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Abstract 

Background: Diabetes is a risk factor for cerebrovascular disease and cognitive 
impairment. The anatomical basis for this is uncertain.
Methods: The Canadian Alliance for Healthy Hearts and Minds collected brain and carotid 
magnetic resonance imaging (MRI) and 2 cognitive tests (the Digit Symbol Substitution 
Test and the Montreal Cognitive Assessment test) in a cross-sectional sample of men 
and women. Brain MRIs identified brain infarcts (BI), lacunar BI, high white matter 
hyperintensity (WMH), vascular brain injury (VBI; BI or high WMH), and small vessel VBI 
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(lacunar BI or high WMH). Carotid MRIs estimated carotid wall volume, a measure of 
subclinical atherosclerosis. Cognitive scores were standardized to each site’s mean score, 
and cognitive impairment was identified by 1 or both test scores ≤1 standard deviation 
below the site’s mean score on that test.
Results: The 7733 participants included 495 participants (6.4%) with diabetes, of 
whom 388 were taking diabetes drugs. After age and sex adjustment, diabetes was 
independently associated with BI (odds ratio [OR] 1.53, 95% confidence interval [CI] 
1.05, 2.24), VBI (OR 1.64, 95% CI 1.26, 2.13), small vessel VBI (OR 1.67, 95% CI 1.28, 2.19), 
and cognitive impairment (OR 1.47, 95% CI 1.20, 1.80). The association between diabetes 
and small vessel VBI persisted after adjustment for cerebrovascular disease risk factors 
and nonlacunar infarcts (OR 1.52, 95% CI 1.15, 2.01), and the association with cognitive 
impairment persisted after adjustment for small vessel VBI (OR 1.27, 95% CI 1.03, 1.56).
Conclusion: Small vessel disease characterizes much of the relationship between 
diabetes and VBI. However, additional factors are required to disentangle the relationship 
between diabetes and cognitive impairment.

Freeform/Key Words: diabetes, stroke, cognition, microvascular

Diabetes is a common chronic disease currently affecting 
1 in 11 adults globally, with a much higher prevalence in 
Indigenous peoples, South Asians, North Africans, and 
people of lower socioeconomic status (1). People with dia-
betes are at a high risk for a wide variety of serious health 
outcomes, including strokes, cognitive impairment, and 
dementia. Although the underlying mechanisms are uncer-
tain, one possible mechanism is that the effects of diabetes 
on the brain may be due to diabetes-related abnormalities 
on small vessels throughout the body (2, 3), including the 
brain. This leads to hypoxia and secondary inflammation 
and its consequences, including large vessel disease and is-
chemia. Small vessel disease may manifest in the brain as 
lacunar strokes (4) and/or cognitive decline (5). It may also 
cause the white matter hyperintensities (WMHs) that are 
often observed in brain magnetic resonance images (MRIs) 
of people with diabetes and that are associated with both 
cerebrovascular disease and cognitive impairment (6).

The Canadian Alliance for Healthy Hearts and Minds 
(CAHHM) study (7) collected brain MRIs, phenotypic 
clinical information, and 2 measures of cognitive function 
(the Montreal Cognitive Assessment [MoCA] test and the 
Digit Symbol Substitution Test [DSST]) in a cross-sectional 
sample of men and women of mean age 57.9 (standard 
deviation [SD] 8.9) years living near 10 sites throughout 
Canada (8). These data provide a unique opportunity to 
assess the relationship between prevalent diabetes, small 
vessel disease, and cognitive impairment.

Materials and Methods

The CAHHM study is an alliance of 7 cohort studies com-
prising the Canadian Partnership for Tomorrow’s Health 
(which is a federation of 5 regional cohort studies from 

across Canada), the Canadian component of the Prospective 
Urban Rural Evaluation study, and the Montreal Heart 
Institute Biobank (7). Participants for each cohort were 
eligible for CAHHM if they were aged 35–69  years and 
willing to undergo an MRI scan and other study pro-
cedures. Selection of participants from each cohort was 
stratified to ensure that less than 20% had known cardio-
vascular disease (CVD), about 50% were women, and age 
was balanced across age strata of 35–45 years, 46–55 years, 
and 56–69 years.

Data from Canadian men and women with and without 
a history of diabetes who had an MRI scan using a 1.5 
or 3T magnet, as well as other study procedures (7), were 
analyzed for this report. Magnetic resonance imaging scans 
included a 2-dimensional brain fluid-attenuated inver-
sion recovery sequence and 3-dimensional carotid artery 
T1-weighted magnetization prepared rapid gradient-echo 
sequences. The brain MRI scans were read at 2 different 
reading labs, and the carotid MRI was read at 1 lab ac-
cording to standard protocol, without knowledge of the 
participant’s clinical characteristics (7).

Measurements

Participants were classified as having diabetes, and as 
having type 1 diabetes, type 2 diabetes, or other types based 
on self-report. In ancillary analyses, diabetes was also de-
fined on the basis of self-reported use of 1 or more drugs 
to treat diabetes.

Individuals with MRI evidence of 1 or more areas of 
brain infarction were classified as having a brain infarct (BI). 
A small subcortical BI, with an axial diameter ≤ 15 mm, was 
classified as a lacunar BI (8, 9). A cortical BI of any size or 
a subcortical BI > 15  mm was classified as a nonlacunar 
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BI. White matter hyperintensities on the MRI scans were 
scored using the Fazekas scale (10), and individuals with 
a total score (summing subcortical and periventricular re-
gions) ≥ 4 were classified as having a high burden of WMHs. 
Individuals who had ≥ 1 BI or a high WMH burden were 
classified as having evidence of vascular brain injury (VBI), 
and individuals with ≥ 1 lacunar BI or high WMH were clas-
sified as having evidence of small vessel VBI.

The volume of each carotid artery wall was calculated 
by subtracting its MRI-measured lumen volume from total 
vessel volume within a 32-mm vessel length centered on 
each carotid bifurcation (that included the distal common 
and proximal internal carotid arteries). The largest of the 2 
volumes was used for analyses (8).

Two cognitive tests were administered at the time of 
assessment. The MoCA test is a cognitive test comprising 
30 questions that, together, assess 7 cognitive domains, 
including short-term memory, visuospatial abilities, execu-
tive function, attention, concentration, working memory, 
and language (11). Validation studies report that cogni-
tively intact individuals have a mean MoCA score of 27.4 
(SD 2.2), whereas population-based studies of presumably 
cognitive intact people report lower mean scores (12). The 
DSST assesses visual motor speed and coordination, cap-
acity for learning, attention, concentration, and short-term 
memory (13). It has been extensively used in people with 
and without type 2 diabetes, and its score is correlated with 
future cognitive decline (14). Previous studies in cognitively 
intact people with diabetes have reported mean scores be-
tween 36 (15) and 52 (16).

To account for possible between-site differences in the 
administration of these 2 tests, each of the cognitive scores 
for each person were standardized to the mean value at 
each site. This created a site-standardized mean cognitive 
score for each individual, with a mean value at each site of 
0 (SD 1) (17). As suggested in recent papers (17, 18), an in-
dividual was classified as having cognitive impairment if his 
or her site-standardized score was ≤ -1 (ie, 1 or more SDs 
below the site-standardized mean).

Statistical analysis

Continuous data were summarized as means and SDs 
and were compared using the Student’s t-test; categorical 
data were summarized as the number and percentage and 
were compared using the chi-square test. Univariable and 
multivariable logistic regression models were used to es-
timate the odds of BI, VBI, and cognitive impairment (ie, 
dependent variables) in people with self-reported diabetes 
and in people with self-reported diabetes who were also 
using glucose-lowering medications. A P-value < 0.05 was 
considered nominally significant with no adjustment for 
multiple testing. All analyses were done using SAS (version 

9.4). The protocol was approved by local ethics commit-
tees associated with each site and all participants provided 
written informed consent.

Results

Participants who had an interpreted MRI scan, completed 
at least 1 cognitive test, and recorded information regarding 
risk factors were included in this analysis. As noted in the 
supplement, Figure S1; all supplementary material and fig-
ures are located in a digital research materials repository 
(19), 7733/8580 (90.1%) consenting participants (54.4% 
women) of mean age 57.9 years (SD 8.9) were included, of 
whom 495 (6.4%) reported a history of diabetes.

Clinical characteristics of the participants according to 
self-reported diabetes status are summarized in Table  1. 
Compared to the 7238 participants without a history of 
diabetes, the 495 with diabetes (comprising 407 with self-
reported type 2 diabetes) included more males, were older, 
less educated, had lower cognitive scores, and included more 
people who were currently smoking, had hypertension, a 
previous stroke, a BI, or a lacunar BI. Diabetes duration was 
available in 71% of participants and was 12.2 years (SD 8.7) 
overall, 22.1 (SD 12.2) years in people with type 1 diabetes, 
11.9 (SD 8.1) years in people with type 2 diabetes, and 7.4 
(SD 6.5) years in people whose diabetes type was unknown.

As noted in Table 2, self-reported diabetes was signifi-
cantly associated with higher odds of having 1 or more BIs 
after adjusting for age and sex (odds ratio [OR] = 1.53, 95% 
CI [confidence interval] 1.05, 2.24; P = 0.027). Further ad-
justment for differences in education, ethnicity, smoking, 
and hypertension attenuated the OR to 1.40 (95% CI 0.96, 
2.06; P = 0.082). Similar relationships were noted for evi-
dence of ≥ 2 BIs (nonlacunar or lacunar) and when diabetes 
was diagnosed on the basis of self-report as well as use of 
diabetes drugs (Table 2).

As seen in Fig. 1, self-reported diabetes was also signifi-
cantly associated with a higher age- and sex-adjusted odds 
of VBI (OR 1.64, 95% CI 1.26, 2.13; P = 0.0002) and small 
vessel VBI (OR 1.67, 95% CI 1.28, 2.19; P = 0.0002), but 
not nonlacunar BI. The relationship with VBI and small 
vessel VBI remained significant after additionally ac-
counting for differences in education, ethnicity, smoking 
and hypertension, nonlacunar BI, and carotid wall volume. 
Similar findings were noted when diabetes was diagnosed 
on the basis of self-report as well as use of diabetes drugs 
(Supplement, Table S1) (19).

Diabetes also was significantly associated with a higher 
age- and sex-adjusted odds of cognitive impairment 
(OR 1.47, 95% CI 1.20, 1.80; P = 0.0002), defined as a 
site-standardized MoCA or DSST score ≤ -1 (Fig.  2 and 
Supplement, Table S2) (19). This relationship was attenu-
ated but remained significant after also accounting for 
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various combinations of education, ethnicity, smoking, 
hypertension, VBI, small vessel VBI, nonlacunar BI, high 
WMH, carotid wall volume, and a history of a clinically 
evident stroke. For example, after accounting for age, sex, 
education, ethnicity, smoking, hypertension, nonlacunar 
BI, carotid wall volume, and stroke, diabetes was associ-
ated with an OR of 1.27 (95% CI 1.03, 1.56). Similar rela-
tionships were observed when diabetes was defined based 

on self-report plus the use of at least 1 glucose-lowering 
drug (Supplement, Table S3) (19).

Discussion

This large cross-sectional analysis of Canadians demon-
strates that diabetes is independently associated with VBI 
and cognitive impairment. It shows a robust relationship 
between diabetes and small vessel VBI but not nonlacunar 

Table 1. Baseline characteristics of people with or without self-reported diabetes

Characteristic Overall Diabetesa No Diabetes P-value

N 7733 495 7238  
Diabetes drugs 388 (5.1%) 388 (78.4%) 0 –
Age (years) 57.9 (8.9) 61.1 (7.9) 57.7 (8.9) < 0.001
Femalesb 4207 (54.0%) 205 (41.4%) 4002 (55.3%) < 0.001
High school education or less 1023 (13.2%) 89 (18.0%) 934 (12.9%) 0.001
White 6279 (81.2%) 372 (75.2%) 5907 (81.6%) < 0.001
Asian Chinese 861 (11.1%) 69 (13.9%) 792 (10.9%) –
Other 593 (7.7%) 54 (10.9%) 539 (7.4%) –
Current smoking 422 (5.5%) 31 (6.3%) 391 (5.4%) 0.001
Hypertension 3035 (39.3%) 350 (70.7%) 2685 (37.1%) < 0.001
Carotid wall volume (mm3) 902.7 (168.2) 911.4 (163.2) 902.2 (168.5) 0.080
History of clinical stroke 83 (1.1%) 24 (4.8%) 59 (0.8%) < 0.0001
History of myocardial infarction 82 (1.16%) 17 (3.4%) 65 (0.9%) <0.001
Depression 1640 (21.2%) 116 (23.4%) 1524 (21.1%) 0.21
Cancer 537 (6.9%) 33 (6.7%) 504 (7.0%) 0.79
Aspirin use 1114 (14.4%) 197 (39.8%) 917 (12.7%) <0.001
Statin use 1504 (19.5%) 317 (64.0%) 1187 (16.4%) <0.001
Brain infarcts 296 (3.8%) 34 (6.9%) 262 (3.6%) < 0.001
 Number of brain infarcts     
  0 7437 (96.2%) 461 (93.1%) 6976 (96.4%) < 0.001
  1 216 (2.8%) 22 (4.4%) 194 (2.7%) –
  ≥ 2 80 (1.0%) 12 (2.4%) 68 (0.94%) –
Lacunar brain infarcts 213 (2.8%) 26 (5.3%) 187 (2.6%) < 0.001
 Number of lacunar brain infarcts     
  0 7520 (97.3%) 469 (94.8%) 7051 (97.4%) 0.003
  1 172 (2.2%) 21 (4.2%) 151 (2.1%) –
  ≥ 2 41 (0.53%) 5 (1.0%) 36 (0.50%) –
Nonlacunar brain infarcts 108 (1.4%) 11 (2.2%) 97 (1.3%) 0.11
 Number of nonlacunar brain infarcts     
  0 7625 (98.6%) 484 (97.8%) 7141 (98.7%) 0.092
  1 59 (0.76%) 4 (0.81%) 55 (0.76%) –
  ≥ 2 49 (0.63%) 7 (1.4%) 42 (0.58%) –
High white matter hyperintensityc 470 (6.1%) 56 (11.3%) 414 (5.7%) <0.001
Vascular brain injuryd 715 (9.3%) 82 (16.6%) 633 (8.8%) <0.001
Site-standardized MoCA 0.01 (0.99) -0.22 (1.11) 0.02 (0.98) <0.001
Site-standardized DSST 0.01 (1.00) -0.39 (0.98) 0.03 (0.99) <0.001
Cognitive impairmente 1927 (24.9%) 186 (37.6%) 1741 (24.1%) <0.001

Data are shown as either N (%) or mean (standard devitation); P values were calculated with a 2-sample t-test, Mann-Whitney U test, or chi-square test
Abbreviations: DSST, Digit Symbol Substitution Test; MoCA, Montreal Cognitive Assessment.
aA total of 162 (79%) participants with diabetes and 2758 (69%) without diabetes were postmenopausal. 
bSelf-reported type 1 diabetes = 28; type 2 diabetes = 407; and unreported type = 60. 
cFazekas score ≥ 4. 
d≥1 brain infarct or high white matter hyperintensity. 
eMoCA or DSST score ≤ -1.
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BI. It also shows that brain infarcts of any time are insuffi-
cient to disentangle the relationship between diabetes and 
cognitive impairment.

These findings are consistent with accumulating evi-
dence implicating small vessel disease in the brain as an 
important pathophysiologic link between diabetes and 
cerebrovascular disease (20–22). They are also consistent 
with the hypothesis that diabetes’ effects on the brain are 
similar to its adverse effects elsewhere. For example, small 
vessel disease is implicated in diabetic retinopathy and 
other long-term consequences of diabetes (2, 23), and there 
is a graded relationship between the degree of retinopathy 
and both WMH burden (24) and incident cerebrovascular 
and cardiovascular events (25). This, and the incremental 
relationship between the degree of glucose elevation and 
retinal disease (26), incident strokes (27), and cognitive 
impairment (28) all support the hypothesis that diabetes’ 
adverse effect on cerebral vessels may be due to a selective 
effect on small vessels, in addition to a more widespread 

adverse effect on all vessels due to concomitant hyperten-
sion, dyslipidemia, renal disease, coagulation abnormal-
ities, and cardiovascular disease (29).

People with diabetes are also at risk of cognitive impair-
ment (30), which may occur as a result of cerebrovascular 
disease or other processes. Adjustment for VBI, which in-
cluded both small and large vessel disease as well as clinical 
strokes, did not eliminate the relationship between diabetes 
and cognitive impairment in this study. This suggests that 
comorbidities, metabolic factors, lifestyle, or other unmeas-
ured factors, in addition to vascular changes, may be re-
quired to disentangle the relationship between diabetes and 
cognitive impairment.

The strengths of this study include a sampling method-
ology that assembled a population that is representative of 
developed countries, the blinded independent reading of 
the MRI scans, the large sample size, and the minimiza-
tion of systematic variation across sites by standardizing 
the individual cognitive score to each person’s study site. 

Table 2. Relationship between diabetes and brain infarctions

Self-reported Diabetes Self-reported Diabetes Plus Diabetes Drugs

Adjustment For ≥1 BI  
OR (95% CI)

P-value ≥2 BI  
OR (95% CI)

P-value ≥1 BI  
OR (95% CI)

P-value ≥2 BI  
OR (95% CI)

P-value

Age, sex 1.53 (1.05, 2.24) 0.027 1.96 (1.04, 3.67) 0.037 1.54 (1.01, 2.34) 0.044 2.29 (1.19, 4.41) 0.013
Age, sex, 4 RFa 1.40 (0.96, 2.06) 0.082 1.84 (0.96, 3.50) 0.064 1.38 (0.91, 2.11) 0.13 2.09 (1.07, 4.09) 0.032
Age, sex, 4 RF, carotid wall 1.46 (0.99, 2.13) 0.054 1.95 (1.03, 3.72) 0.042 1.44 (0.94, 2.20) 0.093 2.21 (1.13, 4.34) 0.021
Age, sex, 4 RF, stroke 1.48 (1.01, 2.17) 0.045 1.94 (1.02, 3.69) 0.044 1.46 (0.95, 2.23) 0.081 2.21 (1.13, 4.32) 0.021

Odds ratios are from logistic regression models. Abbreviations: BI, brain infarcts; CI, confidence interval; OR, odds ratio; MRI, magnetic resonance imaging; RF, 
risk factor.
a 4 risk factors that include high school or less education, white ethnicity, current smoking, and hypertension.
b MRI-measured carotid wall volume.
c History of clinical stroke.

Figure 1. Relationship between self-reported diabetes and type of vascular brain injury. Odds ratios and 95% confidence intervals for each model 
are shown in the forest plot. Abbreviations: carotid wall, MRI-measured carotid wall volume; RF, risk factors; small vessel VBI, lacunar brain infarct or 
high white matter hyperintensity score; VBI, vascular brain injury.
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Limitations include its cross-sectional design, the ab-
sence of metabolic data, and the fact that diabetes status 
was self-reported. The absence of data regarding cerebral 
microbleeds, comprehensive data regarding medication 
use, blood test results (including known risk factors for 
cognitive dysfunction, such as Apo E status), or complete 
information related to diabetes type and duration are fur-
ther limitations.

Small vessel disease involving the retina, kidney, and 
nerves is clearly an important consequence of diabetes. 
Indeed, the glucose criteria that are used to diagnose dia-
betes were established by identifying glucose thresholds 
that differentiate people at high versus low risk of small 
vessel disease in one vascular bed—the retina (23). These 
findings demonstrate that microvascular disease is also pre-
sent in the brain of people with diabetes and may be related 
to the high burden of strokes and cognitive impairment suf-
fered by affected individuals.
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