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Juliane Léger, Daniela Marinovic, Corinne Alberti, Sophie Dorgeret, Didier Chevenne,
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Context: Studies on bone mineral characteristics in children with
type 1 diabetes mellitus (T1DM) have generated conflicting results.

Objective: Our objective was to investigate bone mineral character-
istics in children with T1DM and to analyze their associations with
bone metabolism and the IGF-I system.

Design: We recruited a cohort of Caucasian patients with T1DM for at
least 3 yr and healthy children between January 2003 and June 2004.

Setting: This was a university hospital-based study.

Participants: A total of 127 patients and 319 controls aged 6 to 20
yr participated.

Methods: Dual-energy x-ray absorptiometry was performed in pa-
tients and controls. Serum bone alkaline phosphatase, CrossLaps,
IGF-I, and IGF-binding protein 3 levels were determined in patients
with values analyzed using our normative data from 1150 healthy
children.

Results: After adjustment for age, sex, pubertal stage, and body mass
index SD score, total body bone mineral content (BMC)/lean body mass
was significantly lower in patients than in controls (P � 0.04). This
difference was a result of the differences between the girls of the two
groups. Girls with T1DM had significantly lower lumbar spine and
total body BMC than control girls (P � 0.002), whereas no such
difference was observed in boys. Serum bone alkaline phosphatase
level was significantly lower in girls than in boys (P � 0.04). Low
serum IGF-I levels and the administration of large amounts of insulin
were found to have independent deleterious effects on BMC for chil-
dren of all ages and both sexes, whereas disease duration and gly-
cosylated hemoglobin levels did not.

Conclusions: A sex-related difference in the impairment of bone
mineral characteristics was identified in children with T1DM. Lon-
gitudinal studies are required to investigate whether boys may gain
slightly less bone mass during skeletal growth. (J Clin Endocrinol
Metab 91: 3947–3953, 2006)

MANY STUDIES HAVE shown that children with type
1 (insulin-dependent) diabetes mellitus (T1DM) are

at risk of having a decrease in bone mass (1–13). However,
there is still some debate about the impact of diabetes on bone
mass during childhood, because other studies found no bone
mineralization abnormalities in diabetic children (14–19). It
has been suggested that poor metabolic control has a neg-
ative effect on bone mineral characteristics and acquisition (5,
7, 11–13), but the relative importance of disease duration,
insulin regimen, and metabolic control on bone mineral and
bone metabolism remains unclear (20, 21). In adult patients,
it has been postulated that the low serum IGF-I levels ob-

served in patients with T1DM may be one of the pathogenic
factors responsible for reduced bone mineral density (BMD)
(22). However, the relationships between bone mineral char-
acteristics, biochemical parameters of bone metabolism, and
the IGF-I system have not been thoroughly investigated in
children with T1DM. Previous studies have been limited by
the small number of subjects and the restricted range of ages,
from adolescence to young adulthood. Therefore, the pur-
pose of this study was to further characterize bone turnover
and bone mineral and body composition in a large group of
children with T1DM.

Subjects and Methods

For this cross-sectional study, we consecutively enrolled, over an
18-month period, 127 children (73 boys and 54 girls) with T1DM (med-
ical history consistent with T1DM and presence of a type 1 diabetes-
associated autoantibody) who had been followed up in our department.
Patients had to satisfy the following criteria to be eligible for the study:
6–20 yr old, diabetic for at least 3 yr, and of Caucasian origin. The
exclusion criteria were secondary or genetic types of diabetes mellitus,
type 2 diabetes mellitus, another simultaneous treatment or chronic
disease such as thyroid, celiac, renal (all our patients were yearly
screened for thyroid function and antibodies, presence of anti-gliadine
IgA antibodies, and renal function), liver, or cardiac disease, and genetic
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syndromes or pregnancy (n � 35). Patients were treated with two daily
injections of a mixture of short- and long-acting insulin (n � 99), three
preprandial injections of short-acting analog insulin, and long-acting
analog insulin given at bedtime (n � 24), or an insulin pump (n � 4).
Only one patient displayed persistent microalbuminuria in two consec-
utive overnight urine collections in the preceding year.

The study population was representative of the entire eligible diabetic
population followed in our department, as shown by the median chro-
nological age [12.9 (10.2–15.2) yr] and duration of diabetes [5.6 (4.6–8.8)
yr] of the 91 (49 males) nonparticipating patients. Patients were com-
pared with a large group of healthy Caucasian children (n � 319) aged
6–20 yr, with no history of chronic disease or any current disease or drug
therapy and who were investigated for bone mineral and body com-
position measurements during the same period at Robert Debré
Hospital.

All subjects (patients and controls) underwent bone mineral and body
composition assessments, and their age, weight, height, pubertal status,
calcium intake, and physical activity were also recorded. Bone age,
insulin dose (units of insulin per kilogram body weight per day), bio-
chemical markers of calcium metabolism and bone turnover, and serum
IGF-I, IGF-binding protein 3 (IGFBP3), and glycosylated hemoglobin
(HbA1c) concentrations were determined in patients. The biochemical
markers of bone turnover used were serum bone alkaline phosphatase
levels (a marker of bone formation) and serum CrossLaps levels (a
marker of bone resorption). HbA1c values over the last 2 yr were col-
lected from clinical records of each patient (three to four determinations
per year), and a yearly average was calculated. No blood samples were
taken from the controls, for whom only bone characteristics and body
composition measurements were analyzed.

The study protocol was reviewed and approved by the faculty ethics
committee. It was explained to all subjects and their parents, who signed
a written consent form for participation.

Clinical assessment

Height and weight were expressed as an sd score (SDS) for sex and
chronological age (23). We also calculated body mass index (BMI)
(kg/m2 � weight/height2) in SDS for sex and chronological age (24).
Pubertal development was assessed according to Tanner stage (25). Bone
age was determined under blind conditions by a single investigator (J.L.)
according to the method of Greulich and Pyle (26).

Questionnaires

Questionnaires were used to determine current dietary calcium in-
take and physical activity. Dietary calcium intake (mg/d) was assessed
by means of a semiquantitative food frequency questionnaire (27).
Weekly physical activity was determined according to three categories:
no sport at all (A); physical education classes only, with an average of
3 h/wk (B); and physical education classes and organized extracurric-
ular sports (C).

BMD measurements

Bone mineral content (BMC) and BMD (BMC divided by bone area)
measurements of lumbar spine (LS) (L2–L4) and total body (TB) were
obtained by dual-energy x-ray absorptiometry (DEXA, GE Lunar Prod-
igy Corp., Madison, WI). We corrected for bone size by calculating the
apparent volumetric BMD (BMAD) of the LS with the BMAD LS �
BMC/A�A (volume � A�A, in which A � area) model (28). TB DEXA
was also used to estimate body composition as lean body mass (LBM)
and fat tissue mass (in grams) and percent body fat mass. As recom-
mended for the interpretation of DEXA in children, TB BMC for LBM
(BMC/LBM) and LBM for height were calculated (29). The results were
compared with those from our control population. SDS were calculated
for bone mineral characteristics (LS and TB), based on values from a
reference pediatric population provided by the manufacturer (GE Lu-
nar) (30). The coefficient of variation (CV) was 1% for L2–L4 BMD and
0.64% for TB BMD. The CV was 1% for lean tissue mass, 1.2% for fat
mass, and 4% for percent fat mass.

Biochemical parameters

Blood samples were obtained from all patients after an overnight fast
for the assessment of calcium, phosphorus, magnesium, alkaline phos-
phatase, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, PTH, bone
alkaline phosphatase, CrossLaps, IGF-I, and IGFBP3 levels. Urine sam-
ples were collected in the morning, in fasting conditions, after discarding
the first void, for the measurement of urinary calcium and creatinine
levels. Samples were stored at �20 C until assayed.

Plasma and urine creatinine, calcium, phosphorus, magnesium, and
alkaline phosphatase concentrations were determined with an ADVIA
analyzer (Bayer Diagnostics, Puteaux, France). HbA1c was determined
by HPLC (VARIANT; Bio-Rad, Marnes-la-Coquette, France), with an
interassay CV of less than 5.8%. Serum IGF-I and IGFBP3 concentrations
were determined by fully automated two-site chemiluminescence im-
munoassays (Nichols Advantage; Nichols Institute Diagnostics, Paris,
France), with interassay CV of less than 6.4 and 10%, respectively. Serum
bone alkaline phosphatase and PTH concentrations were determined by
radioimmunometric assays (Tandem-R Ostase from Beckman Coulter,
Roissy, France, and IRMA intact PTH from Nichols Institute Diagnos-
tics), with interassay CV of less than 9.2% and less than 10%, respec-
tively. The serum CrossLaps assay is an enzyme-linked immunoassay
(serum CrossLaps ELISA; Nordic Bioscience Diagnostics A/S, Herlev,
Denmark) specific for a b-aspartate form of the EKAHD-b-GGR epitope
derived from the cross-linked degradation products of C-terminal te-
lopeptides of type I collagen (31). The interassay CV was less than 5%.
Serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentra-
tions were determined by RIAs (�-B 25-hydroxy vitamin D RIA and �-B
1,25-hydroxy vitamin D RIA; IDS, Boldon, UK) with interassay CV of
less than 11% and less than 13%, respectively.

Statistical analysis

Because of some nonnormally distributed variables, results are ex-
pressed as medians (25–75th percentiles) for quantitative variables and
absolute numbers for qualitative variables. We assessed the significance
of differences in clinical characteristics between controls and patients by
means of nonparametric tests: �2 or Fisher’s exact test for categorical
variables and Wilcoxon’s test for continuous variables. SDS for serum
bone alkaline phosphatase, CrossLaps, IGF-I, and IGFBP3 levels were
calculated from our normative data from 1150 healthy Caucasian chil-
dren with no history of chronic disease and with no current disease or
drug treatment, and for whom blood samples were collected in the
morning in fasting conditions (unpublished data). SDS for bone mineral
characteristic (LS and TB) values were calculated from the data for a
reference pediatric population supplied by the equipment manufacturer
(GE Lunar) (30). We compared biochemical markers, bone mineral char-
acteristics, and body composition between patients and controls by
means of a linear regression model. This method was also used to
investigate relationships among disease-related factors (duration of di-
abetes, HbA1c levels, and insulin regimen) and bone mineral charac-
teristics (LS and TB), body composition measurements (LBM, fat body
mass, and percent body fat mass), serum bone alkaline phosphatase,
CrossLaps, IGF-I, and IGFBP3 levels and the relationship between bio-
chemical markers and bone mineral characteristics. All models were
adjusted for age, sex, pubertal stage, and physical activity, if appropriate.
Obesity in otherwise healthy children is known to be associated with
increased BMC (32). T1DM patients tend to have a higher BMI than
controls (33). Models were therefore also adjusted for BMI SDS. We
checked the normality of residuals and homoscedasticity. Dependent
variables were log-transformed when appropriate.

All tests were two tailed. Statistical analyses were performed with the
SAS 8.2 (SAS Institute Inc., Cary, NC) software package on a PC.

Results
Clinical and biological characteristics

The clinical characteristics of the study population are
indicated in Table 1. The T1DM patients were generally older
and at a more advanced pubertal stage than the control
subjects. Median BMI was significantly higher in the T1DM
group than in the control subjects (P � 0.01). When analyzed
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by sex and by pubertal stage, the only significant difference
in BMI SDS observed was between girls with T1DM at pu-
bertal stage 5 and control girls [1.36 (1.03–2.41) SDS, n � 26,
vs. 0.64 (0.05–1.15) SDS, n � 42; P � 0.0001]. Disease duration,
insulin requirements, and HbA1c levels did not differ be-
tween the sexes in T1DM patients. Median HbA1c levels
during each of the preceding 2 yr [8.43% (7.77–9.13%) and
8.55% (7.90–9.23%)] did not differ from current HbA1c levels
[8.40% (7.90–9.50%)]. We therefore used only current HbA1c
levels for subsequent analysis. Calcium intake was similar in
patients and control subjects. A difference in physical activity
was observed only in boys with T1DM compared with con-
trol boys.

Table 2 shows the markers of calcium metabolism accord-
ing to sex. Most values were within the normal range, but
girls with T1DM had lower serum calcium, magnesium, and
alkaline phosphatase and higher PTH levels than boys with
T1DM. They also had higher median urinary calcium/cre-

atinine ratios than boys with T1DM. Interestingly, serum
magnesium concentration was negatively correlated with
HbA1c levels, with a regression coefficient [95% confidence
interval (CI)] of �0.018 (�0.036 to 0.000) (P � 0.05) in girls
but not in boys.

All patients had normal median serum bone alkaline phos-
phatase and CrossLaps levels. However, median serum bone
alkaline phosphatase levels were significantly lower in girls
than in boys with T1DM (P � 0.04). Median serum IGF-I and
IGFBP3 levels were low in all patients (median values, �1.3
SDS for IGF-I and IGFBP3, respectively), with no significant
difference between male and female patients.

Bone mineral and body composition

After controlling for age, sex, pubertal stage, and BMI SDS,
median TB BMC/LBM was significantly lower in patients
with T1DM than in controls (P � 0.04). The observed dif-

TABLE 1. Clinical characteristics of the study population by sex

Patient group (n � 127) Control group (n � 319)

Boys (n � 73) Girls (n � 54) Boys (n � 162) Girls (n � 157)

Chronological age (yr) 13.0 (10.1 to 16.2) 14.4 (11.8 to 16.5) 11.3 (8.8 to 13.8)a 11.7 (9.5 to 14.4)a

Pubertal stage
1 31 (42) 9 (17) 87 (54) 54 (34)a

2 6 (8) 8 (15) 17 (10) 23 (15)
3 7 (10) 5 (9) 18 (11) 25 (16)
4 11 (15) 6 (11) 17 (10) 13 (8)
5 18 (25) 26 (48) 23 (14) 42 (27)

Bone age (yr) 13.0 (10.0 to 16.5) 15.0 (11.8 to 16.5)
Height (SDS) 0.8 (0.3 to 1.7) 0.7 (�0.2 to 1.3) 1.1 (0.4 to 1.7) 1.0 (0.2 to 1.8)
Weight (SDS) 1.1 (0.1 to 1.7) 1.2 (0.1 to 2.3) 0.9 (0.2 to 1.9) 0.9 (0.2 to 1.8)
BMI (SDS) 0.7 (�0.2 to 1.5) 1.0 (0.0 to 1.7) 0.6 (�0.2 to 1.3) 0.5 (�0.2 to 1.3)a

Disease duration (yr) 6.3 (4.1 to 8.6) 5.8 (4.1 to 8.4)
Insulin requirement (U/kg�d) 0.9 (0.7 to 1.1) 0.9 (0.8 to 1.1)
HbA1c (%) 8.3 (7.9 to 9.4) 8.9 (7.9 to 9.7)
Categories of physical activity

A 1 (1) 1 (2) 6 (4) 6 (4)
B 28 (39) 18 (34) 37 (23) 47 (30)
C 42 (59) 34 (64) 118 (73)a 104 (66)

Calcium intake (mg/d) 910 (711 to 1063) 850 (691 to 1063) 878 (676 to 1045) 786 (599 to 965)

Values are expressed as median (25 to 75th percentile) or number (%).
a P � 0.01, patients vs. controls.

TABLE 2. Biochemical markers of calcium metabolism and serum concentrations of bone alkaline phosphatase, CrossLaps, IGF-I, and
IGFBP3 in 127 treated children with T1DM

T1DM boys T1DM girls
P values,

T1DM boys
vs. girls

All patients, median
(25–75th percentile) Normal range

Calcium (mmol/liter) 2.26 (2.22 to 2.31) 2.22 (2.16 to 2.26) 0.002 2.24 (2.20 to 2.29) 2.2–2.6
Phosphorus (mmol/liter) 1.6 (1.4 to 1.7) 1.5 (1.4 to 1.6) 0.13 1.5 (1.4 to 1.7) 1.3–1.8
Magnesium (mmol/liter) 0.82 (0.78 to 0.87) 0.79 (0.78 to 0.85) 0.03 0.81 (0.76 to 0.87) 0.75–0.95
Alkaline phosphatase (IU/liter) 224 (275 to 282) 124 (71 to 227) 0.0001 192 (93 to 252) 120–400
PTH (ng/liter) 22 (15 to 33) 26 (21 to 36) 0.04 24 (17 to 34) 10–55
25-Hydroxyvitamin D (ng/liter) 16 (12 to 20) 16 (12 to 20) 0.61 16 (12 to 20) 10–40
1,25-Dihydroxyvitamin D (ng/liter) 43 (35 to 52) 42 (30 to 53) 0.41 43 (34 to 53) 20–80
Urinary calcium/creatinine concentration

(mmol/mmol)
0.22 (0.12 to 0.39) 0.29 (0.19 to 0.51) 0.03 0.27 (0.15 to 0.47) �0.5

Bone alkaline phosphatase (SDS) 0.5 (�0.1 to 1.2) 0.1 (�0.8 to 0.9) 0.04 0.3 (�0.5 to 1.1)
CrossLaps (SDS) 0.2 (�0.7 to 1.1) 0.1 (�0.8 to 0.9) 0.48 0.1 (�0.8 to 0.9)
IGF-I (SDS) �1.2 (�2.0 to �0.3) �1.6 (�2.4 to �0.7) 0.19 �1.3 (�2.1 to �0.3)
IGFBP3 (SDS) �1.3 (�2.1 to �0.7) �1.8 (�2.6 to �0.1) 0.49 �1.3 (�2.3 to �0.6)

Serum alkaline phosphatase levels and urinary calcium/creatinine ratio were adjusted for age and pubertal stage (transformed log values
for comparison). Serum levels of bone alkaline phosphatase, CrossLaps, IGF-I, and IGFBP3 are expressed as z-scores (SDS). Bone alkaline
phosphatase and CrossLaps were adjusted for pubertal stage. IGF-I and IGFBP3 levels were adjusted for pubertal stage and BMI SDS.
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ference in TB BMC/LBM resulted primarily from the differ-
ence between girls with T1DM and control girls [regression
coefficient (95% CI) � �0.0020 (�0.0035 to �0.0005); P �
0.01]. In boys, TB BMC/LBM was similar for the T1DM and
control groups (P � 0.36). Girls with T1DM also had signif-
icantly lower LS BMC (P � 0.04) and TB BMC (P � 0.03) than
control girls (Table 3), whereas no such difference was ob-
served for boys.

When BMC measurements were expressed as SDS for age
and sex with respect to a reference pediatric population, a
significant difference in median LS BMC and TB BMC SDS
was also found between girls with T1DM and control girls,
whereas no such difference was observed for boys (Table 4
and Fig. 1). When data were corrected for bone age instead
of chronological age, similar patterns were seen (data not
shown).

LBM, LBM/height, fat body mass, and percent body fat
mass did not differ between the T1DM and control groups
(Table 3).

Effect of disease duration, insulin regimen, and
HbA1c levels

We explored the effects of disease-related factors, such as
disease duration, insulin regimen, and HbA1c levels, on bone
mineral and body composition and serum bone alkaline
phosphatase, CrossLaps, IGF-I, and IGFBP3 concentrations
by carrying out multiple regression analysis including age,
sex, pubertal stage, BMI, physical activity, and disease-re-
lated factors. Insulin requirement was significantly associ-
ated with TB BMC/LBM, percent body fat mass, LBM/
height, and serum IGF-I and IGFBP3 concentrations. HbA1c

concentration was associated only with percent body fat
mass. We detected no effect of disease duration on any of the
factors studied (Table 5).

In univariate analysis, we observed no difference in the
factors studied between patients treated with two injections
per day, three or more injections per day, or an insulin pump
(data not shown).

Relationship between serum biochemical marker SDS and
bone mineral characteristics

After controlling for age, sex, pubertal stage, BMI SDS, and
insulin regimen, no significant relationship was observed
between serum bone alkaline phosphatase, CrossLaps, or
IGFBP3 SDS and any of the bone mineral characteristics
measured. However, serum IGF-I SDS were positively re-
lated to TB BMC (log) values [regression coefficient (95%
CI) � 0.037 (0.011–0.063); P � 0.006], LS BMC (log) values
[regression coefficient (95% CI) � 0.061 (0.027–0.095); P �
0.001], and BMC/LBM [regression coefficient (95% CI) �
0.002 (0.001–0.002); P � 0.001].

No association was observed between bone formation
(bone alkaline phosphatase levels) and resorption (Cross-
Laps) markers and serum IGF-I or IGFBP3 SDS.

Discussion

This cross-sectional study demonstrates that bone mineral
characteristics are slightly impaired in children with T1DM
at a median age of 13.8 yr and after a median duration of the
disease of 6 yr. The difference in BMC between children with
T1DM and controls was significant only after correcting

TABLE 3. Comparison of absolute bone mineral characteristics and body composition values in 127 children with T1DM (n � 73 boys) vs.
319 controls (n � 162 boys), adjusted for age, sex, pubertal stage, and BMI SDS

Boys Girls All subjects

Regression coefficient
(95% CI)

P value Regression coefficient
(95% CI)

P value Regression coefficient
(95% CI)

P value

LS BMD (g/cm2) 0.013 (�0.016 to 0.041) 0.38 �0.030 (�0.061 to 0.002) 0.07 �0.006 (�0.027 to 0.015) 0.61
LS BMAD (g/cm3) 0.001 (�0.003 to 0.006) 0.58 �0.004 (�0.009 to 0.002) 0.17 �0.001 (�0.004 to 0.003) 0.69
LS BMC (g)a 0.03 (�0.03 to 0.08) 0.30 �0.07 (�0.13 to 0.00) 0.04 �0.01 (�0.06 to 0.03) 0.52
TB BMD (g/cm2) 0.002 (�0.017 to 0.020) 0.86 �0.014 (�0.032 to 0.003) 0.10 �0.006 (�0.018 to 0.007) 0.37
TB BMC (g/cm2)a 0.01(�0.03 to 0.06) 0.48 �0.05 (�0.10 to �0.01) 0.03 �0.01 (�0.05 to 0.02) 0.37
TB BMC/LBM �0.0006 (�0.0017 to 0.0006) 0.36 �0.0020 (�0.0035 to �0.0005) 0.01 �0.0011 (�0.0021 to �0.0001) 0.04
LBM (g)a,b 0.02 (�0.01 to 0.06) 0.19 �0.03 (�0.07 to 0.01) 0.12 0.00 (�0.03 to 0.03) 0.94
LBM/heighta,b 0.02 (0.00 to 0.05) 0.10 �0.02 (�0.04 to 0.01) 0.22 0.00 (�0.01 to 0.02) 0.63
Fat body mass (g)a,b �0.03 (�0.12 to 0.07) 0.60 0.00 (�0.08 to 0.07) 0.95 �0.01 (�0.08 to 0.05) 0.71
Percent body

fat massb
�0.01 (�0.02 to 0.00) 0.14 0.01 (�0.01 to 0.02) 0.42 0.00 (�0.01 to 0.01) 0.58

Results are expressed as � -coefficient value (95% CI) from a linear regression model.
a Transformed log values for comparison.
b Also adjusted for physical activity.

TABLE 4. Bone mineral characteristics expressed as z-scores (SDS) for age and sex, based on a pediatric reference population (30), in
T1DM patients and controls

Patients Controls P values

Boys Girls Boys Girls Boys with
T1DM vs.
controls

Girls with
T1DM vs.
controls

LS BMC (SDS) �0.02 (�0.44 to 0.57) �0.37 (�1.29 to 0.53) 0.08 (�0.34 to 0.64) �0.08 (�0.61 to 0.73) 0.19 0.002
TB BMC (SDS) �0.20 (�0.82 to 0.58) �0.34 (�0.92 to 0.54) �0.04 (�0.60 to 0.38) 0.02 (�0.55 to 0.49) 0.13 0.002

Values are expressed as median (25–75th percentile). The data have been adjusted for pubertal stage and BMI SDS.

3950 J Clin Endocrinol Metab, October 2006, 91(10):3947–3953 Léger et al. • BMC in Children with T1DM
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whole BMC for LBM, confirming the importance of lean
tissue mass in the interpretation of TB bone mineral char-
acteristics in children (29). This study demonstrates for the
first time that the difference in BMC between children with
T1DM and controls resulted primarily from a difference be-
tween girls with and without T1DM. Although the patient
and control groups differed in age and pubertal stage dis-

tributions, patients with T1DM were compared with a care-
fully selected healthy control group, controlled for age, sex,
BMI, and pubertal stage. These analyses demonstrate the
importance of using an appropriate comparison group of
healthy subjects for the assessment of bone health in children
to adjust for differences in bone and body composition char-
acteristics. Conflicting data on bone mineral characteristics
have been published for children with T1DM; some studies
have reported normal bone mineral characteristics (14–19),
whereas others have reported poorer bone mineral charac-
teristics in children with T1DM than in controls (1–13). Our
study was specifically designed to address the drawbacks
associated with previous studies. By restricting the study to
Caucasian patients who had had diabetes for at least 3 yr,
with no other simultaneous treatment or chronic disease, we
were able to take into account most of the confounding
factors. The larger size of this study population than of the
populations studied in previous cross-sectional studies of
children also made it possible to obtain more precise esti-
mates of the effect of T1DM on bone mineral and bone
metabolism characteristics.

Moderately reduced BMD has been observed in adult pa-
tients with T1DM (20). Sexual dimorphism in the impact of
T1DM on BMD has been reported in only one study, in which
the difference in BMD was significant only for the female
subgroup (22). In children, a larger bone mass deficit in girls
than in boys has been suggested in some studies (2, 5, 14),
whereas others reported no sex-specific effect on BMD (11,
15, 17, 18). Conversely, BMD and BMC/LBM ratio have been
reported to be higher in girls with T1DM than in boys with
T1DM (3, 10, 12). This finding may be attributed to the
markedly higher BMI of many of the girls, as also found in
this study. Because obesity is known to induce an increase in
whole-body BMC during childhood and adolescence (32),
the apparently preserved BMC/LBM found in girls with
T1DM in this previous study may reflect a lack of adjustment
of the data for BMI.

Bone mineral characteristics are determined by many ge-
netic, demographic, and lifestyle factors, such as sex, height,
weight, dietary calcium intake, and physical activity. Bone
mass increases with age, and its peak value is achieved after
puberty (34). We cannot exclude the possibility that children,
and particularly boys, with T1DM display a slight impair-
ment in bone mass accumulation during skeletal growth, as
recently suggested for a limited group of adolescent patients
followed for 1 yr, by comparison with a cross-sectional ref-
erence population (13). Other longitudinal studies are there-
fore required to investigate the rate of bone mineral accu-
mulation throughout childhood and puberty, in patients
with T1DM, comparing it with that in a group of healthy
control children. However, abnormalities in bone mineral
characteristics may become more evident in both sexes later
in life, as shown in two recent studies (19, 35), perhaps with
the long-term onset of progressive microvascular complica-
tions (36–39). The physiopathological mechanisms involved
in the development of bone loss are unknown. In our study,
girls with T1DM had higher urinary calcium/creatinine con-
centrations and lower serum calcium concentrations, result-
ing in higher levels of PTH secretion and lower serum mag-
nesium concentrations than in boys. These metabolic

FIG. 1. Box and whisker plots of LS (A) and TB (B) BMC expressed
as SDS for age and sex based on a pediatric reference population (30)
in T1DM patients and controls. The horizontal line represents the
median, the box indicates the interquartile range, and the whiskers
show the range of the data. The data have been adjusted for pubertal
stage and BMI SDS. *, P � 0.002 for T1DM girls vs. controls.

TABLE 5. Effect of metabolic control, insulin regimen, and
disease duration on bone mineral and body composition and serum
IGF-I and IGFBP 3 levels in children with T1DM

Regression coefficient (95% CI) P values

TB BMC/LBM
Disease duration �0.00003 (�0.0004 to 0.00034) 0.88
Insulin requirement �0.005 (�0.009 to �0.001) 0.02
HbA1c 0.0001 (�0.0008 to 0.0009) 0.84

% Body fat mass
Disease duration �0.0001 (�0.0032 to 0.0029) 0.93
Insulin requirement �0.040 (�0.074 to �0.006) 0.02
HbA1c 0.012 (0.005–0.019) 0.001

LBM/height
Disease duration 0.001 (�0.006 to 0.008) 0.76
Insulin requirement 0.083 (0.006–0.159) 0.03
HbA1c �0.012 (�0.028 to 0.003) 0.12

IGF-I SDS
Disease duration �0.04 (�0.12 to 0.03) 0.27
Insulin requirement 0.97 (0.11–1.83) 0.03
HbA1c �0.17 (�0.35 to 0.02) 0.08

IGFBP3 SDS
Disease duration 0.01 (�0.07 to 0.09) 0.84
Insulin requirement 1.069 (0.128–2.010) 0.03
HbA1c 0.03 (�0.16 to 0.22) 0.75

Bone mineral and body composition values were adjusted for sex,
age, pubertal stage, BMI, physical activity. IGF-I and IGFBP3 SDS
were adjusted for BMI.
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disturbances, which have also been reported in other studies,
regardless of the sex of the patients considered (4, 6, 20), may
contribute to the development of bone loss. In our study,
serum bone alkaline phosphatase levels were also found to
be significantly lower in girls than in boys with T1DM, re-
flecting sex-specific differences in the pattern of bone for-
mation in these patients. This mechanism may result in a
lower level of bone accumulation during the period of skel-
etal growth (20, 40), which, although modest, may become
evident in girls earlier than in boys. Our results are consistent
with the hypothesis that androgens protect the bone mass by
promoting periosteal bone formation, whereas estrogens ei-
ther inhibit or have no effect on periosteal bone formation
(41, 42).

The combined effects of chronic hyperglycemia, insulin
deficiency, and low IGF-I concentrations may also reduce
osteoblast activity, leading in turn to a decrease in bone
formation (21, 43, 44). Most previous studies have been lim-
ited by the lack of simultaneous information on bone mineral
characteristics and biochemical markers of bone turnover,
including measurements of markers of formation and re-
sorption and serum IGF-I and IGFBP3 concentrations. Some
studies have suggested that bone formation rates are high
(45) or normal (19) in patients with T1DM, but most have
reported lower levels of osteoblast function (35, 36, 40, 44, 46).
We found that serum bone alkaline phosphatase concentra-
tion (a marker of bone formation) and serum CrossLaps
levels (a marker of bone resorption) were normal when ex-
pressed as SDS for age and sex. Longitudinal studies of this
population are required to determine whether bone turnover
rate is affected later in life. As in our study, the possible
adverse effects on bone of poor metabolic control or of dis-
ease duration have not been confirmed in children or adult
patients (5, 9, 10, 14, 15, 17–19, 45). A longitudinal study of
our population is also required to investigate the possible
later contribution of disease-related factors. However, we
demonstrated, for the first time, that insulin requirement is
negatively correlated with BMC/LBM. It remains unclear
how the effects of exogenous and endogenous insulin levels
differ in terms of their impact on the skeleton (21). Low
serum total and free IGF-I and IGFBP3 levels, despite high
circulating GH levels as well as relatively high IGFBP1 levels
in patients with T1DM, are thought to arise because of rel-
ative GH resistance and portal hypoinsulinemia (47). The
elevated GH levels lead to a decrease in insulin sensitivity.
Elevated IGFBP1 levels could also contribute to the decrease
in insulin sensitivity in these patients by altering levels of free
IGF-I (47). Whether alteration in circulating IGFBPs may
influence the bioavailability of the IGFs for target tissue such
as bone remains to be explored. Insulin requirement has been
shown to be linked to body composition abnormalities, with
excessive pubertal weight gain, mostly in girls with T1DM
(33, 48–50). Serum IGF-I concentration is low in patients with
T1DM and is also related to insulin regimen; our findings in
this respect are similar to those reported by other studies
(51–53). Insulin treatment may therefore affect serum IGF-I
concentration, body composition, and bone mineral charac-
teristics. In adult diabetic patients, serum IGF-I concentration
is significantly lower in patients with osteopenia than in
those without osteopenia (54). Like this previous study in

adult patients, our study demonstrates that in children, se-
rum IGF-I SDS is correlated with bone mineral characteristics
that were unrelated to resorption or formation markers. In
animal models, a threshold serum IGF-I concentration has
been demonstrated to be required for normal bone growth
and density, suggesting that serum IGF-I concentration plays
a prominent role in the pathophysiology of osteoporosis (55).

In conclusion, this study is the first prospective popula-
tion-based study to identify a sex-specific difference in the
impairment of bone mineral characteristics during childhood
and adolescence in patients with T1DM. High doses of in-
sulin and low serum IGF-I levels were also found to have
independent deleterious effects on bone in patients of all ages
and both sexes in this population.
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