
C L I N I C A L R E S E A R C H A R T I C L E

Altered Asparagine and Glutamate Homeostasis
Precede Coronary Artery Disease and Type 2 Diabetes

Filip Ottosson,1 Einar Smith,1 Olle Melander,1 and Céline Fernandez1
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Context: Type 2 diabetes mellitus (T2DM) is accompanied by an increased risk for coronary artery
disease (CAD), but the overlapping metabolic disturbances preceding both diseases are
insufficiently described.

Objective:Wehypothesized that alterations inmetabolism occur years before clinical manifestation
of T2DM and CAD and that these alterations are reflected in the plasma metabolome. We thus
aimed to identify plasma metabolites that predict future T2DM and CAD.

Design: Through use of targeted liquid chromatography-mass spectrometry, 35 plasmametabolites
(amino acid metabolites and acylcarnitines) were quantified in 1049 individuals without CAD and
diabetes, drawn from a population sample of 5386 in the Malmö Preventive Project (mean age,
69.5 years; 31% women). The sample included 204 individuals who developed T2DM, 384 who
developed CAD, and 496 who remained T2DM and CAD free during a mean follow-up of 6.1 years.

Results: In total, 16 metabolites were significantly associated with risk for developing T2DM
according to logistic regression models. Glutamate (OR, 1.96; P = 5.4e-12) was the most strongly
associated metabolite, followed by increased levels of branched-chain amino acids. Incident CAD
was predicted by three metabolites: glutamate (OR, 1.28; P = 6.6e-4), histidine (OR, 0.76; P = 5.1e-4),
and asparagine (OR, 0.80; P = 2.2e-3). Glutamate (OR, 1.48; P = 1.6e-8) and asparagine (OR, 0.75; P =
1.8e-5) were both associated with a composite endpoint of developing T2DM or CAD.

Conclusion: Several plasmametabolites were associated with incidence of T2DM and CAD; elevated
glutamate and reduced asparagine levels were associated with both diseases. We thus discovered
associations thatmight help shed additional light onwhy T2DMand CAD commonly co-occur. (J Clin
Endocrinol Metab 103: 3060–3069, 2018)

Type 2 diabetes (T2DM) is a major risk factor for
coronary artery disease (CAD), and the clustering of

these two diseases is referred to as cardiometabolic dis-
ease (CMD). Whereas many other CAD risk factors,
such as smoking and uncontrolled hypertension, have
improved in parts of the world, diabetes continues to in-
crease globally (1) and CAD remains the most com-
mon cause of death worldwide (2). T2DM and CAD
share several risk factors, but the overlapping meta-
bolic disturbances preceding both diseases are insuffi-
ciently described.Metabolomics has emerged as a powerful
discipline in thoroughly mapping the metabolic alterations

that precede CMD. Circulating levels of metabolites have
been associated with the hallmarks of CMD, such as
obesity, hyperglycemia, and insulin resistance (3–5).

Notably, branched-chain and aromatic amino acids
(BCAA and AAA) predicted future diabetes in sev-
eral prospective studies (6–8). Additionally, increased
circulating levels of the BCAA isoleucine and two
AAAs, phenylalanine (Phe) and tyrosine (Tyr), have been
shown to predict future cardiovascular disease (9); a large
multicohort study identified increased Phe and Tyr
among the strongest predictors of future risk for car-
diovascular disease (10).
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That circulating BCAA and AAA predict future risk for
both T2DM and cardiovascular disease might indicate
that some of the pathophysiological overlap between the
two diseases is reflected in the plasma metabolome. In
that light, by defining comprehensive metabolite risk
profiles for both CAD and T2DM, it could be possible
to identify metabolites that are related to both diseases.
Such metabolites could belong to pathways that con-
tribute to CMD pathogenesis and could eventually
be subjected to targeted intervention for preventing
disease onset. Here we quantified 35 plasma metabo-
lites, including amino acids, acylcarnitines, and inter-
mediates in amino acid metabolism, by using a targeted
liquid chromatography-mass spectrometry platform.
We assessed the metabolites’ associations with incidence
of T2DM and CAD in a Swedish population of 1049
individuals without CMD at baseline examination.

Methods

The Malmö Preventive Project is a population-based pro-
spective cohort of 33,346 individuals enrolled between 1974
and 1992. Between 2002 and 2006, all participants who
were alive were invited to a reexamination. There were no other
exclusion criteria. In total, 18,240 individuals (age 65 to
80 years) were re-examined for cardiometabolic risk factors.

Overnight fasting EDTA plasma samples were collected and
stored at280°C for later analyses. Among a random sample of
5386 individuals from the reexamination, 1406 were excluded
because of history of T2DM, CAD, or stroke before enrollment
in the reexamination study because of incomplete data on CAD
risk factors or missing plasma samples. Of the remaining 3980
individuals, 384 developed CAD before December 31, 2013,
with a mean follow-up time of 7.2 years, and 204 devel-
oped T2DM, with a mean follow-up time of 6.3 years. In total,
35 individuals developed both T2DM and CAD. Controls
were defined as individuals who did not to develop CAD or
T2DM during follow-up. Among 3361 individuals qualified as
controls, a random sample of 496 individuals was included in
the analyses because of the high analytical demand, resulting
in a baseline study sample of 1049 individuals (Fig. 1). The
ethics committee of Lund University approved the study pro-
tocols (EPN Lund 2009/633), and all participants provided
written informed consent.

Endpoint definitions and
biochemical measurements

CAD was defined as coronary revascularization, fatal or
nonfatal myocardial infarction, or death due to ischemic heart
disease. The study participants were followed for incident CAD
through record linkage using the Swedish personal identifica-
tion number with the previously validated Swedish Hospital
Discharge Register, the Swedish Cause of Death Register, and
the Swedish Coronary Angiography andAngioplasty Registry (11).
Myocardial infarction was defined on the basis of code 410 or I21

Figure 1. Flowchart of the participant selection from the Malmö Preventive Project.
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in the International Classification of Diseases, ninth revision or
tenth revision, respectively. Coronary artery bypass surgery was
identified from national Swedish classification systems of surgical
procedures and defined as procedure codes 3065, 3066, 3068,
3080, 3092, 3105, 3127, or 3158 in the Op6 system or as pro-
cedure code FN in the KKÅ97 system. Percutaneous intervention
was identified from Swedish Coronary Angiography and Angio-
plasty Registry. T2DM was defined as a fasting plasma glucose .
7.0 mmol/L, a history of physician diagnosis of T2DM, receiving
antidiabetic medication, or having been registered in local or
Swedish diabetes registries (12). CMDwas defined as development
of T2DM or CAD within the follow-up time of 6.1 years.

Cigarette smoking was elicited by a self-administered ques-
tionnaire, with current cigarette smoking defined as any usewithin
the past year. Fasting total cholesterol, high-density lipopro-
tein (HDL) cholesterol, triglycerides, and glucose were measured
according to standard procedures at the Department of Clinical
Chemistry atMalmö UniversityHospital. Low-density lipoprotein
(LDL) cholesterol was estimated with the Friedewald equation.

Analytical procedure
Plasma metabolites were profiled by using a UPLC-QTOF-MS

System (1290 liquid chromatography, 6550 mass spectometry;
Agilent Technologies, Santa Clara, CA) and has previously been
described in detail (13). Briefly, EDTA plasma samples stored
at280 °Cwere thawed and extracted by addition of six volumes of
extraction solution. The extraction solution consisted of 80:20
methanol/water containing stable isotope–labeled internal stan-
dards, purchased from Cambridge Isotope Laboratories (Andover,
MA) and Toronto Research Chemicals (Toronto, ON). Detailed
information about internal standards is found in Supplemental
Table 1. Extracted samples were separated on an Acquity UPLC
BEH Amide column (1.7 mm, 2.1 3 100 mm; Waters Corp.,
Milford, MA). One quality control sample was injected for every
sixth analytical sample to monitor and estimate the analytical
precision (Supplemental Table 2).More detailed information about
the analytical procedures is available in Supplemental Material 1.

Statistical analyses
The correlations between baseline fasting levels of circu-

lating metabolites and traditional risk factors were analyzed
by using Spearman correlations because of skewed distribution
of metabolite concentrations. For regression analyses, the me-
tabolite data were log-transformed, mean-centered, and unit

variance–scaled before analysis. Logistic regression models were
used to analyze the associations between baseline metabolites
and incident CAD, T2DM, and CMD. Initial analyses were
adjusted for age, sex, and analysis batch. Additional adjustments
for body mass index (BMI), fasting glucose, LDL cholesterol,
HDL cholesterol, triglycerides, systolic blood pressure, antihy-
pertensive treatment, and smoking status were performed for
metabolites that were significantly associated with T2DM or
CAD. Furthermore, we performed interquartile analyses for
glutamate and asparagine. In initial analyses screening all 35
measured plasma metabolites against CMD risk factors and
incidence of T2DM and CAD, associations were considered
significant at a false-discovery rate–adjusted P value , 0.05. In
secondary analyses that included only metabolites that had
significant associations with CAD or T2DM, associations were
considered significant at P , 0.05. All statistical analyses were
performed by using R 3.3.0 software (R Project). Principal
component (PC) analysis was performed on log-transformed and
mean-centered levels of 35metabolites by using R package ropls.

Results

Among the 3980 individuals in The Malmö Preventive
Project that were free from T2DM and CAD at the time
of examination, 384 developed CAD and 204 developed
T2DM within the follow-up time. Among the remaining
3361 individuals, who remained free from prevalent or
incident T2DM and CAD throughout follow-up, 496
were randomly chosen as controls. Baseline CMD risk
factors did not differ between the randomly selected
controls and the remaining eligible controls (Supple-
mental Table 3). The resulting study participants con-
sisted of 1049 individuals without T2DM and CAD at
examination (Fig. 1). The average age of the partici-
pants was 69.5 years, and 31% were female. The study
participants’ baseline characteristics are presented in
Table 1. The plasma concentration of the 35 measured
metabolites ranged from 0.04 mM (myristoylcarnitine) to
920 mM (glutamine) (Supplemental Table 2).

First, the connections between the 35 measured me-
tabolites and 8 traditional risk factors for CMD were

Table 1. Baseline Characteristics of Participants in the Malmö Preventive Project (n = 1049)

Trait Controls (n = 496)
Participants With

Incident T2DM (n = 204)
Participants With

Incident CAD (n = 384)

Age, y 68.7 6 5.9 69.3 6 5.7 70.6 6 6.3
Women, % 37.2 31.4 21.3
BMI, kg/m2 26.5 6 4.2 29.2 6 4.8 27.1 6 4.1
Fasting glucose, mmol/L 5.4 6 0.5 6.0 6 0.6 5.5 6 0.6
Systolic blood pressure, mm Hg 143.7 6 20 149 6 17 150 6 21
LDL cholesterol, mmol/L 3.7 6 0.9 3.7 6 1.0 3.9 6 1.1
HDL cholesterol, mmol/L 1.4 6 0.4 1.3 6 0.4 1.3 6 0.4
Triglycerides, mmol/L 1.2 6 0.6 1.3 6 0.6 1.4 6 0.7
Antihypertensive treatment, % 24.6 43.6 38.9
Current smokers, % 18.1 22.1 25.7

Plasma metabolomics was performed in 1049 individuals; 204 developed T2DM, 384 developed CAD, and 496 remained free from disease (controls).
Table displays the average of traditional risk factors for CMD in the three groups. Values expressed with plus/minus sign are the mean 6 SD.

3062 Ottosson et al Plasma Metabolites and Cardiometabolic Disease J Clin Endocrinol Metab, August 2018, 103(8):3060–3069

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/103/8/3060/4996516 by guest on 10 April 2024



investigated (Fig. 2). Strong correlations were seen between
several amino acids and both fasting glucose levels, BMI,
HDL cholesterol, and triglycerides, whereas the correla-
tions between metabolite levels and LDL cholesterol and
systolic blood pressure were lower. In total, 12 metabolites
were also significantly correlated with receiving antihy-
pertensive treatment. Generally, metabolite levels were
lower in female participants, with 16 metabolites being
significantly lower, whereas only 2 metabolites were sig-
nificantly higher in female participants. Several amino
acids, among them BCAAs, were inversely correlated with
the participants’ baseline age.

To investigate whether levels of circulating metabo-
lites could predict future T2DM and CAD, the baseline
metabolite levels were compared between individuals
developing T2DM or CAD within the follow-up time
and the healthy controls. Incidence of T2DM was sig-
nificantly predicted by 16 metabolites when adjusting
models for age, sex, and analysis batch (Fig. 3) and
applying a false discover rate–adjusted P value threshold
of 0.05 (Supplemental Table 4). The metabolites most
strongly associated with higher risk for incident T2DM
included glutamate, BCAAs, AAAs, and short-chain
acylcarnitines (SCACs). Asparagine, serine, and gluta-
mine were the only metabolites significantly associated
with lower risk for incident T2DM. Because the level of
several metabolites differed between male and female
participants, we investigated whether the associations
with incident T2DM depended on the participants’ sex.
The association with incident T2DM was stronger in
males for glutamate (P interaction = 0.046), whereas the
other metabolite associations were unaffected by sex.

Three metabolites associated with incident CAD in
models adjusted for age, sex, and analysis batch (Fig. 4)
and applying a false-discovery rate–adjusted P value
threshold of 0.05 (Supplemental Table 4). Histidine was
most strongly associated with incident CAD, followed by
glutamate and asparagine. There were no significant
interactions with sex. Exclusion of cases that developed
CAD or T2DM within 2 years from the examination did
not substantially influence the results (data not shown).

In further analyses, we adjusted the logistic regression
models on T2DM and CAD for CMD risk factors,
BMI, fasting glucose, LDL cholesterol, HDL cholesterol,
triglycerides, systolic blood pressure, antihypertensive
treatment, and smoking status to evaluate whether the
disease-associated metabolites were related to similar
pathways as the traditional risk factors. The multivari-
able adjustments attenuated some of the metabolite as-
sociations, resulting in 7 of 16 metabolites remaining
associated with incident T2DM (Table 2). Glutamate
displayed the strongest association with incident T2DM
in the multivariable-adjusted model (OR, 1.52; P = 1.2e-4).
The multivariable adjustments attenuated the associations
with incident CAD, but all three metabolites remained
significantly associated (Table 2).

PC analysis was performed on the 35 measured me-
tabolites to identify covarying metabolite groups. Five
orthogonal PCs were constructed, which described 50%
of themetabolite variance. PC3 (8%)was associatedwith
incidence of T2DM (OR, 1.42; P = 1.4e-10) and CAD
(OR, 1.18; P = 2.4e-4) and correlated strongly with
baseline BMI, fasting glucose, and HDL cholesterol
(Supplemental Fig. 1). Glutamate and BCAA metabolites
contributed positively to PC3, whereas glutamine and

Figure 2. Correlations between plasma metabolite levels and risk
factors for CMD. Correlations are Spearman correlations; statistical
significance defined as follows: *P , 0.05, adjusted for false-discovery
rate; nP , 0.05. Abbreviations: ADMA, asymmetric dimethylarginine;
AHT, antihypertensive therapy; SBP, systolic blood pressure;
TG, triglycerides.
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asparagine were the strongest negative contributors
(Supplemental Fig. 2). PC1 (23%) and PC4 (5%) mainly
reflected sex differences in metabolite levels; PC2 (10%)
was strongly associated with the participants’ baseline
age and PC5 (4%), with the participants’ smoking status
(Supplemental Fig. 1).

Because glutamate and asparagine were associated
with both CAD and T2DM, independently of each other
(Supplemental Table 5) and contributed to a CAD and
T2DM associated PC, we wanted to assess their ability to
predict incidence of CMD. We therefore constructed a
composite endpoint, CMD, defined as development of
T2DM or CAD within the follow-up time. Increased
levels of glutamate (OR, 1.48; 95% CI, 1.29 to 1.70; P =
1.55e-8) and decreased levels of asparagine (OR, 0.75;
95% CI, 0.65 to 0.85; P = 1.8e-5) associated with in-
creased risk for incident CMD in logistic regression
models, adjusted for age, sex, and batch. The associa-
tions remained significant after adjustment for all tra-
ditional risk factors for CMD (Supplemental Table 6).

Participants in the top quartile of glutamate levels had a
100% increased odds of developing CMD and in the top
quartile of asparagine levels was associated with a 42%
lower odds of developing CMD.

Discussion

Our main finding was that circulating levels of gluta-
mate and asparagine are associated with incidence of
both CAD and T2DM. We found associations between
plasma asparagine levels and lower risk for future CAD
and T2DM. Additionally, we provide further evidence
of a connection between BCAAs and T2DM. These
findings might help shed additional light on why T2DM
and CAD commonly co-occur.

Glutamate and asparagine are associated with
future CAD and T2DM

The current study showed that glutamate and as-
paragine predicted incident T2DM and CAD. Previous

Figure 3. Associations between baseline levels of metabolites and incidence of T2DM. ORs are expressed as 10 log ORs per SD unit increase
of metabolite. Error bars denote 95% SD of 10 log OR. P values are expressed as 210 log p. The regressions are adjusted for age and sex.
Abbreviation: ADMA, asymmetric dimethylarginine.
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studies found that glutamate is associated with several
risk factors for CMD, including BMI, insulin resistance
(3), and triglyceride levels (4). In line with our results,
glutamate levels were shown to be associated with in-
cident T2DM (7, 14) and CAD (15). Some in vitro studies
have indicated that extracellular glutamate levels are
toxic for pancreatic b cells (16). It has been suggested that
accumulation of glutamate might promote increased
levels of alanine, through increased transamination from
pyruvate (17). This would indicate that the association
between alanine and incident T2DM in our study is
driven by increased glutamate levels. Circulating aspar-
agine has been associated with decreased BMI, abdom-
inal obesity, and insulin resistance (3, 4). Our study also
confirmed the inverse association between asparagine
and BMI but found no other associations with CMD risk
factors. The literature provides no evidence of connec-
tions between asparagine levels and incident CAD and
only sparse evidence of asparagine being involved in
T2DM, such as lower levels of asparagine in diabetic

rats (18). Our study showed that circulating levels
of asparagine are associated with incidence of T2DM
and CAD.

Glutamate and asparagine contributed in opposite
directions to PC3, whichwas associated with incidence of
both T2DM and CAD, indicating that clustering of low
asparagine and high glutamate indicates high CMD risk.
When simultaneously regressing asparagine and gluta-
mate on incidence of CMD, we found that the metab-
olites are associated with CMD independently of each
other, indicating that they could contribute to separate
pathways underlying CMD.

Several factors could influence circulating levels
of metabolites, including dietary intake, genetic varia-
tion, altered metabolic homeostasis, and the gut micro-
biome. One study used food-frequency questionnaires to
compare plasma amino acid concentrations between
different habitual diets. Neither glutamate nor aspara-
gine levels significantly differed between meat eaters,
fish eaters, vegetarians, and vegans. Also, the correlation

Figure 4. Associations between baseline levels of metabolites and incidence of CAD. ORs are expressed as 10 log OR per SD unit increase of
metabolite. Error bars denote 95% SD of 10 log OR. P values are expressed as 210 log p. The regressions are adjusted for age and sex.
Abbreviation: ADMA, asymmetric dimethylarginine.
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between amino acid content in the diet and the corre-
sponding circulating amino acid concentrations was
evaluated. The glutamate content in the diet was not
correlated with plasma glutamate levels, but unfortu-
nately the asparagine intake could not be estimated (19).
However, acute intake of monosodium glutamate, a
common food additive, resulted in a sevenfold increase in
plasma glutamate, and this was mirrored by increased
insulin secretion (20). This indicates that the postprandial
glutamate levels are modifiable by large intakes of dietary
glutamate but that fasting levels, which represent glu-
tamate homeostasis, may depend largely on other factors.
We previously found that circulating glutamate levels
were associated with several genera of gut microbiota
(21), and a recent study found that the abundance of the
glutamate fermenting bacteria Bacteroides thetaiotao-
micron was lower in the gut of obese individuals and
correlated to higher levels of circulating glutamate (22).
Thus, the gut microbiota may be important in modu-
lating the circulating levels of glutamate.

Asparagine is strongly influenced by genetic variants
in the ASPG gene, encoding the enzyme asparaginase,
that converts asparagine to aspartate (23). Asparaginase
is a leukemia medication that reduces plasma asparagine
levels to deplete malignant cells of asparagine. In-
terestingly, the adverse effects of asparaginase include
hyperglycemia and impaired glucose tolerance (24).
Thus, increased conversion of asparagine to aspartate,
either through normal genetic variation in theASPG gene
or through addition of asparaginase, might lead to lower
levels of circulating asparagine and development of

hyperglycemia. This would point toward a potential
causal connection between low plasma asparagine
levels and prediabetes. However, our study found no
association between asparagine levels and fasting
glucose, meaning that the association with incident
T2DMmay be driven by impaired glucose tolerance or
other mechanisms.

BCAAs and SCACs
Mirroring the strong cross-sectional relationship

with CMD risk factors, increased BCAA levels were
among the metabolites most strongly associated with
incidence of T2DM. As mentioned, BCAAs have pre-
viously been associated with incident T2DM in several
populations (6–8). Here, we extend these findings to an
older population, with a relatively short time to disease.
A recent Mendelian randomization study suggested that
BCAAs are causally related to increased diabetes risk,
showing that a genetic variant causes decreased BCAA
catabolism. This resulted in an accumulation of BCAAs
and branched-chain keto acids but unaltered levels of
SCAC, which are downstream from the affected en-
zyme. As a reflection of this, the study showed that both
BCAAs and branched-chain keto acids were associated
with incident diabetes but found no associations for
SCAC (25). Our study showed that increased plasma
levels of two SCACs, propionylcarnitine and iso-
valerylcarnitine, were associated with incident T2DM,
suggesting that additional pathways link BCAAs and
their metabolites to diabetes, apart from decreased
BCAA catabolism, that would result in increased levels

Table 2. Metabolites Associated With T2DM or CAD in Logistic Regression Models Adjusted for Traditional
Risk Factors

Metabolite

T2DM CAD

OR (95% CI) P Value OR (95% CI) P Value

Glutamate 1.52 (1.23–1.89) 1.2e-4 1.19 (1.01–1.39) 0.034
Isoleucine 1.38 (1.08–1.76) 0.010 — —

Glutamine 0.77 (0.63–0.95) 0.012 — —

Asparagine 0.77 (0.63–0.95) 0.013 0.83 (0.71–0.97) 0.017
Ornithine 1.27 (1.04–1.56) 0.022 — —

Leucine 1.33 (1.02–1.73) 0.034 — —

Lysine 1.24 (1.00–1.53) 0.047 — —

Serine 0.82 (0.67–1.01) 0.064 — —

Isovalerylcarnitine 1.18 (0.95–1.47) 0.13 — —

Tyr 1.15 (0.93–1.42) 0.20 — —

Valine 1.12 (0.89–1.42) 0.34 — —

Phe 1.09 (0.88–1.35) 0.43 — —

Alanine 1.08 (0.87–1.34) 0.48 — —

Butyrylcarnitine 1.07 (0.88–1.31) 0.49 — —

Propionylcarnitine 1.07 (0.87–1.32) 0.52 — —

Proline 1.02 (0.83–1.26) 0.82 — —

Histidine — — 0.77 (0.66–0.90) 1.1e-3

ORs are expressed as OR of developing T2DM or CAD per SD unit increase of metabolite. Logistic regressions on T2DM and CAD were adjusted for age,
sex, batch, fasting glucose, BMI, LDL cholesterol, HDL cholesterol, triglycerides, systolic blood pressure, antihypertensive treatment, and smoking status.
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of SCAC. Because BCAAs and SCAC were strongly
correlated with overweight, hyperglycemia, and dysli-
pidemia, and because their associations with incident
T2DM were markedly attenuated after adjustment
for CMD risk factors, their association with incident
T2DM is probably mediated by or confounded by one
or several of these CMD risk factors.

Two previous studies have shown that BCAAs are
associated with incidence of cardiovascular disease (9,
26). Our study found no significant association between
baseline levels of BCAAs and future CAD. This in-
consistency might be explained by differences between
the study populations. The study byMagnusson et al. (9)
was performed in a middle-aged population, whereas the
average baseline age of our participants was 69.5 years. A
population-based study of middle-aged and elderly in-
dividuals showed that circulating BCAAs are positively
associated with fat-free mass index (27). Therefore, it is
plausible that the significant decrease of all three BCAAs
with age in our study could be due to age-related muscle
loss and that this decrease might be a confounder in
BCAA prediction of CAD. However, Ruiz-Canela et al.
(26) showed that BCAAs predict incidence of CAD in a
population with an average age similar to that in our
study. This study was, on the other hand, performed in a
population where the prevalence of T2DM was .50%,
whereas our study participants were free from T2DM at
baseline examination.

AAAs
The AAAs Phe and Tyr are among the metabolites

with the strongest evidence for a connection with T2DM
(6, 8). Our study showed that both Phe and Tyr were
associated with incident T2DM but that the associations
were attenuated after adjustment for CMD risk factors.
The cross-sectional analyses also confirmed a strong
correlation between the AAAs and fasting glucose, BMI,
HDL cholesterol, and triglycerides. In our study we
found no association between the AAAs and incidence of
CAD, in contrast to a previous large multicohort study
where Phe and Tyr were identified as the strongest me-
tabolite predictors of incident coronary disease (10). The
study also revealed an interaction between age and Phe
on prediction of cardiovascular disease risk. Further-
more, although Phe was one of the strongest metabolite
predictors of future cardiovascular disease in midlife, it
was nonsignificant in the age group .65 years. In the
cohort with the highest average age, the British Women’s
Heart and Health Study, neither Phe nor Tyr was sig-
nificantly associated with future cardiovascular events.
This is consistent with our findings of no significant
associations between AAAs and CAD in a population
with an average age ;70 years.

Other metabolites
Lysine and ornithine are two other metabolites that in

our study were associated with incident T2DM in-
dependently of CMD risk factors. There is little prior
evidence of lysine being involved in the development of
diabetes. In contrast to our findings, lysine was shown to
be lower in patients with T2DM than in healthy controls
(28) and positively related to longevity (29). The urea
cycle metabolite ornithine is increased in insulin-resistant
individuals (5) and in patients with type 1 diabetes and
T2DM (24) compared with healthy controls. Ornithine is
also lowered in patients with T2DM treated with met-
formin compared with untreated individuals (30). To-
gether with these previous findings, our results indicate
that an increased urea cycle activity leading to increased
ornithine levels may precede T2DM.

We found several other metabolites that were asso-
ciated with incident T2DM; these associations were at-
tenuated after adjustment for CMD risk factors. Among
these, we found that T2DM is preceded by high levels of
proline and butyrylcarnitine and low levels of glutamine
and serine. These metabolites have previously been
connected to risk factors for CMD (3–5), which was also
confirmed by the cross-sectional analyses in our study.
This indicates that these metabolites are involved in the
development of T2DM through shared pathways as the
traditional risk factors.

Histidine was the onlymeasuredmetabolite associated
with incident CAD but not with incident T2DM. Pre-
viously, histidine was shown to be associated with lon-
gevity, decreased all-cause mortality, decreased risk for
incident cardiovascular disease (28), and decreased risk
for incident T2DM (7). Our results reinforce the previous
findings of histidine being involved in development
of CAD.

Limitations
Our study has several limitations. Because of the study

design, we can only report on associations between
metabolites and CMD and therefore cannot prove cau-
sality. The nature of the targeted metabolomics ap-
proach allowed precise measurements, but this approach
is limited to predefined targets.

Conclusions

We identified strong associations between circulating
metabolite levels and incidence of T2DM and CAD.
Increased levels of glutamate and decreased levels of
asparagine were, independently of each other, associ-
ated with both T2DM and CAD. Additionally, we fur-
ther strengthened the connection between increased
BCAA levels and risk for T2DM while challenging their
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associations with incident CAD. Our study might
help shed additional light on why T2DM and CAD
commonly co-occur.
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