
age in boys are suggestive of LH/FSHD during ado-
lescence (135, 140). The diagnosis of LH/FSHD in adult
childhood cancer survivors follows the same steps as
those outlined by the Endocrine Society for the general
population (79). Medical providers should cautiously
interpret gonadotropin and sex hormone levels in obese
or underweight individuals. It is important to note that
childhood cancer survivors exposed to high-dose HP
axis radiation, especially in the range $50 Gy, are at
risk for developing hyperprolactinemia (65), which may
also occur as a side effect of various drugs, especially
antipsychotics. Hyperprolactinemia should be ruled out
in patients with suspected LH/FSHD, as is the case in the
general population (79).

Treatment of LH/FSHD in childhood cancer survivors

4.3 We advise following the same treatment approach
to LH/FSHD in childhood cancer survivors as is

appropriate in the noncancer population (Table 2).
(Ungraded Good Practice Statement)

Evidence
Pubertal induction in adolescent female childhood

cancer survivors with LH/FSHD can follow guidelines
available for the general pediatric population (135, 140).
The use of testosterone to induce puberty in boys during
adolescence does not seem to adversely impact future
fertility prospects in patients with LH/FSHD (141);
however, data specific to childhood cancer survivors are
limited (142).

Clinicians can use the same guidelines for the di-
agnosis and management of LH/FSHD in adult child-
hood cancer survivors as they do for adults with LH/
FSHD (Table 2). Other measures potentially improving
bone health, such as adequate dietary calcium intake and
vitamin D supplementation, should be offered, along
with sex hormone replacement (79). The benefits of es-
trogen replacement have been deemed to outweigh the
risk of breast cancer in women 40 to 49 years in the
general population (79). There are no data to support
the need for a different approach in female childhood
cancer survivors requiring estrogen/progesterone re-
placement for LH/FSHD. Preliminary studies do not
support an increased risk of secondary breast cancer fol-
lowing spinal radiotherapy (143). In a recent study of
hormone replacement therapy in women with premature
ovarian insufficiency and a history of exposure to chest RT,
the risk of breast cancer remained significantly lower than
in childhood cancer survivors who retained normal ovarian
function (144). Those with premature ovarian insufficiency
who received hormone replacement therapy had amodestly
increased risk of breast cancer, but not to the same degree as
those with endogenous hormone production.

Medical providers should be aware of known drug
interactions between antiepileptic medications and es-
trogen replacement, with potential repercussions on the
efficacy of either treatment when the other is added or
doses are changed (79). Antiepileptic drugs with enzyme-
inducing properties (such as carbamazepine, oxcarba-
zepine, phenobarbital, phenytoin, and topiramate) may
decrease the efficacy of sex hormones by interfering with
their metabolism or by increasing the secretion of sex
hormone–binding globulin. Other, nonenzyme-inducing,
antiepileptic drugs such as lamotrigine, valproate, and
levetiracetam have been shown to cause changes in
plasma sex hormone concentrations but the mechanisms
are unknown. Conversely, estrogen replacement may
increase seizure risk in patients treated for epilepsy be-
cause of increased neuron excitability and/or interfer-
ence with drug metabolism (as with lamotrigine) (145).
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Estrogen replacement therapy increases the production of
thyroid-binding globulin and may decrease the pro-
duction of IGF-I; these interactions may require in-
creasing the doses of levothyroxine andhuman recombinant
GH in patients on treatment of hypothyroidism and GHD,
respectively (79). The effect of estrogen replacement on
circulating IGF-I may be avoided if transdermal formula-
tions are used in lieu of oral forms (79). Clinicians should
discuss the risks and benefits of estrogen replacement with
patients and base treatment decisions on relevant guidelines
and patient preferences.

5. Central Hypothyroidism–TSH Deficiency
in Childhood Cancer Survivors

Epidemiology, Morbidity, and Mortality
The diagnosis of central hypothyroidism or TSH de-

ficiency (TSHD) is complicated, and there is no uniform
definition by which to make the diagnosis. Most endocri-
nologists diagnose TSHD in a patient recognized to be at risk
for hypothalamic damage based on a low-normal or below-
normal free T4 (fT4) level with a TSH level in the normal,
below normal, or mildly elevated range (146). The diagnosis
is more likely when based on progressively declining fT4
levels over time (147, 148). In the context of this broad
definition, studies have reported that the prevalence of
TSHD in childhood cancer survivors who have CNS tumors
or were treatedwithHP axis RT is 2.6% to 14.9% (47, 111,
149–157). Symptoms are subtle, often delaying diagnosis.

Etiology
TSHD and ACTHdeficiency (ACTHD) are among the

least common anterior pituitary hormone deficits. TSHD
is most often present after high-dose HP RT (47, 151);
however, neither TSHD nor ACTHD is commonly
present with doses,24 Gy or after TBI. A study of adult
survivors of childhood cancer reported TSHD in 7.5% of
participants with HP RT dose$30 Gy as an independent
risk factor (47). Clinicians should evaluate patients with
tumors in the HP region for TSHD if they have had
suprasellar surgery or other hypothalamic deficiencies.

Factors associated with TSHD include hypothalamic
involvement, radiation site and dose, and time elapsed
since radiation exposure (111, 150, 152, 156). In general,
chemotherapeutic agents have not been associated with
TSHD (150, 155).

Diagnosis of central hypothyroidism in childhood
cancer survivors

5.1 We recommend lifelong annual screening for
TSHD in childhood cancer survivors treated for
tumors in the region of the HP axis and those
exposed to $30 Gy HP radiation. (1j���O)

5.2 We advise using the same biochemical tests to
screen for TSHD in childhood cancer survivors as
are used in the noncancer population (Table 2).
(Ungraded Good Practice Statement)

5.3 We recommend against using serum triiodothyro-
nine, TSH surge analysis, or thyrotropin-releasing
hormone stimulation to diagnose TSHD. (1j��OO)

Evidence
Clinicians should obtain fT4 and TSH levels at least

annually (47, 147, 149, 151, 152). An fT4 level at the lower
limits of normal or below the reference range in conjunction
with a low, normal, or mildly elevated TSH level that does
not appear appropriate for the fT4 level in the setting of
disruption to the hypothalamus or pituitary is evidence of
TSHD. The case for TSHD is made stronger with pro-
gressively decreasing fT4 levels (148). TSHD can develop
many years after radiation exposure, and for this reason we
recommend lifelong surveillance (158).

Previous data indicated that hidden central hypothy-
roidismwas an early, subtle hypothalamic abnormality that
clinicians could detect via the TSH surge pattern or TSH
response to stimulation testing (159). Subsequent research
indicated that the abnormalities of TSH dynamics un-
covered by TSH surge analysis and thyrotropin-releasing
hormone stimulation testing represent subtle variations that
are not indicative or predictive of TSHD (160).

Treatment of TSHD in childhood cancer survivors

5.4 We advise using the same approach to treat
TSHD in childhood cancer survivors as is used in
the noncancer population (Table 2). (Ungraded
Good Practice Statement)

Evidence
The treatment of central hypothyroidism in childhood

cancer survivors is no different than in other children/
adolescents with TSHD. The thyroid axis is one of the
more resilient axes, and there is an increased risk of
damage to other HP endocrine axes, which should be
addressed. Clinicians should therefore perform regular,
careful surveillance for GHD, full and partial ACTHD,
and abnormalities of LH/FSH secretion in childhood
cancer survivors who had RT, tumors, or surgery in the
area around the hypothalamus and pituitary and who are
diagnosed with TSHD (13, 147, 149). Clinicians should
confirm the existence of an intact adrenal axis before
beginning thyroid hormone replacement, recheck fT4
levels 4 to 6 weeks after dose adjustment or starting GH
replacement, and maintain fT4 levels in the middle to
upper half of the normal range. TSH levels are not useful
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in monitoring the adequacy of thyroid hormone re-
placement in subjects with TSHD (79, 161). Many
survivors at risk for TSHD are also at risk for seizures,
and treatment with antiepileptic medications such as
phenytoin, carbamazepine, oxcarbazepine, and top-
iramate can accelerate the metabolism of thyroid hor-
mones. Consequently, clinicians should monitor thyroid
hormone levels after starting or changing the dose of
antiepileptics (145, 162). Commonly used fT4 assays,
which use competitive binding methods, may give arti-
factually low fT4 levels in patients who are treated with
antiepileptics (e.g., phenytoin, carbamazepine, oxcar-
bazepine) due to displacement of thyroid hormone from
binding proteins (163). Confirmation of the low fT4 level
by a direct method, such as equilibrium dialysis or ul-
trafiltration, may be indicated in these patients.

6. ACTHD in Childhood Cancer Survivors

Epidemiology, morbidity, and mortality
ACTHD is characterized by inadequate cortisol secre-

tion due to impaired production/secretion of ACTH. It can
result from damage to the hypothalamus and/or pituitary
gland due to tumors and/or surgery in the HP region (e.g.,
craniopharyngiomas, suprasellar germinomas, optic path-
way gliomas) (45, 164, 165) or toHP injury following high-
dose (.30 Gy) HP radiation (47).

The prevalence of ACTHD (excluding exogenous ste-
roid use) varies by tumor type and treatment (164–166).
ACTHD has been associated with increased morbidity
and mortality in pediatric survivors (167, 168).

Etiology and clinical manifestations
We list the major risk factors for ACTHD in Table 1.

Although transient ACTHD secondary to exogenous
glucocorticoids is very common in this population,
particularly during active cancer treatment, this guideline
focuses on permanent forms of ACTHD. The clinical
symptoms most commonly associated with ACTHD in
cancer survivors are similar to those described in the
noncancer population (79). Given the nonspecific nature
of these symptoms, it may be very difficult to distinguish
between symptoms related to the underlying cancer,
comorbidities from the disease and its treatment, or the
presence of ACTHD. Partial ACTHD may be asymp-
tomatic; thus, clinicians might not diagnose it unless they
have a high degree of suspicion.

Diagnosing ACTHD in childhood cancer survivors

6.1 We recommend lifelong annual screening for
ACTHD in childhood cancer survivors treated for
tumors in the HP region and in those exposed
to $30 Gy HP radiation. (1j���O)

6.2 We suggest screening for ACTHD in childhood
cancer survivors exposed to between$24 Gy and
30 Gy HP radiation who are .10 years post-
radiation or develop clinical symptoms suggestive
of ACTHD. (2j�OOO)

6.3 We advise using the same screening and dynamic
testing procedures to diagnose ACTHD in child-
hood cancer survivors as are used in the noncancer
population (Table 2). (Ungraded Good Practice
Statement)
Technical remark: Clinicians should consider the
influence of oral estrogen on total cortisol levels, as
it can increase cortisol-binding globulin raising
total, but not free, cortisol levels.

Evidence
Radiation-induced ACTHD is known to be both time-

and dose-dependent (169). Following HP radiation,
ACTHD appears to occur less commonly than GH and
LH/FSH deficiencies and is present primarily in child-
hood cancer survivors treated with doses of HP radiation
.30 Gy (47, 151, 166, 170, 171), although the precise
prevalence varies depending on the population studied,
length of follow-up, and the type of biochemical testing
used (4% to 43%). The two largest studies to assess
ACTHD risk following HP radiation reported most cases
of ACTHD in survivors exposed to .30 to 40 Gy HP
radiation (47, 166). Although ACTHD is uncommon in
subjects treated with HP doses #24 Gy (47, 166, 170,
172), a recent study of adult survivors of acute leukemia
followed for .10 years reported biochemical evidence of
ACTHD in more than a third of survivors exposed to a
mean HP dose of 24 Gy (173). Data indicate that new
cases of ACTHD emerge as late as 25 or more years after
HP radiation (47).

A variety of tests are available for diagnosing ACTHD,
including the ITT, standard- and low-dose ACTH
stimulation test, glucagon stimulation test, and the
overnight oral metyrapone test. Controversy exists as to
which modality is the most reliable in establishing a
diagnosis of ACTHD, irrespective of the underlying
cause (90, 166, 169, 174, 175). Additionally, several
factors can affect the determination of cortisol levels in
plasma, including changes in cortisol-binding globulin.
Of note, females taking oral contraceptives have ele-
vated cortisol-binding globulin levels, which can make
the interpretation of cortisol levels difficult (174). Al-
though many view the ITT as the “gold standard” to
diagnose ACTHD, most clinicians use the ACTH
stimulation test due to its convenience and safety profile
(174). The Endocrine Society’s guideline on hormonal
replacement in hypopituitarism in adults (79) includes
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recommendations for testing for ACTHD. Two re-
cently published systematic reviews and meta-analyses
on ACTH stimulation tests for diagnosing adrenal
insufficiency—one performed by the Endocrine Society
in both adults and children (176) and one confined only
to ACTHD in children (177)—concluded that the
standard- and low-dose ACTH stimulation tests had
similar accuracy for diagnosing ACTHD.Moreover, the
study by Ospina et al. (176) concluded that both
standard- and low-dose ACTH stimulation tests
are adequate to rule in, but not rule out, ACTHD.
Depending on the dilution method used when per-
forming the low-dose ACTH stimulation test, there may
be considerable variation in the actual dose delivered,
raising the risk of inaccurate dosing and invalid re-
sults (178). Appreciation of the pretest probability of
ACTHD and the limitations of the assays for cortisol (as
well as the limitations of the various dynamic tests) are
critical in establishing a diagnosis of ACTHD.

Treating ACTHD in childhood cancer survivors

6.4 We advise that clinicians use the same gluco-
corticoid regimens as replacement therapy in
childhood cancer survivors with ACTHD as are
used in the noncancer population with ACTHD
(Table 2). (Ungraded Good Practice Statement)

6.5 We recommend that clinicians instruct all patients
with ACTHD regarding stress dose and emer-
gency glucocorticoid administration and instruct
them to obtain an emergency card/bracelet/necklace
regarding adrenal insufficiency and an emergency
kit containing injectable high-dose glucocorticoid.
(1j���O)

Evidence
The Endocrine Society’s guidelines on primary adrenal

insufficiency (179) and treating ACTHD in adults (79)
include recommendations for physiologic daily re-
placement and for treating suspected adrenal crisis.
Separate studies exist for treating ACTHD during
childhood and adolescence (174). However, there are
no specific studies addressing the treatment of ACTHD
in childhood cancer survivors. Glucocorticoid defi-
ciency has been shown to impair free water clearance,
which can mask the symptoms of polyuria in subjects
with central diabetes insipidus (180). Thus, when ini-
tiating glucocorticoid replacement therapy, clini-
cians should monitor for the development of diabetes
insipidus in at-risk patients and the exacerbation of
symptoms in those with pre-existing partial diabetes
insipidus. Some antiepileptics enhance hepatic CYP450
isoenzyme activity (e.g., phenytoin, carbamazepine,

oxcarbazepine, and topiramate), which can affect the
metabolism of glucocorticoids, especially dexamethasone.
A recent guideline reviews the management of glu-
cocorticoids in subjects taking enzyme-inducing
antiepileptics (79).

Method of Development of
Evidence-Based Clinical Practice Guidelines

GRADE approach
The guideline writing committee followed the ap-

proach recommended by the Grading of Recommen-
dations, Assessment, Development, and Evaluation
Group, an international group with expertise in the
development and implementation of evidence-based
guidelines (181). A detailed description of the grading
scheme has been published elsewhere (182). The
writing committee used the best available research
evidence to develop the recommendations. The writing
committee also used consistent language and graphical
descriptions of both the strength of a recommendation
and the quality of evidence. In terms of the strength
of a recommendation, strong recommendations use
the phrase “we recommend” and the number 1, and
conditional recommendations use the phrase “we
suggest” and the number 2. Cross-filled circles in-
dicate the quality of the evidence, such that �OOO
denotes very low–quality evidence; ��OO, low
quality; ���O, moderate quality; and ����, high
quality. The writing committee has confidence that
persons who receive care according to the strong
recommendations will derive, on average, more ben-
efit than harm. Conditional recommendations require
more careful consideration of the person’s circum-
stances, values, and preferences to determine the best
course of action. Linked to each recommendation is a
description of the evidence and the values that the
writing committee considered in making the recom-
mendation. In some instances, there are remarks in
which the writing committee offers technical sugges-
tions for testing conditions, dosing, and monitoring.
These technical comments reflect the best available
evidence applied to a typical person being treated.
Often this evidence comes from the unsystematic obser-
vations of the writing committee and their preferences;
therefore, one should consider these remarks as suggestions.

In this guideline, the writing committee made several
statements to emphasize the importance of shared decision-
making, general preventive care measures, and basic
principles of treatment of hypothalamic–pituitary and
growth disorders in childhood cancer survivors. They la-
beled these “Ungraded Good Practice Statement.” Direct
evidence for these statements was either unavailable or not
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systematically appraised and considered out of the scope of
this guideline. The intention of these statements is to draw
attention to these principles.
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Hospital, Lund,
Sweden

European Society of
Endocrinology

None declared None declared None declared None declared

Lillian R. Meacham,
MD

Professor of Pediatrics,
Medical Director
Cancer Survivor
Program, Emory
University School
of Medicine

• Pediatric Endocrine
Society

National Children’s
Cancer Society
(Medical Advisory
Board)

None declared None declared None declared

• Children’s Oncology
Group

M. Hassan Murad,
MD

Professor of Medicine,
The Mayo Clinic

None declared None declared None declared None declared None declared

2778 Sklar et al Endocrine Consequences of Childhood Cancer J Clin Endocrinol Metab, August 2018, 103(8):2761–2784

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/103/8/2761/5046572 by guest on 10 April 2024



Acknowledgments

Financial Support: This guideline was supported by the
Endocrine Society. No other entity provided financial or
other support.

Correspondence: Charles A. Sklar, MD, Memorial Sloan-
Kettering Cancer Center, 1275 York Avenue, Room H1111,
New York, New York 10065. E-mail: sklarc@mskcc.org.

Disclosure Summary: See the Appendix.
Disclaimer: The Endocrine Society’s clinical practice

guidelinesaredevelopedtobeofassistancetoendocrinologistsby
providing guidance and recommendations forparticular areasof
practice. The guidelines should not be considered inclusive of all
proper approaches or methods, or exclusive of others. The
guidelines cannot guarantee any specific outcome, nor do they
establish a standard of care. The guidelines are not intended to
dictate the treatment of a particular patient. Treatment decisions
must bemadebasedon the independent judgement of healthcare
providers and each patient’s individual circumstances.

The Endocrine Society makes no warranty, express or im-
plied, regarding the guidelines and specifically excludes any
warranties ofmerchantability and fitness for a particular use or
purpose. The Society shall not be liable for direct, indirect,
special, incidental, or consequential damages related to the use
of the information contained herein.

References

1. Robison LL, HudsonMM. Survivors of childhood and adolescent
cancer: life-long risks and responsibilities.Nat Rev Cancer. 2014;
14(1):61–70.

2. National Cancer Institute. SEER incidence data, 1973–2014.
Available at: seer.cancer.gov/data/. Accessed 7 November 2017.

3. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson
MM,Meadows AT, Friedman DL,Marina N, HobbieW, Kadan-
Lottick NS, Schwartz CL, Leisenring W, Robison LL; Childhood
Cancer Survivor Study. Chronic health conditions in adult sur-
vivors of childhood cancer. N Engl J Med. 2006;355(15):
1572–1582.

4. de Fine Licht S, Winther JF, Gudmundsdottir T, Holmqvist AS,
Bonnesen TG, Asdahl PH, Tryggvadottir L, Anderson H,
Wesenberg F, Malila N, Holm K, Hasle H, Olsen JH; ALiCCS
Study Group. Hospital contacts for endocrine disorders in Adult
Life after Childhood Cancer in Scandinavia (ALiCCS): a pop-
ulation-based cohort study. Lancet. 2014;383(9933):1981–1989.

5. Mostoufi-Moab S, Seidel K, Leisenring WM, Armstrong GT,
Oeffinger KC, Stovall M, Meacham LR, Green DM, Weathers R,
Ginsberg JP, Robison LL, Sklar CA. Endocrine abnormalities in
aging survivors of childhood cancer: a report from the Childhood
Cancer Survivor Study. J Clin Oncol. 2016;34(27):3240–3247.

6. Boulad F, Bromley M, Black P, Heller G, Sarafoglou K, Gillio A,
Papadopoulos E, Sklar C. Thyroid dysfunction following bone
marrow transplantation using hyperfractionated radiation. Bone
Marrow Transplant. 1995;15(1):71–76.

7. Oudin C, Auquier P, Bertrand Y, Chastagner P, Kanold J, Poirée
M, Thouvenin S, Ducassou S, Plantaz D, Tabone MD, Dalle JH,
Gandemer V, Lutz P, Sirvent A, Villes V, Barlogis V, Baruchel A,
Leverger G, Berbis J, Michel G. Late thyroid complications in
survivors of childhood acute leukemia. An L.E.A. study. Hae-
matologica. 2016;101(6):747–756.

8. Gurney JG, Kadan-Lottick NS, Packer RJ, Neglia JP, Sklar CA,
Punyko JA, Stovall M, Yasui Y, Nicholson HS,Wolden S, McNeil
DE, Mertens AC, Robison LL; Childhood Cancer Survivor Study.

Endocrine and cardiovascular late effects among adult survivors
of childhood brain tumors: Childhood Cancer Survivor Study.
Cancer. 2003;97(3):663–673.

9. Knijnenburg SL, Raemaekers S, van den Berg H, van Dijk IWEM,
Lieverst JA, van der Pal HJ, Jaspers MWM, Caron HN, Kremer
LC, van Santen HM. Final height in survivors of childhood cancer
compared with height standard deviation scores at diagnosis.Ann
Oncol. 2013;24(4):1119–1126.

10. ChowEJ, FriedmanDL, Yasui Y,Whitton JA, StovallM, Robison
LL, Sklar CA. Decreased adult height in survivors of childhood
acute lymphoblastic leukemia: a report from the Childhood
Cancer Survivor Study. J Pediatr. 2007;150(4):370–375.e1.

11. Gurney JG, Ness KK, Stovall M,Wolden S, Punyko JA, Neglia JP,
Mertens AC, Packer RJ, Robison LL, Sklar CA. Final height and
body mass index among adult survivors of childhood brain
cancer: Childhood Cancer Survivor Study. J Clin Endocrinol
Metab. 2003;88(10):4731–4739.

12. Darzy KH, Shalet SM. Hypopituitarism following radiotherapy.
Pituitary. 2009;12(1):40–50.

13. Rose SR, Horne VE, Howell J, Lawson SA, Rutter MM, Trotman
GE, Corathers SD. Late endocrine effects of childhood cancer.Nat
Rev Endocrinol. 2016;12(6):319–336.
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