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A disturbed sleep-wake rhythm is common in Alzheimer dis-
ease (AD) patients and correlated with decreased melatonin
levels and a disrupted circadian melatonin rhythm. Melatonin
levels in the cerebrospinal fluid are decreased during
the progression of AD neuropathology (as determined by the
Braak stages), already in cognitively intact subjects with the
earliest AD neuropathology (Braak stages I-II) (preclinical
AD). To investigate the molecular mechanisms behind the de-
creased melatonin levels, we measured monoamines and
mRNA levels of enzymes of the melatonin synthesis and its
noradrenergic regulation in pineal glands from 18 controls, 33
preclinical AD subjects, and 25 definite AD patients. Pineal
melatonin levels were highly correlated with cerebrospinal

fluid melatonin levels. The circadian melatonin rhythm dis-
appeared because of decreased nocturnal melatonin levels in
both the preclinical AD and AD patients. Also the circadian
rhythm of �1-adrenergic receptor mRNA disappeared in both
patient groups. The precursor of melatonin, serotonin was
stepwise depleted during the course of AD, as indicated by the
up-regulated monoamine oxidase A mRNA and activity (5-
hydroxyindoleacetic acid:serotonin ratio). We conclude that a
dysfunction of noradrenergic regulation and the depletion of
serotonin by increased monoamine oxidase A result in the loss
of melatonin rhythm already in preclinical AD. (J Clin Endo-
crinol Metab 88: 5898–5906, 2003)

SLEEP-WAKE RHYTHM DISRUPTION and other circa-
dian disturbances are commonly seen in Alzheimer dis-

ease (AD) patients (1) and are the most frequent reason for
nursing home placement, in fact more often than cognitive
impairment (2). The circadian disturbances in AD are ac-
companied by decreased melatonin levels and a disrupted
circadian melatonin rhythm (3–5). In addition to melatonin’s
ability to regulate circadian rhythms (6, 7), melatonin has also
been demonstrated to be a potent antioxidant and neuro-
protector against oxidative stress and �-amyloid toxicity
(8–10). A recent study reported that melatonin increases
survival and inhibits oxidative and amyloid pathology in a
transgenic mouse model of AD (11). The decreased levels of
melatonin in AD may thus be involved in the pathogenesis
of AD. Indeed, recently we have found that melatonin levels
in postmortem cerebrospinal fluid (CSF) decrease with the
progression of AD neuropathology (as determined by the
Braak stages) (12). Interestingly, CSF melatonin levels are
already reduced in preclinical AD subjects that are cogni-
tively still intact subjects and have only the earliest sign of
AD neuropathology (Braak stages I-II) (12). These findings
suggest that reduced melatonin levels may serve as an early

marker for the very first stages of AD that could so far not
be monitored in any other way.

However, the mechanisms behind decreased melatonin
levels in AD are not clear. Circulating melatonin levels are
derived primarily from the pineal gland (13). Tryptophan
(Trp) is taken up from the circulation and converted to se-
rotonin (5-HT) by tryptophan hydroxylase (TPH). 5-HT is
metabolized by the rate-limiting enzyme N-acetyltransferase
(NAT) to N-acetyl-5-hydroxytryptamine, in turn by hy-
droxyindole-O-methyltransferase (HIOMT) into melatonin.
Following its synthesis, pineal melatonin is passively se-
creted into the circulation. 5-HT can also be oxidized by
monoamine oxidase A (MAOA) into 5-hydroxyindoleacetic
acid (5-HIAA). Melatonin synthesis is influenced by light
and regulated by the biological clock, i.e. the suprachiasmatic
nucleus (SCN), through polysynaptic noradrenergic inner-
vation, which involves binding of noradrenalin (NA) to the
�1-adrenergic receptor on the pinealocytes to activate NAT.
NA is mainly deactivated by MAOA into 3-methoxy-4-
hydroxyphenylglycol (MHPG) (14–17) (Fig. 1A). In AD the
neurons in the SCN become less active (18, 19), and norad-
renergic fibers in the pineal seem to show dystrophic changes
(20), which suggest the possibility of a disrupted noradren-
ergic regulation of the pineal in AD.

The present study aimed to clarify the molecular mecha-
nisms underlying the decreased melatonin in preclinical AD
and clinical AD. We systematically measured the precursors
(tryptophan, 5-HT), products (melatonin, 5-HIAA), and
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MAO, monoamine oxidase; MHPG, 3-methoxy-4-hydroxyphenylglycol;
NA, noradrenalin; NAT, N-acetyltransferase; SCN, suprachiasmatic nu-
cleus; TPH, tryptophan hydroxylase; Trp, tryptophan.
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mRNA levels of enzymes (TPH, NAT-1, HIOMT, MAOA,
MAOB) in the melatonin synthesis as well as its noradren-
ergic regulation (NA, MHPG, �1-adrenergic receptor mRNA
levels) of the pineal glands of controls (Braak stage 0), pre-
clinical AD subjects (Braak stages I-II), and AD patients
(Braak stage VI) (Fig. 1).

We conclude that the loss of melatonin diurnal rhythmicity
and the decreased nocturnal melatonin levels, result from the
dysfunction of noradrenergic regulation (i.e. �1-adrenergic
receptor mRNA), and the depletion of its precursor 5-HT by

increased MAOA from the earliest preclinical AD stages
onward.

Subjects and Methods
Subjects

Human brain material is obtained via the rapid autopsy system of The
Netherlands Brain Bank (NBB), which supplies postmortem specimens
from clinically well-documented and neuropathologically confirmed
cases. Autopsies were performed according to the ethical code of con-
duct of the NBB on donors from whom written informed consent has
been obtained either from the donor or direct next of kin. Permission was
given for a brain autopsy and for the use of the brain tissue and clinical
files for research purposes. Postmortem pineal glands were obtained at
autopsy generally between 1 and 12 h after death and were immediately
frozen in liquid nitrogen and kept at �80 C until assayed. Neuropa-
thology of all subjects was systematically performed as previously de-
scribed and the Braak staging was applied (21–23).

Pineal glands were studied from 76 subjects: 18 controls without any
primary neurological or psychiatric disease and devoid of the AD neu-
ropathologic changes (i.e. Braak stage 0), 33 cognitively intact cases with
minor AD neuropathologic changes (i.e. Braak stages I and II), and 25
AD patients with extensive AD neuropathological changes (i.e. Braak
stage VI) (22). Subjects in Braak stages I-II have neurofibrillary changes
in the transentorhinal region but did not show any clinical symptoms of
AD (i.e. preclinical AD subjects) (22–24). Patients in Braak stages VI have
severe neurofibrillary changes in neocortical area and clinically diag-
nosis of probable AD was performed according to the National Institute
of Neurological and Communicative Disorders and Strokes-Alzheimer’s
Disease and Related Disorders Association criteria (25) with exclusion
of other possible causes of dementia by history, physical examination,
and laboratory tests (i.e. definite AD patients). Subjects who used �-
adrenergic receptor blockers or antidepressants that might affect pineal
melatonin levels (26–28) were not included.

The following variables were included in the present study: age, sex,
clock time and date of death, postmortem delay, brain weight, pineal
weight, and CSF-pH (i.e. a measure for agonal state) (29) (Table 1). To
determine diurnal variations in pineal melatonin synthesis, according to
the clock time of death the subjects were grouped into a day group
(1000–2200 h) and a night group (2200–1000 h) because these periods are
known to be associated with circadian differences in the levels of mel-
atonin (30). In addition, to investigate the effect of photoperiods on
pineal melatonin synthesis, according to the date of death, the subjects
were grouped into a short photoperiod (September 23 to March 21) and
a long photoperiod (March 21 to September 23) as described before (31).
Age, sex, CSF-pH, day/night distribution, and short/long photoperiod
distribution were well matched among the three groups (Table 1).

Sample preparation

Each frozen pineal gland was weighed and homogenized in liquid
nitrogen. The powder from each pineal was divided into two parts. Part
one of the homogenized pineal was weighed and suspended in 0.1 m
perchloric acid (5 �l PCA per milligram powder), centrifuged at 12000 �
g for 15 min. Next, the supernatant was removed and used for total
protein measurement (32), and melatonin, Trp, 5-HT, 5-HIAA, NA,
MHPG, dopamine (DA), and homovanilic acid (HVA) assay. Part two
of the homogenized pineal was used to measure TPH, NAT-1, HIOMT,
MAOA, MAOB, and �1-adrenergic receptor gene expression using
quantitative PCR (Fig. 1).

RIA

Melatonin levels were measured in the extracts of the postmortem
pineal gland by a direct RIA (3, 33). The assay was run in a 0.1 m tricine
buffer (Sigma, Zwijndrecht, The Netherlands) containing sodium chlo-
ride (0.15 m, Merck, Amsterdam, The Netherlands) and 0.1% gelatin
(Merck) adjusted to pH 7.5. Iodinated melatonin (2-iodomelatonin, Am-
ersham, Roosendaal, The Netherlands) was diluted in tricine buffer, at
a final concentration of 25,000 cpm/ml. The melatonin antibody (AB/
R/O3, Stockgrand, Guildford, UK) that was raised in rabbits is known
to be highly specific. It cross-reacts with 6-hydroxymelatonin at 5.3% and

FIG. 1. A, Pineal melatonin synthesis pathway and its noradrenergic
innervation in controls (Braak stage 0). B, In the preclinical AD
subjects (Braak stages I-II), compared with controls, day/night
rhythm of �1-adrenergic receptor mRNA disappears, which is respon-
sible for the lack of melatonin diurnal rhythmicity. Nocturnal mel-
atonin synthesis decreases, whereas the oxidation of its precursor
5-HT into 5-HIAA increases as indicated by the up-regulated MAOA.
The metabolism of the noradrenergic regulatory system (i.e.
MHPG:NA ratio) remains constant. C, In AD patients (Braak stage
VI), compared with preclinical AD subjects, the conversion of Trp into
5-HT decreases, as indicated by the impaired TPH mRNA levels,
which further contributes to the decrease of melatonin levels.

denotes circadian rhythmicity. � represents lack of circadian
rhythmicity. Thicker arrows indicate up-regulated pathway. Thinner
arrows denote down-regulated pathway.
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at less than 0.2% with 6-sulfatoxymelatonin (34). Standards were diluted
in tricine buffer in a dilution range from 1 pg/ml to 1000 pg/ml. Each
sample of the extract of the pineal gland was diluted 200 times with
tricine buffer, and 200 �l were pipetted in tubes and 200 �l antimelatonin
(final dilution 1:200,000) were added. The tubes were vortexed and
incubated for 72 h at 4 C. Bound melatonin was separated by 50 �l of
donkey antirabbit antiserum coupled to cellulose (SAC-CEL, IOS,
Boldon, UK). Precipitates were counted in a �-counter (Cobra 500s,
Packard, Groningen, The Netherlands). The intraassay coefficient was
8.7%.

HPLC

Fluorescence detection measurement. Tryptophan was measured in the
extracts of the postmortem pineal gland by HPLC. The system consisted
of a PU-1580 pump, an LG-1580–02 ternary gradient unit, a DG-980–50
3-line degasser, an AS-1555 autosampler, and a FP-920 fluorescence
detector (Jasco, Maarssen, The Netherlands). Separation was performed
on an XTerra C18 150 � 4.6 mm (5 �m) column with an XTerra guard
column (Waters, Etten-Leur, The Netherlands). Tryptophan was eluted
at 1.0 ml/min with a 0.005 m potassiumdihydrogen phosphate (pH 3)
buffer solution and acetonitrile. All solid chemicals were from Sigma
(Zwijndrecht, The Netherlands). Detection was performed at an exci-
tation wavelength of 224 nm and an emission wavelength of 348 nm.
Data were acquired and calculated with a Millennium32 (version 3.05)
chromatographic data system (Waters). The accuracy and reproducibil-
ity of the method were both above 97%. Because of the technical limi-
tation, we were not able to determine the NAS concentration in the
supernatant with this system.

Electrochemical detection measurement. 5-HT, 5-HIAA, NA, MHPG, DA,
and HVA were measured in the extracts of the postmortem pineal gland
by HPLC as described before (35, 36). The chemicals used in this method
were from Sigma. The mobile phase consisted of 10.4 mm citric acid, 6.1
mm sodium acetate, 1.60 mm heptanesulfonic acid, 0.4 mm EDTA, 11.8
mm sodium nitrate, and 12.5% methanol in water. It was pumped (Shi-
madzu LC-10ADvp, Den Bosch, The Netherlands) with a flow rate of 1.0
ml/min through a high-efficiency pulse dampener and reversed phase
Supelcosil LC-18 DB, 250 � 4.6 mm (Supelco, Zwijndrecht, The Neth-
erlands), and similar guard column (25 � 4.6 mm). Injector, pulse damp-
ener, and columns were kept at 35 C in the oven compartment of an
DECADE electrochemical detector workstation (ANTEC, Leiden, The
Netherlands). The column was coupled to a Coulochem 5011 detector
cell (Interscience, Breda, The Netherlands). The first electrode was op-
erated at 300 mV, the second (measurement) electrode at �300 mV. Data
were acquired and calculated with a Class-VP program (5.03 version,

Shimadzu). The accuracy and reproducibility were greater than 96% and
greater than 97.5%, respectively.

RNA isolation and reverse transcription. Each frozen pineal gland was
homogenized, and total RNA was isolated with TRIzol Reagent (In-
vitrogen, Breda, The Netherlands) according to the manufacturer’s in-
structions (37). The RNA pellet was dissolved in diethylpyrocarbonate-
treated distilled water and kept at �20 C. 1 �g total RNA of each sample
was denatured at 70 C for 10 min and annealed to 250 ng random
hexanucleotides (Roche, Almere, The Netherlands), then reverse tran-
scribed to cDNA by superscript II reverse transcriptase (Invitrogen) in
5 min at 30 C, 5 min at 37 C, and 90 min at 42 C in a final volume of 20
�l, in the presence of Rnase inhibitor (Invitrogen). The cDNA was stored
at �20 C until further use.

Quantitative PCR

Quantitative PCR was carried out in a final volume of 20 �l in 96-well
plates, using the SYBR Green PCR kit (Applied Biosystems, Foster City,
CA) containing 2 �l 10 � SYBR Green PCR buffer, 1.6 �l MgCl2 (25 mm),
1.5 �l dNTP blend (2.5 mm dATP, 2.5 mm dCTP, 2.5 mm dGTP, 5.0 mm
dUTP), 0.14 �l AmpErase UNG (1 U/�l), 0.1 �l Ampli Taq Gold (5
U/�l), 0.5 �l cDNA sample (5 ng total RNA), and 3.0 �l mixture of sense
and antisense primers (each primer 2 pmol/�l). Cycling conditions
were: 2 min at 50 C; 10 min at 95 C; 40 cycles of 15 sec at 95 C and 1 min
at 60 C. The data were acquired and processed automatically by Se-
quence Detection Software (Applied Biosystems). The key enzyme of
melatonin synthesis NAT has NAT-1 and NAT-2 subtypes (38, 39). Our
preliminary data showed only NAT-1 transcripts in the human pineal
gland, which is in accordance with in situ hybridization studies (40).
MAO has two subtypes, MAOA and MAOB. MAOA is responsible for
5-HT and NA metabolisms (41). In the present study, we measured both
MAOA and MAOB gene expression. Two reference genes were selected
from a study of multiple adult and fetal tissues: EF-1-� and E2 ubiquitin
conjugating enzyme (42) and were measured in all the samples to nor-
malize expression data. The primers were designed with Primer Express
software (Applied Biosystems). The efficiency of each primer pairs was
calculated using cDNA dilution curves and linear regression. Details of
the primers, the GenBank accession numbers, and the efficiency of each
primer pair are given in Table 2. The mRNA expression levels of the two
reference genes were highly correlated in our samples (r � 0.913; P �
0.0001) and were similarly expressed in the three groups (P � 0.1, P �
0.17, respectively). The amount of every target gene is calculated by
raising the primer efficiency of the gene to the power of �cycle thresh-
old, normalizing this and dividing by the average of the two normalized
housekeeping gene expressions.

TABLE 1. Clinical and pathological data for the controls and AD patients studied (mean � SEM)

Group Age (yr) Sex
(male/female)

Postmortem
delay (h)

Day-night
(day/night)

Photoperiod
(long/short)

Brain
weight (g)

Pineal
weight (mg)

Pineal total
protein content
(mg/mg pineal)

CSF pH

Braak stage 0 68 � 2 18 (12/6) 6.8 � 0.3 11/7 7/11 1306 � 30 195.6 � 21 0.097 � 0.011 6.7 � 0.09
Braak stages I–II 73 � 1 33 (13/20) 7.7 � 0.5 14/19 15/18 1244 � 24 238.3 � 22 0.094 � 0.009 6.7 � 0.04
Braak stage VI 72 � 2 25 (10/15) 4.8 � 0.3 12/13 13/12 1106 � 27 244.8 � 25 0.118 � 0.015 6.6 � 0.06

According to the time of death, subjects were divided into “day group” (1000–2200 h) and “night group” (2200–1000 h). According to the date
of death, subjects were grouped into “short photoperiod” (23 September–21 March) and “long photoperiod” (21 March–23 September).

TABLE 2. GenBank accession code, sequence of PCR primer pair for the target genes and reference genes, and amplification efficiency of
each primer pair

Gene Accession code Forward primer Reverse primer Amplification
efficiency

NAT-1 D90041 AGATGTGGCAGCCTCTGGAG GCACCTGAGGCTGATCCTTC 1.90
HIOMT U11090 CAGGTGGTGGCATTCTGGTA CCTCGCCTGTCTTCATCCA 2.00
MAOA M68840 TTCTGGCCTGCTGAAGATCAT CCCAGGGCAGTTACTGATGTG 1.95
MAOB M69177 TTTTCAGCAACGGCTCTTGG CACAAGTAGCCCCCTTTTGTG 2.08
�1-adrenergic receptor NM_000684 CCCACAATCCTCGTCTGAATC AGGAACATCAGCAAGCCACTC 1.94
TPH X52836 CTCTTAGGTCATGTCCCGCTTT GGAGAATTGGGCAAAACTAGGTT 1.90
EF-1-� J04617 AAGCTGGAAGATGGCCCTAAA AAGCGACCCAAAGGTGGAT 1.95
E2 ubiquitin U39317 CTGAAGAGAATCCACAAGGAATTGA CTCCAACAGGACCTGCTGAAC 1.94
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Statistics

Differences of monoamine levels and target gene expression levels
among the three groups were tested by the Kruskal-Wallis test. Differ-
ences between groups were tested using the Mann-Whitney U test. The
differences in proportion between males and females, the number of
subjects that died during the day and night, and the number of subjects
that died during the short photoperiod and long photoperiod for the
three groups were tested by �2. Correlations were analyzed by the
Spearman correlation test. Differences were considered statistically sig-
nificant at the P � 0.05 level (two-tailed).

Results

No significant difference was found in pineal weight and
pineal total protein content between the three sample groups
(Braak stage 0, stages I-II and stage VI) (P � 0.62, P � 0.215)
(Table 1). No significant correlation was observed between
postmortem delay, brain weight on the one hand, and all the
monoamine levels and gene expression levels measured on
the other.

Melatonin levels in the CSF closely reflect the pineal
melatonin content

We compared the data from the 41 subjects whose mela-
tonin levels were measured in both the CSF (12) and pineal
gland (present study). A highly positive correlation between
melatonin levels in the CSF and pineal was found (r � 0.83,
P � 0.0001, n � 41) (Fig. 2), indicating that the CSF alterations
in melatonin levels reflected the changes in the pineal mel-
atonin content.

Changes in the pineal melatonin synthesis (Fig. 1)

The day/night differences of melatonin and melatonin/
5-HT ratio (i.e. melatonin synthesis activity) found in Braak
stage 0 (P � 0.012, P � 0.001, respectively) had disappeared
in Braak stages I-II and Braak stage VI (Fig. 3, A and B). No
day/night difference of other monoamines or mRNA levels
of the enzymes involved in melatonin synthesis was found
in the three groups or any photoperiodic difference in mono-
amines or enzymes mRNA levels in melatonin synthesis.

Nocturnal melatonin levels decreased in Braak stages I-II

and Braak stage VI (Table 3 and Fig. 3A). Nocturnal mela-
tonin/5-HT ratio (i.e. melatonin synthesis activity) decreased
in Braak stage VI, compared with Braak stage 0 (P � 0.012)
(Table 3 and Fig. 3B). NAT-1 mRNA levels showed a trend
to increase in Braak stage VI (P � 0.054) (Table 3 and Fig. 3C),
whereas HIOMT mRNA levels seemed to decrease in Braak
stage VI (P � 0.068) (Table 3).

5-HIAA levels, the oxidative product of 5-HT by MAOA,
were higher in Braak stage VI, compared with Braak stage 0
(P � 0.003) and Braak stages I-II (P � 0.018) (Table 3 and Fig.
3D). Moreover, the MAOA mRNA levels and 5-HIAA/5-HT
ratio (i.e. MAOA activity) were step-wise increased in Braak
stages I-II (P � 0.037, P � 0.040, respectively) and Braak stage
VI (P � 0.0001, P � 0.007, respectively) compared with Braak
stage 0 (Table 3 and Fig. 3, E and F). The 5-HIAA:5-HT ratio
(i.e. MAOA activity) and MAOA mRNA levels correlated
positively (r � 0.370, P � 0.001, n � 76). In addition, MAOB
mRNA levels were increased in Braak stage VI, compared
with Braak stage 0 (P � 0.024) and Braak stage I-II (P � 0.015)
(Table 3). No correlation between the 5-HIAA:5-HT ratio and
MAOB mRNA levels was found in the three groups.

The concentration of Trp, the precursor of 5-HT and mel-
atonin, was higher in Braak stage VI, compared with Braak
stage 0 (P � 0.025) and Braak stages I-II (P � 0.004) (Table
3 and Fig. 3G). The mRNA levels of TPH, the key enzyme for
the conversion of Trp to 5-HT, were lower in Braak stage VI,
compared with Braak stage 0 (P � 0.022) and Braak stages I-II
(P � 0.027) (Table 3 and Fig. 3H). No significant difference
of 5-HT or the 5-HT:Trp ratio was found among the three
groups (P � 0.193, P � 0.326, respectively) (Table 3).

Dysregulated noradrenergic system (Fig. 1)

A day/night difference of �1-adrenergic receptor mRNA
levels was present in Braak stage 0 (P � 0.001) but disap-
peared in Braak stages I-II and Braak stage VI (P � 0.135, P �
0.174, respectively) (Fig. 4). There were no day/night dif-
ferences in NA or MHPG concentrations in the three groups.
No photoperiodic difference in either of these factors was
found in the three groups.

MHPG concentration in Braak stage VI was higher than
Braak stage I-II (P � 0.001) and insignificantly higher than
Braak stage 0 (P � 0.09). No significant difference of NA,
MHPG:NA ratio (i.e. NA metabolic activity) and �1-adren-
ergic receptor mRNA levels (P � 0.47, P � 0.26, P � 0.437,
respectively) was found among the three groups (Table 3 and
Fig. 5).

�1-Adrenergic receptor mRNA levels were correlated with
melatonin levels (r � 0.45, P � 0.0001, n � 76) and melatonin/
5-HT (i.e. melatonin synthesis activity) (r � 0.37, P � 0.001,
n � 76).

Dopaminergic system

No day/night or photoperiodic differences in either of DA
and HVA concentrations or HVA:DA ratio (i.e. DA metabolic
activity) were present in the three groups. No significant
differences of these parameters were found in the three
groups, indicating that the dopaminergic system is not in-
volved in the changes of melatonin in AD (Table 3).

FIG. 2. The significant positive correlation between melatonin levels
in the CSF and pineal gland.
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FIG. 3. A, Day/night difference of melatonin is present
in Braak stage 0 but disappears in Braak stages I-II and
stage VI. Nocturnal melatonin levels are decreased in
Braak stages I-II and stage VI. B, Day/night difference
of melatonin/5-HT (representing the melatonin synthe-
sis activity) is present in Braak stage 0 but is lost in
Braak stages I-II and stage VI. Melatonin/5-HT de-
creases in Braak stage VI, compared with Braak stage
0. C, NAT-1 gene expression tends to be increased in
Braak stage VI (Kruskal-Wallis test, P � 0.054). D, The
levels of 5-HIAA, the oxidative product of 5-HT, are
elevated in Braak stage VI. E, 5-HIAA/5-HT, represent-
ing the activity of MAOA, is increased in Braak stages
I-II and stage VI. F, MAOA gene expression is stepwise
increased in Braak stages I-II and stage VI. G, Trypto-
phan levels are increased in Braak stage VI. H, The gene
expression of TPH is reduced in Braak stage VI.
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Discussion

We have taken a comprehensive approach to study
changes in the melatonin synthesis pathway during AD. As
could be expected, this approach for instance yields a sig-
nificant positive correlation between the mRNA level of
MAOA and the ratio of the substrate and product of MAOA,
5-HT, and 5-HIAA. Moreover, we observed positive corre-
lations between steps in the metabolic pathway that are
much more distant such as between the mRNA level of the
�1-adrenergic receptor and melatonin. This suggests that

melatonin synthesis is mainly regulated by noradrenergic
regulation in humans and justifies our approach. More novel
observations were made in our study. In both Braak stages
I-II and Braak stage VI, there was a shift in melatonin syn-
thesis pathway: an increased oxidation of 5-HT to 5-HIAA
with up-regulated MAOA and an impaired conversion of
5-HT to melatonin, in addition to the dysregulated �1-
adrenergic receptor mRNA, which are responsible for the
decreased nocturnal melatonin synthesis and the loss of mel-
atonin diurnal rhythm in the preclinical AD subjects and AD
patients (Fig. 1, B and C). The decreased TPH mRNA levels
in Braak stage VI may further decrease melatonin synthesis
in AD patients (Fig. 1C). Also, the observed highly positive
correlation between melatonin levels in the pineal and in the

TABLE 3. Mean concentrations of monoamines and mean target gene relative expression levels in the pineal glands of Braak stages I–II
and Braak stage VI groups, and the percentages of Braak stage 0 group (controls)

Braak stages I–II Braak stage VI Difference between
Braak stages I–II and VIMean � SEM % Mean � SEM %

Trp 2996 � 531 87 5890 � 844 170a b

5-HT 7348 � 1131 82 9152 � 1204 102
Melatoninc 46.0 � 13.2 20a 35.3 � 16.8 15a

5-HIAA 1336 � 267 142 2593 � 466 276b a

5-HT/Trp 4.5 � 1.0 109 2.4 � 0.5 60
Melatonin/5-HT 0.012 � 0.003 59 0.007 � 0.004 32a

5-HIAA/5-HT 0.21 � 0.03 162a 0.31 � 0.05 238b

NA 61.4 � 8.9 124 63.9 � 7.6 129
MHPG 112.5 � 13.8 88 179.0 � 29.1 139 b

MHPG/NA 4.2 � 0.9 100 3.6 � 0.6 86
DA 16.2 � 5.5 107 12 � 1.7 79
HVA 185.8 � 16.6 110 198.3 � 25 116
HVA/DA 31.3 � 7.0 136 22.4 � 3.8 96
TPH 1.35 � 0.25 86 0.80 � 0.17 51a a

NAT-1 1.02 � 0.09 94 1.41 � 0.18 129
MAOA 1.14 � 0.11 146a 1.52 � 0.72 195b b

MAOB 0.93 � 0.15 109 1.41 � 0.19 166a a

HIOMT 0.98 � 0.10 77 0.76 � 0.07 60
�1-adrenergic receptor 1.06 � 0.10 108 1.13 � 0.10 122

Mean values of monoamines are expressed as picograms per milliliter (mean � SEM). Genes relative expression data are expressed as
normalized data (mean � SEM).

%, Percentage of the respective mean values of the control group (Braak stage 0).
a P � 0.05; b P � 0.01.
c Nighttime value.

FIG. 4. Day/night rhythm of �1-adrenergic receptor gene expression
in Braak stage 0 disappears in Braak stages I-II and stage VI. Bar
indicates the median of �1-adrenergic receptor gene expression. Each
single point indicates the �1-adrenergic receptor gene expression of
one subject. Note the considerable variations within the groups, es-
pecially in Braak stages I-II and stage VI.

FIG. 5. MHPG levels in Braak stage VI are higher than in Braak
stage I-II (P � 0.001) and insignificantly higher than in Braak stage
0 (P � 0.09). No difference in NA levels and MHPG:NA ratio (reflect-
ing the metabolic activity of noradrenergic system) between Braak
stage 0, stages I-II, and stage VI.
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CSF indicates that the decreased CSF melatonin levels in AD
are due to the reduced pineal melatonin synthesis rather than
the dilution of the CSF in AD (43) (Fig. 2).

The diurnal rhythm of pineal melatonin disappeared and
the nocturnal melatonin levels decreased in Braak stages I-II
and Braak stage VI (Fig. 3A), which is in full agreement with
the reduced melatonin levels in preclinical AD subjects (12)
and AD patients (5, 44). Moreover, these findings may ex-
plain why earlier studies (3, 4) did not find melatonin cir-
cadian rhythm in aged controls, which were not Braak staged
and will thus have been combinations of Braak stage 0 con-
trols and preclinical AD subjects. Although the latter group
did not show the clinical symptoms of AD, the diurnal mel-
atonin rhythm was already strongly diminished (Fig. 3A).

The day/night rhythm of melatonin synthetic activity (i.e.
melatonin/5-HT) found in Braak stage 0 had disappeared in
Braak stages I-II and Braak stage VI (Fig. 3B). However,
neither AD-related changes nor day/night rhythms of
NAT-1 mRNA or HIOMT mRNA were found in the present
study. These observations are supported by studies in the
rhesus macaque (45), which showed that NAT activity plays
a crucial role in the melatonin rhythmicity, whereas NAT
activity is not regulated by changes in NAT mRNA (46) but
rather by the posttranscriptional control, e.g. proteasomal
proteolysis (47). Whether the posttranscriptional regulation
of NAT is affected in the progression of AD remains to be
clarified.

In contrast to the decreased melatonin production from
5-HT, the oxidation of 5-HT to 5-HIAA was strongly and
stepwise increased, as indicated by the elevated MAOA ac-
tivity (i.e. 5-HIAA:5-HT ratio) and mRNA levels in Braak
stages I-II and Braak stage VI (Figs. 1, B and C, and 3, E and
F). Increased MAOA activity and mRNA levels as found in
the pineal gland in the present study seem to be a general
phenomenon in AD because it was also reported in the cor-
tex, thalamus, hypothalamus, and white matter of AD pa-
tients (48–50). Interestingly, MAOA gene polymorphisms
are suggested to be associated with an increased suscepti-
bility for AD (51). The elevated 5-HIAA levels found in the
pineal of AD patients differ from the decreased 5-HIAA
levels in cortex, amygdala, and caudate nucleus of AD pa-
tients (52, 53). This difference may be related to the fact that
the predominant distribution of 5-HT in the pineal is cyto-
solic, whereas 5-HT is stored in subcellular vesicles in the
midbrain system (54). Therefore, in the pineal, 5-HT may be
more vulnerable to the oxidation by MAOA to 5-HIAA than
in the rest of the brain. Our data suggest that reduced mel-
atonin production in preclinical AD subjects and AD patients
may be due to the depletion of its precursors 5-HT, caused
by the up-regulation of MAOA. In fact, MAOA inhibitors
significantly increase serum melatonin levels in human and
rodents (27, 28, 55, 56).

In the present study, a day/night rhythm of �1-adrenergic
receptor mRNA with elevated levels at night, present in
Braak stage 0, was absent in Braak stages I-II and Braak stage
VI (Fig. 5). This finding suggests that the dysregulation of
�1-adrenergic receptor mRNA is the basis of the lack of
day/night rhythms of melatonin we observed in Braak
stages I-II and Braak stage VI. It has been shown in rats that
the levels of pineal �-adrenergic receptor mRNA are de-

creased, and its diurnal rhythm is abolished on removal of
the sympathetic innervation from the SCN (57, 58). Our ear-
lier observations revealed a marked decrease of vasopressin
expression neuron numbers, activity, and circadian rhyth-
micity in the SCN of AD patients (18, 19, 59). Taking these
data together, we hypothesize that the circadian fluctuations
of the SCN are affected already in the earliest preclinical
stages of AD, which results in a dysregulation of �1-adren-
ergic receptor mRNA and thus in a decrease of nocturnal
melatonin synthesis and the disappearance of the diurnal
melatonin rhythm. Studies on the circadian rhythm of the
SCN in the first Braak stages should be performed to confirm
this idea.

No day/night rhythm of NA, MHPG, or MHPG:NA in the
pineal gland was found in Braak stage 0, stages I-II, or stage
VI. This may well be explained by the fact that NA and
MHPG levels in the homogenized pineal we measured are
the dilution of the levels in the noradrenergic terminal, which
directly reflect the day/night stimulus from the SCN. MHPG
concentration was increased in AD patients probably be-
cause of the increased MAOA, whereas the metabolism of the
NA system remained constant, as indicated by the constant
MHPG:NA ratio in Braak stages I-II or stage VI (Table 3 and
Fig. 4).

Although the groups did not show a difference in possible
confounding factors such as age, gender, or CSF pH (a mea-
sure for agonal state) (29, 60), a limitation of the present
postmortem study is that it is not known whether the clinical
condition of the patients in the various groups, including the
circumstance and the time of death, may have influenced the
results.

In summary, the dysregulation of pineal �1-adrenergic
receptor mRNA and the increased MAOA activity and
mRNA levels are held responsible for the disappearance of
the melatonin diurnal rhythm and the decrease of nocturnal
melatonin synthesis in preclinical AD subjects and AD pa-
tients. In addition, the decreased TPH mRNA levels may
further contribute to this change in AD patients (Fig. 1). Our
finding of a lack of circadian �1-adrenergic receptor mRNA
rhythm in Braak stages I-II suggests that the first alterations
may take place in the SCN in the earliest preclinical stages of
AD pathology.

These findings support the possibility of reduced mela-
tonin levels as an early marker for the onset of AD and
provide a basis for a mechanism behind bright light therapy
to restore circadian rhythm disorders in AD (61). Further-
more, because the loss of melatonin rhythmicity already oc-
curs in people with early AD neuropathology, before clinical
symptoms occurs, it may be beneficial to supplement mel-
atonin in case of decreased nocturnal melatonin levels to
slow down the development of AD. The recent finding that
melatonin increases survival and inhibits amyloid pathology
in an Alzheimer mouse model (11) supports this possibility.
Whether the increased MAOA, a general phenomenon in the
AD brain (48–50), contributes to the symptoms of AD, e.g. to
depression or to the pathogenesis of AD, demands further
investigation. In that case, therapeutic use of MAOA inhib-
itors in AD may be considered.
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nih.gov/grants/guide/rfa-files/RFA-DK-04-001.html, is aimed at stimulating development of innovative
technologies to enhance understanding of metabolic pathways and networks. For more information about
this initiative, please visit the Frequently Asked Questions at http://www.nihroadmap.nih.gov/grants. For
general information on the NIH Roadmap, including other funding opportunities, please visit: http://
www.nihroadmap.nih.gov/.
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