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The insulin resistance syndrome (syndrome X, metabolic syn-
drome) has become the major health problem of our times.
Associated obesity, dyslipidemia, atherosclerosis, hyperten-
sion, and type 2 diabetes conspire to shorten life spans, while
hyperandrogenism with polycystic ovarian syndrome affect
the quality of life and fertility of increasing numbers of
women. Whereas a growing number of single genetic diseases
affecting satiety or energy metabolism have been found to
produce the clinical phenotype, strong familial occurrences,
especially in racially prone groups such as those from the
Indian subcontinent, or individuals of African, Hispanic, and
American Indian descents, together with emerging genetic
findings, are revealing the polygenetic nature of the syn-
drome. However, the strong lifestyle factors of excessive car-
bohydrate and fat consumption and lack of exercise are im-
portant keys to the phenotypic expression of the syndrome.
The natural history includes small for gestational age birth
weight, excessive weight gains during childhood, premature
pubarche, an allergic diathesis, acanthosis nigricans, striae

compounded by gynecomastia, hypertriglyceridemia, hepatic
steatosis, premature atherosclerosis, hypertension, polycys-
tic ovarian syndrome, and focal glomerulonephritis appear-
ing increasingly through adolescence into adulthood. Type 2
diabetes, which develops because of an inherent and/or an
acquired failure of an insulin compensatory response, is in-
creasingly seen from early puberty onward, as is atheroma-
tous disease leading to coronary heart disease and stroke. A
predisposition to certain cancers and Alzheimer’s disease is
also now recognized. The looming tragedy from growing num-
bers of individuals affected by obesity/insulin resistance syn-
drome requires urgent public health approaches directed at
their early identification and intervention during childhood.
Such measures include educating the public on the topic, lim-
iting the consumption of sucrose-containing drinks and foods
with high carbohydrate and fat contents, and promoting ex-
ercise programs in our nation’s homes and schools. (J Clin
Endocrinol Metab 89: 2526–2539, 2004)

REAVEN (1) FIRST DESCRIBED syndrome X to comprise
central obesity, hyperinsulinemia, hyperuricemia, hy-

pertriglyceridemia, and a propensity to coronary heart dis-
ease (CHD) and stroke. The insulin resistance syndrome
(IRS) has since been expanded from this core phenotype to
become increasingly recognized by physicians, especially in
the highly prone racial groups. A recent American College of
Endocrinology position statement on IRS indicated that one
in three or four U.S. adults have IRS, and 90% of diabetics are
insulin resistant (IR), whereas one in 10 women have poly-
cystic ovarian syndrome (PCOS).

The purpose of this review is to summarize the natural

history of IRS, especially as it impacts children. We argue
herein that attention must be urgently given to the children
who are becoming more obese and more IR with time. In
them, effective public health measures must be found to
identify those affected as early as possible and treat them, if
we are to prevent the burgeoning associated morbidities and
mortalities that accumulate with their passage into adulthood.

U.S. epidemiology of obesity and type 2 diabetes

The increasing prevalence of obesity in the U.S. is alarm-
ing, with 34% of the adult population being overweight
]body mass index (BMI) ranging from 25–29.9 kg/m2[, and
another 27% are obese (BMI, �30 kg/m2) (2). Thus, more
than 45 million Americans are obese, a 74% increase in prev-
alence rates from 1991. Over the same time, diabetes rates
have increased by 61% to affect at least 16 million (7.7%)
Americans. Adults with a BMI greater than 40 have been
found to be 7.4 times more likely to develop diabetes, 6.4
times more likely to have hypertension, and 1.9 times more
likely to have hypercholesterolemia and to have increased
death rates from all cancers combined that are 52% higher for
men and 62% higher for women than those with BMIs less
than 24.9 kg/m2 (3, 4).

The prevalence of childhood obesity continues to in-
crease at a rapid rate as well. Thirteen to 14% of children
aged 6 –11 yr and adolescents aged 12–19 yr were reported
to be overweight in National Health and Nutrition Exam-
ination Survey IV (5). Data from 1999 –2001 indicate con-
tinued increases to 15.5% of 12- to 19-yr-olds and 15.3% of
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6- to 11-yr-olds. BMIs in excess of 28 kg/m2 are associated
with a 3- to 4-fold increase in risk of hypertension, dys-
lipidemia, and diabetes and a 2-fold increase in incident
death rates (6). A prospective study found a significantly
increased incidence of obesity-related morbidities over 5
yr of follow-up, when the BMI exceeded 27.5 kg/m2 (7).
The likelihood that an obese child will become an obese
adult increases with age and the severity of obesity,
whereas modest weight reductions of 5–10% significantly
decrease the risk of complications of IR (8). Thus, a major
effort to control childhood obesity must be mounted at all
levels of health care delivery.

Insulin resistance (IR) alone is responsible for 46.8%, 6.2%,
and 12.5% of the annual CHD events in type 2 diabetics,
nontype 2 diabetics, and in the total U.S. population, respec-
tively. The annual total cost of IR-attributable events in the
U.S. was estimated to be $12.5 billion in 1999, of which $6.6
billion were direct medical costs. The annual cost of diabetes
in medical expenditures and lost productivity climbed from
$98 billion in 1997 to $132 billion in 2002. The direct medical
costs of diabetes more than doubled in that time, from $44
billion in 1997 to $91.8 billion in 2002 (9). As mentioned, most
diabetics have underlying IRS.

However, recent studies suggest that type 2 diabetes can
be prevented. When 522 obese Finns with impaired glucose
tolerance (IGT) were randomized to receive an intensive
exercise and diet program, there was a 58% reduction in their
progression to diabetes over a mean of 3.2 yr (10). The Di-
abetes Prevention Program trial (11), which involved 3234
subjects with IGT, showed a 58% reduction in progression to
diabetes in the lifestyle group treatment group and a 31%

decrease with metformin treatment from placebo-treated
controls. Metformin was more effective in younger subjects
(11). In the Troglitazone in the Prevention of Diabetes study
of 235 Hispanic women with a history of gestational diabetes,
a 56% reduction in progression to diabetes was observed
after a median follow-up of 30 months (12). Metformin is a
safe and effective agent to improve IR in pediatric patients
(13–15, 28). It follows that as IRS is the constant precursor of
type 2 diabetes, and IRS begins in childhood, then the earlier
an intervention can be initiated in the natural history of the
disease, the more effective it will be.

Definitions

IR is defined as an impaired ability of plasma insulin at
usual concentrations to adequately promote peripheral glu-
cose disposal, suppress hepatic glucose, and inhibit very low
density lipoprotein (VLDL) output, but it can be inferred on
strong clinical evidence and confirmed by insulin and glu-
cose measurements made by fasting insulin/glucose screen-
ing, oral glucose tolerance tests (OGTT), the minimal model
frequently sampled iv glucose tolerance test (FSIVGTT), and
insulin/glucose clamp studies.

Biochemical definitions

Fasting levels of insulin greater than 15 �U/ml, or insulin
peak (post-OGTT) levels of more than 150 �U/ml and/or
more than 75 �U/ml at 120 min of OGTT are hyperinsu-
linemic levels, which infer IR (16).

Insulin sensitivity from OGTT can also be assessed by

TABLE 1. Methods of measuring insulin resistance from OGTT

Indices from OGTT Formulae Ref.

Fasting levels of insulin or insulin
peak (post-OGTT)

�15 mU/ml and/or peak �150 mU/ml are hyperinsulinemic levels 20

HOMA Glu 0 min �mmol/liter� � Ins 0 min ��U/ml�
22.5

21

QUICKI 1
log�Ins 0 min� � log�Glu 0 min�

22

Belfiore 2
�AUC insulin � AUC glucose� � 1

23

Cederholm 75,000 � (Glu 0 min � 2-h Glu) � 0.19 � BW
120 � log(mean Ins) � mean Glu

24

Gutt 75,000 � �Glu 0 min � 2-h Glu� � 0.19 � BW
120 � log��Ins 0 min � 2-h Ins�/2� � �Glu 0 min � 2-h Glu�/2

19

Matsuda
�

10,000
�Ins 0 min � Glu 0 min� � �mean Glu � mean Ins�

25

Stumvoll 0.22 � 0.0032 � BMI � 0.0000645 � 2-h Ins � 0.0037 � 1.5-h Glucose 26

Soonthornpun [1.9/6 � body weight (kg) � fasting glucose � 520 � 1.9/18 � BW �
AUC glu � urinary glucose 1.8] � [AUC ins � BW]

27

McAuley Exp[2.63–0.28 ln (insulin mU/liter) � 0.31 ln (triglycerides mmol/liter) 28

Oral Glucose Insulin Sensitivity
index (OGIS)

Table for calculation is available online (http://www.ladseb.pd.cnr.it/
bioing/ogis/home.html)

29

Glu, Glucose; Ins, insulin; AUC, area under the curve; BMI, body mass index.
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numerous indexes (Table 1). Such approaches are simple,
albeit insensitive, have been validated for epidemiological
studies (17, 18), and correlate with the indexes of insulin
sensitivity obtained from glucose clamp studies and minimal
model analysis (19).

The minimal model FSIVGTT is a more accurate method
of quantifying insulin sensitivity (Si), acute insulin response
(AIR) and disposition indexes (DI) (30). The AIR character-
izes the first phase of insulin secretion that is a marker of
early �-cell compensation (30). In nonobese children, the
normal AIR range was recently reported by Gower et al. (31)
to be 747 	 122 �U/ml in Caucasians, 1210 	 116 �U/ml in
African-Americans, and 938 	 38 �U/ml in Hispanic chil-
dren at Tanner stages 1–3.

IR indexes (Si), calculated from IVGTT of 2 � 10�4 min�1/
(�IU/ml) or less, typically occur in the presence of IR, where
values of 5 � 10�4 min�1/(�IU/ml) or more are normal in
adults and children (32). Si was reported to be in the range
of 6.57 	 0.45 � 10�4 min�1/(�IU/ml) in prepubertal chil-
dren, 4.63 	 0.86 � 10�4 min�1/(�IU/ml) in postpubertal
adolescents, and 2.92 	 0.45 � 10�4 min�1/(�IU/ml) in
pubertal children (33). Gower et al. (31) reported that IR in
children at developmental Tanner stages 1–3 is different be-
tween races: Caucasian children, 6.3 	 0.6 � 10�4 min�1/
(�IU/ml); African American children, 4.1 	 0.6 � 10�4

min�1/(�IU/ml); and Hispanic children, 4.5 	 0.5 � 10�4

min�1/(�IU/ml).
The DI characterizes the relationship of insulin secretion to

the degree of IR. The DI calculated by (AIR � Si) describes
the hyperbolic relationship between insulin secretion (AIR)
and Si from FSIVGTT, which is sensitive to detect even latent
�-cell defects. Gower et al. (31) reported DI from AIR (min-
utes�1) to be in the range of 0.29 	 0.07 in Caucasian, 0.45 	
0.07 in African-American, and 0.35 	 0.05 in Hispanic chil-
dren at Tanner stages 1–3.

Hyperglycemic and euglycemic-hyperinsulinemic clamp
studies are well established for assessing �-cell function and
Si, but these are relatively invasive procedures that are dif-
ficult to perform. Well accepted normal values for children
with any of the described methods are still needed.

Clinical definitions

The clinical phenotype of IRS includes centrally biased
obesity; characteristic skin involvements ]acanthosis nigri-
cans (AN), skin tags, striae, acne, hirsutism, and frontal bald-
ing[; an allergic diathesis, especially as manifest by asthma;
hypertension; an atherogenic dyslipidemia ]increased VLDL
with raised triglycerides (TG) and reduced levels of the pro-
tective high density lipoprotein (HDL) cholesterol[; early
atherosclerosis, tall stature and pseudoacromegaly (with
suppressed GH levels); focal segmental glomerulosclerosis;
hepatic steatosis; and adrenal and ovarian hyperandro-
genism (Table 2). Importantly, IR is not infrequent in the
absence of obesity, whereas even considerably obese persons
can be insulin sensitive.

Obese patients thus represent heterogeneous subgroups of
metabolic and phenotypical expressions of IR, whereas in-
dividuals with the same BMI can have very different degrees
of IR and metabolic (insulin) compensation. However, most
individuals with BMIs more than 35–40 kg/m2 are IR. Chil-
dren with BMIs higher than the 85th percentile for age and
gender are classified as overweight, whereas those that are
higher than the 95th percentile are designated obese (34).
Adolescents and adults with BMIs of 25 kg/m2 or more are
at risk for adiposity-related morbidity, whereas those with
BMI greater than 30 kg/m2 are obese according to the World
Health Organization panel.

Pathogenesis

Nature vs. nurture. The dramatic rise in obesity-associated IRS
reflects environmental increased availability and consump-
tion of food with high carbohydrate and fat contents together
with decreased physical activities. Genetic predispositions to
obesity favor selection of metabolically advantaged (energy
thrifty) traits resulting in an enhanced ability to store excess
calories in tissues as fat and to spare protein breakdown for
gluconeogenesis, favoring survival in times of hunger. Ge-
notypic factors influence the ability to use food energy effi-
ciently through mechanisms of intraabdominal fat distribu-
tion, resting metabolic rate, changes in energy expenditure,
body composition to overfeeding, feeding behavior (includ-

TABLE 2. Features of IRS

Features of IRS Pediatric features of IRS

AN skin tags
Striae: white
Centrally biased obesity
Hirsutism, ovarian hyperandrogenism and infertility
Dyslipidemia (1 TG, 2 HDL)
Premature atherosclerosis
Hypertension
Hyperuracemia/gout
Allergies/asthma
Fatty liver (NASH)
Chronic pancreatitis
Focal glomerulosclerosis
Glucose intolerance
Type 2 diabetes
Increased cancer risk
Increased Alzheimer’s disease

Positive family histories of diabetes, obesity, hypertension, CHD, and/or stroke
History of maternal gestational diabetes
SGA (mostly) or LGA (less often)
Asthma/allergic rhinitis
Premature pubarche
Red (new) and white (old) striae, from adrenarche onward
Obesity appears or worsens at adrenarche
Decreasing resting energy expenditure
Low resting fat to carbohydrate oxidation rates
AN
Tall stature/pseudoacromegaly
Hirsutism/PCOS with adolescence
Adipomastia/gynecomastia
Acute pancreatitis
Premature atherosclerosis
Hypertension/glomerulonephritis
Type 2 diabetes
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ing food preferences), adipose tissue lipoprotein lipase ac-
tivity, and the basal rate of lipolysis.

Genetic IR. The pathogenesis of IR is multifactorial (Table 3).
Thus, several molecular pathways in energy homeostasis,
lipid metabolism, insulin receptor signaling pathway, cyto-
kines, hormone-binding proteins including those that are
serine protease inhibitors (SERPINS), and other protease reg-
ulators are responsible for the development of IR, obesity, or
lipodystrophy (Fig. 1). In the energy homeostasis pathway,
uncoupling proteins, leptin-proopiomelanocortin (POMC),
ghrelin-neuropeptide Y (NPY), and sympathetic nervous
system regulation pathways have proved to be important. In
the insulin-signaling pathway, mutations in insulin receptors,
development of insulin receptor autoantibodies, and defects in
plasma cell membrane glycoprotein-1 and glucose transporter
4 (GLUT4) molecules are reported. In the lipid homeostasis
pathway, adipocyte-derived hormones, leptin, adiponectin, re-
sistin, peroxisomal proliferator-activated receptor-� (PPAR�),
and PPAR� are variously involved, as are lipoprotein lipase
and genes responsible for adipose tissue formation. Increased

availability of free fatty acids (FFAs) to muscle provokes IR.
Proteases contributing to the development of diabetes are rep-
resented by CAPN 10 and prohormone convertase deficiencies.

Heterozygosity for recessive mutations. The concurrence of sev-
eral heterozygosities for the mutations described above can
have additive adverse effects. This is evident by the additive
effects of heterozygosity for mutations of the leptin and
leptin receptor genes in mice. Human heterozygotes for the
LEPR mutation, have plasma leptin concentrations interme-
diate between wild-type and homozygous affected levels
(35). Heterozygotes for the Bardet-Biedl syndrome have in-
creased frequencies of obesity, renal disease, hypertension,
and type 2 diabetes, consistent with haploinsufficiency for
the responsible gene (36). Heterozygosity for inactivating
mutations of the melanocortin 4 receptor (MC4R) similarly
results in obesity in both mice and humans (37).

Acquired IR. Insulin receptor antibodies, Cushing’s syn-
drome, glucocorticoid steroid therapy, acromegaly, hyper-
parathyroidism, and exogenous obesity can all produce IR

TABLE 3A. Genetics of IRS

Insulin receptor
pathway defects

Fat cell defects � lipid homeostasis
pathway

Hypothalamic level defects Leptin-POMC-MCR4
pathway Miscellaneous

Type A syndrome
mutation in
the insulin
receptor

Congenital generalized lipodystrophy
(mutations in 11q13, BSCL2,
AGPAT2 gene on 9q34)

POMC mutations
MC4R mutations
MC3R mutations

Proteases � CALP10
Impaired processing of

prohormones
prohormone convertase
deficiency (PC1)

Estrogen receptor
mutations

Leprechaunism Dunnigan’s syndrome (lamin
mutation)

Leptin mutations

Rabson-
Mendenhall
syndrome

Kobberling’s syndrome (mutation in
the PPAR-� gene)

Leptin receptor gene mutation, ghrelin
polymorphisms, neuropeptide Y5 receptor
polymorphisms, cocaine- and
amphetamine-regulated transcript
polymorphisms, cholecystokinin A receptor
polymorphisms

Polymorphism in
plasma cell
membrane
glycoprotein-1
(PC-1)

Allelic variation in PPAR� influence
body fat mass by effects on
adipocyte; polymorphisms of
PPAR� gene can lead to higher
triglyceride and insulin levels;
polymorphism of the lipoprotein
lipase gene was both linked and
associated with insulin resistance;
polymorphism of UCP1, UCP2,
UCP3 genes; polymorphism of �2-
and �3-adrenergic receptors

Single-gene defects leading to disruption of
hypothalamic pathways of energy
regulation

Prader-Willi syndrome (15q11.2–q12,
uniparental maternal disomy), Alström
syndrome (ALMS1 gene mutants in the
hypothalamus might lead to hyperphagia
followed by obesity and insulin resistance),
Bardet-Biedl syndrome, Cohen syndrome,
Beckwick-Weidermann syndrome, Biemond
syndrome II, choroideremia with deafness

TABLE 3B. Acquired IR

Acquired IR pathway defects Acquired fat cell defects Acquired miscellaneous

Type B immune-mediated
insulin resistance

Lipodystrophy associated with HIV protease inhibitors;
acquired generalized lipodystrophy-Lawrence syndrome is
caused by antibodies against adipocyte-membrane antigens

Barraquer-Simons’ syndrome (partial acquired
cephalothoracic lipodystrophy) have accelerated
complement activation and a serum IgG, called C3
nephritic factor, that is thought to cause lysis of adipose
tissue expressing adipsin

Excess counterregulatory hormones;
glucocorticoids, catecholamines, PTH,
GH, placental lactogen in case of
stress, infection, pregnancy,
starvation, uremia, cirrhosis,
ketoacidosis, aging, inactivity
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(Table 3B). In practice, however, steroid-induced IR in a
person who happens to be genetically prone to IR is the most
commonly encountered, especially when the obese child also
has IR-associated asthma. We find this a frequent occurrence
in our clinical practices. GH therapy can provoke transient IR
also, but this therapeutic issue needs further study. In the
small for gestational age (SGA) disorders without catch-up
growth, such as the Russell-Silver syndrome, IR may develop
even before GH is given.

Birth weight and length. A continuum of increased risk of
adulthood diseases, such as cardiovascular diseases, type 2
diabetes, and hypertension, based upon SGA at birth is now
established (38). In our African American and Hispanic IR
patients, moderate SGA has been startlingly common. Ex-
perimental utero-placental insufficiency in rats to provoke
intrauterine growth retardation induced an impaired oxida-
tive phosphorylation in skeletal muscle with a diminished
uptake of glucose (39). In humans, the risk of IR is particu-
larly apparent when an SGA newborn undergoes rapid post-
natal weight gains to obesity. The Early Bird Study suggested
that IR at 5 yr was related not to birth weight, but, rather, to
weight catch-up growth, especially in girls (40). Such growth
patterns following fetal growth restraint are associated with
maternal-uterine factors such as primiparity, smoking, re-
strictions in the maternal diet, maternal IRS, and gestational
diabetes. Alternatively, if an inherited IR state was mani-
fested in utero, then diminished fetal growth with SGA might
be anticipated, because insulin is a powerful prenatal GH. In
many of the families we have studied in whom we have
documented members with IRS, some 50% of the siblings
also develop IRS, and these subjects tend to have been SGA
compared with those who do not.

Curiously, large for gestational age children are at risk of
IR as well. A U-shaped relation between birth weight and
fasting insulin was shown in Pima Indian children with both
low and high birth weights (41). The same U-shaped relation

between birth weight, BMI, and fat mass was demonstrated
recently in adolescents (42).

Gestational diabetes per se significantly increases the sub-
sequent risk of obesity and type 2 diabetes (43), with the
children of mothers with type 1 diabetes being more pre-
disposed to type 2 diabetes as adults compared with children
born to fathers with type 1 diabetes (44).

IR, leptin resistance, ghrelin, and satiety

The insulin/leptin-arcuate nucleus of the hypothalamus
axis regulates energy homeostasis through control of ap-
petite and energy expenditure. Both hormones rise in di-
rect proportion to adipose mass; they cross the blood-brain
barrier and have receptors in the arcuate nucleus. Leptin
acts on POMC expression and �MSH release. �MSH, in
turn, interacts with MC3/4R to reduce food intake and
increase energy expenditure by activating the sympathetic
nervous system. Leptin down-regulates anabolic NPY,
agouti-related peptide (AGRP), orexins, and melanin-
concentrating hormone in the hypothalamus. The central
melanocortin system is a key mediator of the catabolic
effects of insulin in the brain. Gastric secretion of ghrelin
is increased by fasting and increases pituitary GH release,
thereby stimulating lipolysis to provide energy substrates.
Ghrelin stimulates NPY-AGRP to antagonize �MSH. The
resultant lack of anorexic pressure on MC4Rs results in
increased feeding behavior and energy efficiency (with
reduced fat oxidation) to store energy as fat. Conversely,
in the fed state, insulin and leptin levels are increased,
which increases the synthesis and processing of hypotha-
lamic POMC to its component peptides, including �MSH,
which, together with its colocalized neuromodulator
cocaine/amphetamine-regulated transcript, acts at the
MC4R to decrease appetite. Insulin and leptin also directly
inhibit NPY-AGRP, further limiting feeding and providing
for unantagonized MC4R occupancy. Therefore, ghrelin,

FIG. 1. Pathways of energy homeostasis.
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insulin, and leptin represent afferent hormonal links between
peripheral energy metabolism and central feeding behavior and
tie together the gut, pancreas, adipocyte, hypothalamus, and
pituitary to form a coordinated growth and energy regulatory
system (45, 46). Genetic defects at many of these steps have been
described.

Natural history of the clinical IRS

The natural history of IRS begins in childhood, from the
interplay of genetic and environmental factors (Fig. 2 and 3).
Although it is generally unclear whether a primarily genet-
ically encoded state of IR and/or satiety disorder appears
first, IR results in hyperinsulinism and precocious develop-
ment of atherosclerosis and type 2 diabetes (47). A contem-
porary diet from early childhood replete with large amounts
of saturated fats and excess carbohydrates is probably im-
portant to the development of hyperinsulinemia and obesity.
The epidemic of obesity and diabetes follows U.S. commer-
cially driven drink and food sources, with consumption of
large amounts of sodas and fruit juices, and foods with a high
glycemic index. Dietary carbohydrates (and fats) induce hy-
perinsulinism, a reduction in fatty acid (FA) oxidation, and
hypertryglyceridemia. Diets rich in saturated FAs add a
strong insulinotropic effect. In children, obesity and IR pre-
cede the development of hyperinsulinism. The hyperinsu-
linemia can thus be seen a compensatory mechanism for the
preexisting, genetically programmed IR, which represents a
mechanism for protection against the development of IGT
and diabetes.

Insulin hypersecretion (especially portal) leads to in-
creased FA synthesis, especially in the liver and adipose
tissue. A compensatory increase in glucose oxidation and
increased malonyl coenzyme A (CoA) signaling in the face
abundant FAs direct an FA diversion away from �-oxi-

dation to compensatory increases in long-chain CoA and
TG synthesis in the liver. TG in the blood is a marker of
intracellular hepatic long-chain CoA accumulation and
increased VLDL synthesis. Normally appetite can be sup-
pressed by both leptin and insulin; however, diets high in
fat stimulate appetite directly. The liver, in turn, becomes
insensitive to compensatory leptin signaling to increase
�-oxidation, which is blocked in IR because of high levels
of malonyl CoA. Elevated levels of malonyl CoA block FA
� oxidation, leading to TG accumulation in muscle and
liver, with impaired serine phosphorylation of insulin re-
ceptor substrate-1, decreased GLUT4 translocation, and
thereby decreased glucose oxidation. In the islets, these
events lead to activation of caspases and increased cer-
amide levels inducing apoptosis of �-cells. Type 2 diabetes
thus results when there is insufficient insulin secretion to
counter preexisting IR. This is consistent with the United
Kingdom Prospective Diabetes Study findings of progres-
sive deterioration of �-cell function over time in both obese
and nonobese patients with type 2 diabetes (48).

In experimental rats and human patients, IR is correlated
with total muscle TG, as measured in biopsy samples, es-
pecially when intramyocellular fat is the measured variable.
Also, tight positive correlations were found between the TG
content of skeletal muscle, liver, and whole pancreas and
variables such as the plasma insulin concentration, �-cell
function, and IR in a variety of rat models with very different
fat contents (49).

Loss of first phase insulin response to predict development
of diabetes

Children affected by IRS are usually hyperinsulinemic
individuals in whom carbohydrates can induce a delayed,
but excessive, rise in insulin secretion. This may cause an

FIG. 2. Clinical and laboratory fea-
tures of IRS with natural history.
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excessive fall in glucose levels 3–4 h later, of sufficient se-
verity to provoke symptoms of hypoglycemia (late reactive
hypoglycemia). As the ability to secrete insulin declines,
postprandial glucose intolerance appears, followed by fast-
ing hyperglycemia and diabetes. On the basis of iv glucose
testing, insulin release consists of two phases (50). In indi-
viduals with type 2 diabetes the second phase response is
diminished, and the first phase response is almost absent.
However, the first phase response decreases long before the
development of type 2 diabetes. In the Insulin Resistance
Atherosclerosis Study, subjects who were nondiabetic at
baseline (n 
 903) were reexamined after 5 yr when 148 had
developed diabetes. Individuals who had a low AIR com-
bined with high proinsulin levels experienced the highest
diabetes risk (51). Such data were supported by the United
Kingdom Prospective Diabetes Study (52) and studies in
Pima Indians (53), in whom it was shown that a low AIR
predicts the development of diabetes at a time when many
subjects still have normal glucose tolerance. The DI is an
excellent method to detect latent �-cell defects, albeit hyper-
insulinism documented by a high AIR is a predictor of the
rate of increased fat mass.

Hyperinsulinism and IR are not benign, even
without diabetes

The majority of persons with IR will not develop type 2
diabetes. The genetic backgrounds on which hyperinsulin-
ism and IR develop strongly influence the adequacy of pan-
creatic �-cell compensation (54). The heritability of �-cell
function, assessed in relation to insulin sensitivity (Si � AIR
glucose), demonstrated a heritability of 70% in 94 normal
glucose-tolerant individuals (55). Pancreatic �-cell failure can

represent independent genetic interactions that may be in-
fluenced by the human leukocyte antigen haplotype.

IRS individuals who can compensate by hyperinsulinemia
may escape diabetes, but are still prone to other complica-
tions, such as early atherosclerosis, progression of obesity
(especially central type), AN, increased skin tags, hyperten-
sion, dyslipidemia, hypercoagulation, PCOS, fatty liver in-
filtration, focal segmental glomerulosclerosis, and an in-
creased cancer rate as well (4). Thus, IRS is not benign even
when diabetes does not develop.

Hyperinsulinism- and IR-mediated pathologies (Tables 2
and 4)

Adipose tissue. It is widely believed that obesity itself, espe-
cially increased visceral fat accumulation, can lead to IR (56).
Genetically induced IR can be the primary mechanism un-
derling and evoking the progression of obesity. In contrast,
nonobese, lean individuals can develop IR also. It has been
shown that lean sisters and brothers of patients with obesity
complicated by IR and PCOS can have IR, confirming that IR
can be a primary mechanism. Generalized lipodystrophy can
lead to IRS because of leptin deficiency and is dramatically
reversible with leptin therapy.

Visceral fat. Visceral fat is a potent modulator of insulin action
on hepatic glucose production (57). Central distribution of
body fat (waist/hip ratio, �0.90 in females and �1.0 in
males) is associated with an increased risk of stroke, CHD,
diabetes, and early mortality and is a more sensitive indicator
of impending morbidity than absolute fat mass. Waist cir-
cumference correlates with cardiovascular morbidity as well
as BMI or percent body fat. Leptin levels are higher in sc fat

FIG. 3. Natural history of developing
diabetes type 2.
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and show greater correlations with sc adiposity than with
visceral adiposity (58). Visceral fat tissue, through its portal
drainage, is an important source of FFA that increase hepatic
lipogenesis and decrease glucose oxidation (57). In vitro (iso-
lated adipocytes) and in vivo studies in humans (labeled FA
flux) showed that visceral FA flux was increased in obese
patients.

In comparison with sc fat, visceral fat has more glucocor-
ticoid receptors and higher local concentrations of glucocor-
ticoids. Omental adipose tissue contains significantly more
11�-hydroxysteroid dehydrogenase type 1 (11�HSD1) activ-
ity than sc adipose tissue (59), promoting increased cortisol
production from conversion of inactive cortisone. GH
(and/or IGF-I) was suggested recently to inhibit 11�HSD1,
whereas in obesity, GH levels are decreased, leading to
higher 11�HSD1 activity (60). 11�HSD1 activity correlates
with IR (61). 11�HSD1 knockout mice have been shown to
resist diet-induced IR and hyperglycemia (62). A local in-
crease in glucocorticoid hormone action in visceral fat may
contribute to the pathogenesis of key features of the meta-
bolic syndrome. Clinically, we observed increased abdomi-
nal striae and biochemically increased urinary free cortisol
levels in obesity.

Patients with Cushing’s syndrome have high levels of
serum cortisol, and the patient with IRS has low to normal
levels, albeit both have increased levels of urinary free cor-
tisol. The explanation lies in the decreased levels of cortico-
steroid-binding globulin (CBG) found in IRS, where circu-
lating cortisol is disproportionately free and bioactive, with
increased conversion of cortisone to the metabolically active

cortisol. The clinical distinction between patients with Cush-
ing’s and IRS is that the former is invariably growth retarded,
in contrast to the child with IRS in whom linear growth is
excessive. In the future, specific inhibitors of 11�HSD1 to
enhance insulin sensitivity and limit weight gain in obesity
might have a place.

Fatty liver or hepatic steatosis. Hepatic steatosis is another
complication of IR that may progress over years with in-
flammation and fibrosis (nonalcoholic steatohepatitis). At
least 20% of such individuals eventually develop cirrhosis,
liver failure, or hepatocellular carcinoma. Fatty liver affects
2.6% of children (63), and 22.5–52.8% of obese children and
10–25% of adolescents (64). In adult patients with diabetes
and obesity, 100% have mild steatosis, 50% have steatohepa-
titis, and 19% have cirrhosis (65). The disease is usually silent
over many years. Serum levels of alanine aminotransferase
(ALT), aspartate aminotransferase, alkaline phosphatase,
and �-glutamyltransferase are elevated and have been pro-
posed as surrogate markers of hepatic fat accumulation (66).
The ratio of aspartate aminotransferase to ALT is usually less
than 1, but this ratio increases as fibrosis advances.

Although there is no accepted pharmacological treatment
that can reverse fatty liver disease, all patients should be
given a low fat diet and TG-lowering agents and encouraged
to exercise. Leptin injections have been proven efficient in
patients with generalized lipodystrophy (67); antioxidant
therapy has been proposed (68), but has not produced sus-
tained improvement; and insulin sensitizers, such as met-
formin, have been efficient in mice (69), but there are few

TABLE 4. Hyperinsulinism- and insulin resistance-mediated organ-specific symptoms and pathologies

Skin Gastrointestinal
Hyperkeratotic AN, skin tags Hepatic steatosis, NASH, pancreatitis, cholecystitis, colon cancer
Striae
Hirsutism
Frontal alopecia

Adipose tissue Gonads
Obesity, increased intraabdominal fat
Fat infiltrations of muscle, liver, pancreas

Virilization or hirsutism, menstrual irregularity, persistent acne,
scalp hair loss, hyperhidrosis, infertility or precocious pubarche
in childhood

Cardiovascular Adrenal
Increased arterial wall thickness
Endothelial dysfunction
Early atherosclerosis
CHD, stroke
Hypertension

Premature adrenarche, increased cortisol production and excretion,
increased adrenal androgens and DHEA, normal catecholamines

Kidney GH axis
Focal segmental glomerulosclerosis Pseudoacromegaly, accelerated linear growth and bone age,

decreased GH secretion, low IGFBP-1

Immune system Inflammation
Impaired cellular mediated immunity
Asthma, eczema
Increased cancer risk, e.g. breast

Increased levels of CRP, raised erythrocyte sedimentation rates
and increased TNF� levels, increased autoimmune thyroiditis

Psychological Neurological
Depression, poor self-esteem ? cognitive defects Stroke

Pseudotumor cerebri

Respiratory Musculoskeletal
Obesity hypoventilation syndrome
Sleep apnea, ventilation/perfusion mismatches

Coxa vara slipped capital epiphysis, degenerative arthritis,
Blount’s disease, gout, muscle cramps

Ten and Maclaren • IRS in Children J Clin Endocrinol Metab, June 2004, 89(6):2526–2539 2533

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/89/6/2526/2870283 by guest on 25 April 2024



studies in humans (66). A decrease in liver volume and
decreased ALT concentrations were shown in 20 adult pa-
tients treated with metformin (500 mg, three times daily) for
4 months by Marchesini et al. (66) and in 10 children treated
with metformin (500 mg, twice daily) for 24 wk (70). Similar
results were obtained with troglitazone (69).

Hypertension. Hyperinsulinemia can increase blood pressure
by several mechanisms: via its effect to increase renal sodium
absorption, via increased activity of the sympathetic nervous
system, and via FFA-induced sensitivity to adrenergic stim-
uli and antagonized nitric oxide vasorelaxation (71). Also,
transgenic mice that overexpress leptin develop hypertension.

IR as an initiator of atherosclerosis. Studies of adults have
shown that there is an association between IR and athero-
sclerosis, Increased thickness of the arterial carotid wall and
an atherogenic dyslipidemic profile that includes hypertri-
glyceridemia, low serum HDL cholesterol concentrations,
and atherogenic low density lipoprotein (LDL) cholesterol
particles compounded by low SHBG levels are factors for
increased risk of atherosclerosis.

Importantly, hyperinsulinemia is an independent cardio-
vascular risk factor (72). The Muscatine Study linked child-
hood coronary risk factors to atherosclerosis in asymptom-
atic adults. The most predictive childhood risk factor was
increased BMI. Coronary artery calcifications were also as-
sociated with increased blood pressure and decreased HDL
cholesterol levels measured during childhood (73). Fatty
streaks can be found in the aorta inchildren older than 3 yr
of age and in coronary arteries by adolescence (74). The
Bogalusa Heart Study confirmed that the same risk factors
that are important for adults, such as elevated BMI, systolic
blood pressure, serum TG, and LDL lipoproteins, convey
greater atherosclerosis risk in the aorta and coronary arteries
in children (74). The Pathobiological Determinants of Ath-
erosclerosis in Youth study confirmed the origin of athero-
sclerosis in childhood, showed that progression toward clin-
ically significant lesions may occur in young adulthood, and
demonstrated that the progression of atherosclerosis is
strongly influenced by CHD risk factors (75).

The thickness of the carotid wall, a validated surrogate
marker for atherosclerosis in teenagers and young adults, is
sensitive to the intake of cholesterol, serum levels of choles-
terol and TGs, BMI, smoking, hypertension, and fasting glu-
cose (76).

Endothelial dysfunction is an early event preceding the
formation of plaques, representing an early disease process
of atherosclerosis that begins in childhood and is associated
with IR and hyperinsulinemia (77).

Low hormone-binding proteins and SERPINS. Decreased levels
of multiple binding proteins ]CBG, SHBG, IGF-binding
protein-1 (IGFBP-1), thyroid binding globulin, and vitamin
D-binding protein (VitD- BP)[ have been reported in patients
with obesity and metabolic syndrome X, suggesting a com-
mon underlying regulatory mechanism. The binding activ-
ities of these proteins are believed to modulate the biodis-
posal of hormones at the level of target cells. Deficiencies
of hormonal binding proteins are implicated in clinical hir-
sutism, PCOS, Cushing-like features, pseudoacromegaly,

thrombosis, inflammation, and even increased cancer risk in
cases of IRS.

SHBG has been found to be negatively correlated with BMI
and fasting insulin levels. Decreased SHBG increases testos-
terone bioavailability, leading to the development of hy-
perandrogenism, even when serum levels of testosterone are
normal.

IGFBP-1 is often strikingly depressed in IRS, producing an
excessive of free IGF-I, albeit the total level of IGF-I is usually
normal. IGFBP-1 levels are regulated principally by insulin
and to a lesser extent by glucose levels. Decreased IGFBP-1
in the face of IR leads to the increased tissue bioavailability
of IGF-I, such that it can enhance the glucose-lowering effect
of insulin. This can lead to the development of microvascular
complications and pseudoacromegaly. We found that low
levels of IGFBP-1 are associated with the degree of IR,
whereas IGFBP-3 correlates directly with the degree of
hyperinsulinism.

The low levels of CBG found in IRS lead to dispropor-
tionately free and active circulating cortisol. That can lead to
clinical and metabolic overlap between Cushing’s syndrome
and IR. Increased conversion of inactive cortisone to active
cortisol by 11�HSD1 in visceral fat compounds the effect.
CBG secretion has been shown to be negatively regulated by
both insulin and IL-6 (78).

Thyroid binding globulin levels in IRS are often depressed,
leading to confusion as to the presence of hypothyroidism.
Obese patients are thus often unnecessarily treated for hy-
pothyroidism they do not have. They may, however, develop
true hypothyroidism on the basis of associated Hashimoto’s
disease.

The low level of 25-hydroxyvitamin D3 is associated with
IR (79), and 1,25-dihydroxyvitamin D3 is essential for normal
insulin secretion. Although VitD-BP is known as a macroph-
age-activating factor, and polymorphism of VitD-BP is con-
nected to diabetes risk in Pima Indians (80). Low levels of
IGFBP-1 and 1,25-dihydroxyvitamin D were found in ma-
ternal and umbilical cord blood in preeclampsia (81).

CBG, thyroid binding globulin, and plasminogen activator
inhibitor-1 (PAI-1) belong to a family of SERPINS, and in-
sulin and cytokines levels in the case of IR can regulate their
activity. These binding proteins (serine protease inhibitors)
are substrates for elastase that is expressed at the surface of
neutrophils. Therefore, the variability in circulating binding
protein levels might be linked to their cleavage by activated
neutrophils. Increased peripheral white blood cell count and
neutrophils are usually found in both obesity and IR, which
might facilitate serine protease availability and binding pro-
tein cleavage. This mechanism is likely to contribute to de-
creased serum binding globulins levels in obesity and IR.

Inflammation, asthma, eczema, and impaired immunity. IRS and
type 2 diabetes have increased markers of inflammation,
such as C-reactive protein (CRP), erythrocyte sedimentation
rates, and TNF� levels. Data from the National Health and
Nutrition Examination Survey III cohort of 5305 children
showed that 24.2% of boys and 31.9% of girls with BMI
greater than the 95th percentile had elevated CRP levels (82).
Bogolusa and Pathobiological Determinants of Atheroscle-
rosis in Youth studies confirmed the significance of elevated
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CRP for future atherosclerosis development in children. BMI
correlates with levels of CRP (83), and adiposity has been
reported to be the major determinant of CRP levels in chil-
dren. Among adults, those with baseline CRP in the top
quartile were found to be twice as likely to develop diabetes
over 3–4 yr of follow-up as those with lower levels (84). Our
previous data revealed significantly elevated sTNF receptor
type 2 in obese children compared with lean children, with
significantly elevated levels in the group of obese children
with IGT (Anhalt et al., personal communication).

Leptin has been shown to up-regulate the production of
proinflammatory cytokines, including TNF-� and IL-6, to
increase phagocytosis by macrophages, and to increase T
helper cell type 1 (Th1) levels and suppression of Th2 cyto-
kine production in mice (85).

A connection between leptin and autoimmunity was re-
cently recognized in the light of understanding that leptin
could favor proinflammatory cell responses and directly in-
fluence the development of autoimmune disease mediated
by Th1 responses. Intraperitoneal injections of leptin accel-
erated autoimmune destruction of insulin-producing �-cells
and significantly increased interferon-� (IFN�) production in
peripheral T cells in nonobese diabetic mice. Similar obser-
vations were documented by leptin injections given to
C57BL/6J-ob/ob mice that converted these mice from disease
resistant to susceptible to autoimmune encephalomyelitis.
This switch was accompanied by a Th2 to Th1 pattern of
cytokine release and consequent reversal of Ig subclass pro-
duction (86). Thus, leptin resistance evident in IRS could bias
to Th2-type responses.

The role that leptin plays in the immunosuppression of
malnutrition is increasingly recognized. Seven of 11 children
in the family with a leptin mutation died of infections in
childhood (87). At the same time it was shown that leptin
treatment of human lymphocytes during a mixed lympho-
cyte reaction in vitro enhanced IFN� production and blunted
IL-4 production (85).

Significant association between asthma and obesity has
been noted, especially during puberty. One of the possible
mechanisms is that obesity represents a proinflammatory
state, and leptin levels influence Th1 cytokine responses.
Relationships between birth weight with adult BMI, and
between obesity and asthma have been well recognized. BMI
correlated with the prevalence of asthma in both boys and
girls. It was noted that girls who became obese between ages
6–11 yr were 7 times more likely to develop new asthmatic
symptoms at ages 11–13 yr (88). At the same time interven-
tion trials documented the beneficial effect of weight loss on
improvements in forced expiratory volume in 1 sec, FVC,
dyspnea, use of rescue bronchodilators, and the median
number of asthma exacerbations in the treatment group com-
pared with the control group (89).

Hypoventilation and sleep apnea. Excess body fat leads to a
decline in the expiratory reserve volume, vital capacity, total
lung capacity, and functional residual volume, probably due
to the excess body mass per se, albeit others implicate exces-
sive leptin levels (90).

Significance of AN. AN is a skin lesion that is widely used as
a clinical surrogate of laboratory-documented IR/hyperin-

sulinemia, denoting a subgroup with a high risk for type 2
diabetes. We suggest that AN should be documented in all
children seen in practice, especially if they are obese or di-
abetic. Common sites of involvement include the axillae,
posterior region of the neck, antecubital fossae, and groins.
Less commonly, it involves the other flexural areas, umbi-
licus, submammary region, knuckles, elbows, and, in ex-
treme cases, the entire skin. The severity of AN correlates
well with the degree of insulin responses to IR. We find AN
to precede IR documentable by OGTT or IVGTT. However,
AN also persists into the decompensated phase of IR where
insulin levels may be normal or low. Nearly 40% of Native
American teenagers have AN, as do 13% of African Amer-
ican, 6% of Hispanic, less than 1% of white and non-Hispanic
children, aged 10–19 yr. In Caucasian patients, the acanthosis
often appears a light yellow/gray color, emphasizing that the
lesion represents a thickening of the stratum corneum that
becomes pigmented in a racially dependent manner. Both
insulin and IGF-I receptors have been identified in cultured
human keratinocytes. High levels of insulin can activate both
receptors (91). Additionally, TNF-� and IFN� cytokines that
are often elevated in obesity, can induce up-regulation of
PPAR�/	 and thereby keratinocyte proliferation (92, 93).

Hyperandrogenism and reproductive abnormalities

IR can present with overt virilization or hirsutism, men-
strual irregularity, persistent acne, scalp hair loss, hyperhy-
drosis, infertility, or precocious adrenarche in childhood.
Menstrual irregularity and evidence of hyperandrogenism,
whether clinical (hirsutism, acne, or male pattern balding)
and/or biochemical (high serum androgen concentrations)
are associated with the PCOS. Hyperinsulinemia potentates
ovarian hyperandrogenism by enhancing pituitary LH se-
cretion, potentiating ovarian 17-hydroxylase and 17,20-lyase
activities, and suppressing blood SHBG and CBG level ca-
pacities and inhibits both estradiol- and T4-stimulated SHBG
production (94). SHBG levels in the circulation are charac-
teristically low, resulting in increased free and bioactive tes-
tosterone. Reducing IR by the administration of metformin,
PPAR� agonists, d-chiro-inositol, or leptin lowers serum free
testosterone concentrations, reduces cytochrome P450c17
(17-hydroxylase) activity, and normalizes SHBG levels, re-
sulting in slowed bone maturation and adrenarche (94).

Pseudoacromegaly. Linear and acral growth is usually accel-
erated in IRS and may present as pseudoacromegaly. Hy-
perinsulinemia promotes linear growth by activating skeletal
IGF-I receptors, whereas low levels of IGFBPs can promote
IGF-I action by allowing it to be freely and metabolically
available. Increased IGF-I/IGFBP-1 ratios are postulated to
result in the development of AN and ovarian hyperplasia.
Increased aromatization of androgens to estrogens second-
ary to obesity increases the propensity to adipo/gynecom-
astia in adolescent boys and enhances GH production (95).
Estrogens affect longitudinal bone growth through their ac-
tion on endochondral bone formation (96). Ghrelin is known
to stimulate GH secretion, and in obesity ghrelin levels are
decreased (97). However, Korbonits et al. (98) recently iden-
tified polymorphism in the ghrelin gene of 14 children who
were tall and obese, suggesting a role of ghrelin in stature and
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BMI. MC4R gene mutations are present in up to 5.8% of
obese children who are tall (�2 sd above the mean for age)
(99). Direct action of leptin on bone growth can predispose
to pseudoacromegaly (100). Pseudoacromegaly is seen in the
face of low plasma GH levels secretion typical for obesity.
Leptin decreases GHRH receptor gene transcription, thereby
reducing GH levels and reduces responsiveness to GHRH
(101).

Other. Additional complications include focal (IgA type) seg-
mental glomerulosclerosis, uric acid elevation, cholelilthia-
sis, pseudotumor cerebri, Blount’s disease, slipped capital
femoral epiphysis, and psychological problems.

Treatments

Decompensated and/or compensated patients. In children, IR is
usually well compensated by hyperinsulinemia, whereas we
find progressive failure of compensation through puberty
with rising glucose and triglyceride levels. Weyer et al. (102)
followed 48 Pima Indians, with normal glucose tolerance for
5 yr, and 17 progressed from normal glucose tolerance
through IGT to diabetes. In these progressors, insulin secre-
tion declined by 78%, whereas insulin sensitivity declined by
14%. In the 31 individuals who did not develop diabetes, a
similar 11% decrease in insulin sensitivity was associated
with a 30% increase in insulin secretion rather than a de-
crease. The latter 31 individuals had compensated IR. Com-
pensated hyperinsulinism, however, can lead to numerous
complications from fatty liver and atherosclerosis to in-
creased cancer risk. It is thus increasingly obvious that this
sequence of events will be most easily interrupted at the
earliest phases of life, during childhood. The child with IRS
should be aggressively treated by involvement in an exercise
program, such as walking or swimming for 30–40 min most
days of the week, because exercise provokes glucose entry
into muscle without the involvement of insulin. We use pe-
dometers as an adjunct to monitor this. Calorie and especially
carbohydrate restriction is the key to reduce weight. How-
ever, where there is also an increased level of triglycerides,
restriction of animal fats should be imposed. Fibrates may be
required, especially when TG levels exceed 500 mg/dl, at
which point acute pancreatitis and gall bladder disease be-
come real risks. In this regard, behavioral therapy and met-
formin have been proven safe and effective in improving
insulin sensitivity in pediatric patients (13–15). Laparoscopic
surgery as well has been shown to be effective in decreasing
weight, dyslipidemia, and IR in adults (103).

Behavior modification. Family-based behavioral interventions
for obese children are considered safe and useful treatments
for pediatric obesity. These interventions have been associ-
ated with reductions in total cholesterol, increases in HDL
cholesterol, reductions in IR, and return of ovulatory cycles
(104).

Metformin is approved for the treatment of type 2 diabetes
in children, but is also the drug of choice for IRS. Some have
suggested that it is the gastrointestinal side-effects of the
drug that accounts for much of its action. However, the drug
is effective in type 2 diabetes without weight loss, being
found to reduce hepatic glucose output in particular. Met-

formin has various mechanisms of action in IR. It enhances
insulin binding to insulin receptor in case of its down-
regulation by insulin receptor autoantibodies (105, 106), and
it otherwise increases binding of insulin to its receptor, with
augmented phosphorylation and tyrosine kinase activity of
the receptor (107). It is effective even in cases of insulin
receptor mutations (108). It increases peripheral utilization of
glucose though potentiating the phosphoinositol 3-kinase
after engagement of the insulin receptor, increasing trans-
location of the glucose transporters GLUT1 and GLUT4 iso-
forms to cell membrane in different tissues (107, 109–112);
increases the activity of adenosine monophosphate kinase in
muscle and liver; and reduces cytochrome P450c17 activity
(113). It is considered safe and effective in pregnant women
to decrease extreme hyperandrogenemia (114, 115). It in-
creases IGFBP-1 (116); decreases endothelin-1, a marker of
vasculopathy; and decreases hepatic glucose output. Met-
formin down-regulates TNF� expression and uncoupling
protein-2 mRNA concentrations in liver, thus decreasing he-
patic lipid biosynthesis (69). Metformin is safe for the treat-
ment of IRS in pediatric patients (13–15, 117). Our experience
in treating obese children and adolescents with IRS or PCOS
with metformin is likewise very positive. We treated 16 fe-
males, 15–28 yr of age, who had IR and hyperandrogenism
with metformin (850 mg, three times daily) for a period of 8
months to 1 yr. Insulin sensitivity, area under the curve for
insulin, SHBG, testosterone and androsterone levels, and
levels of triglycerides improved significantly (118). When
gradually increased doses were given to minimize gastro-
intestinal side-effects, this was a safe and affective agent.

The PPAR� agonists are a group of ligand-activated tran-
scription factors that govern energy metabolism, cell prolif-
eration, and inflammation (119). PPAR� agonists are effec-
tive at insulin sensitization, but are less useful in supporting
weight loss. The PPAR� isotype is mainly expressed in ad-
ipose tissue, where it stimulates adipogenesis and lipogen-
esis. PPAR� agonists have been shown to decrease inflam-
matory proteins and adhesion molecules, decrease cytokine
production, improve lipid oxidation, reduce FFA secretion
from adipocytes, decrease 11�HSD1, reduce intramyocellu-
lar lipids, and reduce muscle IR (120); decrease PAI-1 ex-
pression in endothelial cells (121); decrease testosterone lev-
els in IR females (122); and markedly induce adipocyte
glycerol kinase gene expression. By inducing glycerol kinase,
thiazolidinediones markedly stimulate glycerol incorpora-
tion into triglycerides and reduce FFA secretion from adi-
pocytes (123).

Lipid-lowering agents. Fibrates lower triglyceride levels, as
mediated through the PPAR� transcription factor, mainly
in liver, where it has an important role in FA oxidation,
gluconeogenesis, and amino acid metabolism. Pretreatment
of endothelial cells with a PPAR� agonist (fenofibrate) re-
duced markers of inflammation such as vascular cell adhesion
molecule-1 expression, CRP, fibrinogen, PAI-1, and IL-6. In
cases of combined triglyceride-LDL cholesterol elevations,
some combinations of fibrates and statins have been reported
to induce serious rhadomyelysis. The use of different combi-
nations or of a cholesterol uptake inhibitor such as zetia may be
indicated.
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Statins inhibit 3-hydroxy-3-methylglutaryl-CoA reduc-
tase, the rate-limiting enzyme in the mevalonate pathway
through which cells synthesize cholesterol. To compensate
for decreased synthesis and to maintain cholesterol ho-
meostasis, cells, particularly hepatocytes, increase the ex-
pression of LDL receptors, which increases the uptake of
plasma LDL, the main carrier of extracellular cholesterol,
resulting in lower plasma LDL concentrations. Decreased
plasma LDL levels reduce the progression of atherosclerosis
and may even lead to the regression of preexisting athero-
sclerotic lesions. Statins have important immunomodulatory
effects as well and are able to decrease the recruitment of
monocytes and T cells into the arterial wall and inhibit T cell
activation and proliferation in vitro (124).

Low doses of aspirin inactivate the enzyme cyclooxy-
genase, which catalyzes the conversion of arachidonic acid to
prostaglandins G2 and H2. These prostaglandins are precur-
sors of thromboxane, a potent platelet proaggregant and
vasoconstrictor. Low doses of enteric coated aspirin (81
mg/d) are preferred. Aspirin should be used in diabetic
individuals over the age of 30 yr who are at high risk for
cardiovascular events and may have a place in dyslipidemic
children with IRS prone to pancreatitis.

Surgery. Restrictive surgical procedures based on an adjust-
able silicone band placement around a stomach fundal pouch
can create a functional partition of the stomach. This has been
shown to be successful in adults. Whereas restrictive proce-
dures are effective in reducing intake of solid foods, high
consumption of more liquid high calorie foods may prevent
weight loss (125). Intestinal bypass surgery in children
should probably only be used only in cases of potentially
life-threatening complications such as sleep apnea.

Summary

The U.S. obesity epidemic continues unabated, with ever
increasing numbers of the nation’s obese children becoming
irreversibly obese adults, replete with the IRS in all of its
burgeoning complications, notably progressive atherosle-
rotic disease, hypertension, and type 2 diabetes. The only
rational long-term solution must lie in the realization that the
epidemic has its genesis in childhood, and thus, the inter-
ventional focus should be placed in early life. IRS requires
mass screening for physical and laboratory markers, whereas
long-term therapeutic trials that can show the long-term
benefits of aggressive prevention and intervention, initially
targeting highly prone ethnicities, are urgently needed. New
findings encourage the development of methods to block
ghrelin or promote neuropeptide YY and may provide novel
new therapies.
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