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Context: Lack of sun exposure is widely accepted as the primary cause
of epidemic low vitamin D status worldwide. However, some individuals
with seemingly adequate UV exposure have been reported to have low
serum 25-hydroxyvitamin D [25(OH)D] concentration, results that
might have been confounded by imprecision of the assays used.

Objective: The aim was to document the 25(OH)D status of healthy
individuals with habitually high sun exposure.

Setting: This study was conducted in a convenience sample of adults
in Honolulu, Hawaii (latitude 21°).

Participants: The study population consisted of 93 adults (30 women
and 63 men) with a mean (SEM) age and body mass index of 24.0 yr (0.7)
and 23.6 kg/m2 (0.4), respectively. Their self-reported sun exposure was
28.9 (1.5) h/wk, yielding a calculated sun exposure index of 11.1 (0.7).

Main Outcome Measures: Serum 25(OH)D concentration was mea-
sured using a precise HPLC assay. Low vitamin D status was defined
as a circulating 25(OH)D concentration less than 30 ng/ml.

Results: Mean serum 25(OH)D concentration was 31.6 ng/ml. Using
a cutpoint of 30 ng/ml, 51% of this population had low vitamin D
status. The highest 25(OH)D concentration was 62 ng/ml.

Conclusions: These data suggest that variable responsiveness to
UVB radiation is evident among individuals, causing some to have
low vitamin D status despite abundant sun exposure. In addition,
because the maximal 25(OH)D concentration produced by natural UV
exposure appears to be approximately 60 ng/ml, it seems prudent to
use this value as an upper limit when prescribing vitamin D
supplementation. (J Clin Endocrinol Metab 92: 2130–2135, 2007)

LOW VITAMIN D status1 is extremely common (1– 4),
and may contribute to the development of osteopo-

rosis and osteomalacia/rickets, as well as increase the risk
for falls (5, 6). Moreover, low vitamin D status may play
a role in nonmusculoskeletal diseases, including a variety
of cancers, multiple sclerosis, infection, hypertension, and
diabetes mellitus (7, 8). Although it is widely accepted that
vitamin D status is determined by the measurement of the
circulating concentration of 25-hydroxyvitamin D
[25(OH)D] (9), the cutoff value to define low vitamin D
status and a definition for success of vitamin D repletion
therapy remain controversial (10, 11). This is partially due
to the variability of vitamin D concentration by geograph-
ical location and differences in assay methodology (12–16).
Despite this controversy, clinicians often endeavor to cor-
rect vitamin D deficiency by prescribing high-dose vita-
min D (17). However, the goal for such therapy is unclear
and could include achieving a serum 25(OH)D level
greater than an accepted cutpoint (e.g. 30 ng/ml) or, al-
ternatively, the upper limit of normal, a value that varies
between laboratories (18).

The high prevalence of low vitamin D status is assumed
to result from inadequate sun exposure. Because highly sun-
exposed individuals likely possess normal vitamin D status
from an evolutionary standpoint, the use of such individuals
to define normal 25(OH)D status has been proposed (19).
This argument is based on the view that contemporary hu-
mans are genetically adapted to the environment of our
ancestors and that the profound lifestyle changes that have
occurred over the past approximately 10,000 yr (importantly
including reduced sun exposure) have been much too rapid
for the human genome to adjust (20, 21). The current study
was designed to assess whether, in fact, people living at a low
latitude with high amounts of sun exposure have adequate
vitamin D status, as expected, and to identify a target value
of 25(OH)D for use in vitamin D therapy.

Subjects and Methods
Subjects and study design

Subjects older than 18 yr were recruited approximately equally from
the University of Hawaii at Manoa (UH) and from patrons of the A’ala
Park Board Shop, Honolulu, Hawaii (latitude 21° north), in late March
2005. The A’ala Park Board Shop is a skateboard shop frequented by
young adults. Recruitment was performed by posted notice at the Board
Shop and on the UH campus; volunteers were reimbursed for study
participation. Volunteers were required to have self-reported sun ex-
posure of 3 or more hours per day on 5 or more days per week for at
least the preceding 3 months, and not to be currently taking phenobar-
bital, phenytoin, or prednisone. A total of 93 subjects (63 male and 30
female) participated.

The University of Wisconsin Health Sciences Institutional Review
Board and the Committee on Human Studies at the UH reviewed and

First Published Online April 3, 2007
Abbreviations: BMI, Body mass index; CV, coefficient of variation;

25(OH)D, 25-hydroxyvitamin D; UH, University of Hawaii at Manoa.
1 We have chosen to use the terminology “low vitamin D status” for

a syndrome that others have variously described as “vitamin D insuf-
ficiency,” “vitamin D inadequacy,” or “hypovitaminosis D.”
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approved this research. All subjects provided written informed consent
before the conduct of any study procedure.

Data acquisition

Blood was collected for serum chemistry, 25(OH)D, and PTH mea-
surement. Participants were not required to fast for blood collection,
which was performed by routine venipuncture. Samples were allowed
to clot for 30–45 min at room temperature, centrifuged, and serum was
promptly frozen on dry ice. All specimens were shipped and received
frozen on dry ice, then stored at �80 C until thawed for analyses. The
25(OH)D analyses were performed in batches of nine to 16 samples (a
total of eight HPLC runs were performed over 14 d) from 10–26 d after
specimen acquisition. Three internal controls were run with each HPLC
batch; the results of each control were consistently within previously
established acceptable ranges. The PTH samples were performed 66–71
d after specimen acquisition in a single run. All participants completed
a nonvalidated, self-administered questionnaire that included questions
about ethnicity, sun exposure, sunscreen use, and dietary vitamin D
intake.

To document sun exposure, skin color was measured by reflectance
colorimetry (IMS SmartProbe, Millford, CT). The Commission Interna-
tionale de l’Eclairage L scale was used, which ranges from 0 (black) to
100 (white) and represents a system created by the International Com-
mission on Illumination to represent accurately human color perception.
A measurement was taken on the back of the hand and front of the distal
thigh for the darkest measurement. In addition, skin color was measured
under the arm and at the self-reported least sun-exposed area, often the
breast or buttock, to determine the lightest or natural skin color. The
lowest and highest L scale measurements were subtracted to determine
the change in skin color or the delta skin color. A previously developed
sun exposure index (22) was used to estimate the amount and duration
of skin sun exposure. These data were obtained by asking the subjects
to depict their usual amount of skin exposed on a diagram with and
without sunscreen use. Subsequently, the rule of nines (23) was used to
calculate skin sun exposure in which the front and back torso and each
leg were counted as 18%, the arms and head as 9%, and the face only
as 5%. This number was then multiplied by the reported average sun
exposure per week without sunscreen to calculate the sun exposure
index for each subject.

Serum analyses

Serum chemistries were measured using a Roche Integra autoana-
lyzer at General Medical Laboratories (Madison, WI). Serum 25(OH)D
was determined by reverse-phase HPLC (24). The intraassay percent
coefficient of variation (CV) for this assay ranges from 1.9% at a 25(OH)D
concentration of 61.5 ng/ml to 6.3% at a 25(OH)D concentration of 14.3
ng/ml. The interassay percent CV is 3.2% at a 25(OH)D concentration
of 59.8 ng/ml and 3.9% at a 25(OH)D concentration of 14.3 ng/ml. In
assay proficiency evaluation, correlation with liquid chromatography

mass spectroscopy performed at the Mayo Medical Laboratories (Roch-
ester, MN) revealed essentially identical results, with r2 values of 0.99
and 0.97 for 25(OH)D2 and 25(OH)D3, respectively. In addition,
25(OH)D was also determined by RIA (Diasorin RIA, Stillwater, MN) in
the laboratory of B.W.H. who also performed serum vitamin D mea-
surement using HPLC (25) in a subset of 19 individuals. The intraassay
and interassay percent CVs for these assays are less than 10%. Scanti-
bodies Clinical Laboratory (Santee, CA) using the Scantibodies Labo-
ratory whole PTH or (CAP; cyclase activating PTH) assay measured
specific 1–84 PTH or whole PTH (“CAP PTH”) (26). For this assay, the
intraassay percent CV is 5% at 30.2 pg/ml, and the interassay percent
CV is 7.4% at 31.9 pg/ml.

Statistical analyses

Normal data distribution was documented using the Shapiro-Wilk
test. Subsequently, relationships between 25(OH)D and sun index, hours
of sun exposure, PTH, etc., were evaluated by linear regression. Differ-
ences between the lowest quartile and remainder of the cohort were
evaluated by the unpaired t test. 25(OH)D assay comparison (HPLC to
RIA) was evaluated by linear regression and Bland-Altman analysis. All
analyses were performed using Statview software (Abacus, Cary, NC)
or Analyze-it software (Leeds, UK).

Results
Subject demographics

A total of 93 subjects (63 male and 30 female) participated
in this study. Overall, their mean (sem) age was 24.0 yr (0.7),
body mass index (BMI) was 23.6 kg/m2 (0.4), and supplemental
vitamin D intake was 107 IU (18) daily. In addition, their
mean (sem) creatinine, albumin, and calcium concentrations
were 0.9 mg/dl (0.02), 4.5 g/dl (0.02), and 9.8 mg/dl (0.04),
respectively. The mean (sem) lightest skin color L scale value
was 63.7 (0.5) and the darkest 50.5 (0.5), with a difference of
13.2 (0.4) (data not shown). On average, the 93 subjects re-
ported being outside for 22.4 h/wk (1.6) with no sunscreen,
and 28.9 h/wk (1.5) with and without sunscreen (Fig. 1). Of
subjects, 40% (37 of 93) reported never using sunscreen. The
resultant mean sun exposure index score, indicating hours
per week of total body skin exposure with no sunscreen used,
was 11.1 � 0.7 (range 1.0–38.4). Only two subjects reported
use of tanning booths; as such, the skin darkening noted
previously reflects natural sunlight exposure.

FIG. 1. Amount of sun exposure without
and with sunscreen. The mean self-
reported sun exposure without sun-
screen use was 22.4 h (range 2–96), with
a mean total of 28.9 � 1.5 h/wk. Of this
cohort, 40% reported no sunscreen use.
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Serum 25(OH)D and PTH

Using the HPLC assay for serum 25(OH)D and applying
a widely recommended cutpoint of 30 ng/ml (10), 51% (47
of 93) of these subjects had low vitamin D status (Fig. 2). The
highest serum 25(OH)D concentration observed was 62 ng/
ml. No correlation between serum whole PTH and 25(OH)D
concentration was observed (Fig. 3). Moreover, there was no
correlation between serum 25(OH)D measured by HPLC and
age, lightest or darkest skin color, delta skin color, hours/
week of sun exposure without sunscreen, sun index, total
hours of sun exposure/week, or BMI (data not shown). Spe-
cifically, delta skin color was not correlated with either PTH
(P � 0.10; r2 � 0.03) or serum 25(OH)D (P � 0.18; r2 � 0.02).

In an effort to evaluate determinants of serum 25(OH)D
status, the quartile of individuals (n � 23) with the lowest
circulating levels of 25(OH)D was compared with the re-
maining cohort. The serum 25(OH)D in the lowest quartile
(20.7 � 0.7 ng/ml) was significantly lower (P � 0.0001) than
in the rest of the population (35.2 � 1.1 ng/ml). In accord,
PTH was higher (P � 0.01) in the lowest quartile (15.9 � 1.4
pg/ml) compared with the remainder of the subjects (12.7 �
0.5 pg/ml). In addition, the lowest quartile compared with
the remaining population demonstrated a significantly lower
(P � 0.05) sun exposure score (7.2 � 0.8 vs. 12.3 � 0.9) and
delta skin color (11.6 � 0.7 vs. 13.8 � 0.4) than the remainder
of the subjects. Age, BMI, vitamin D supplement intake,
serum calcium, alkaline phosphatase, and creatinine did not
differ between groups.

Serum 25(OH)D as measured by reverse-phase HPLC and
RIA was highly correlated (r2 � 0.76; Fig. 4). However, a
systematic bias was present with 25(OH)D values deter-
mined by RIA being approximately 6.8 ng/ml higher than by
HPLC. Thus, if the Diasorin RIA had been used to determine
the prevalence of low vitamin D status (using a cutpoint of
30 ng/ml), fewer individuals would have been classified as
“low.” However, even using the RIA, 25% of this population
would be classified as having low vitamin D status. Finally,

although these assays were highly correlated, greater scatter
at higher 25(OH)D values was observed with the RIA, as has
been previously reported (18). This greater scatter at higher
values slightly increases the mean bias noted previously;
however, even when limiting the analysis to the 47 individ-

FIG. 4. Comparison of 25(OH)D as measured by HPLC and RIA.
Although the correlation between these assays is good, a positive bias
of 6.8 ng/ml is present using the Diasorin RIA in comparison to the
HPLC assay used in this study.

FIG. 2. Low vitamin D status in highly sun-exposed subjects. When
an accepted cutpoint of 30 ng/ml is used to define low vitamin D status,
51% of these subjects (open bars) are low.

FIG. 3. PTH and 25(OH)D. Specific 1–84 PTH or whole PTH (“CAP
PTH”) was not related to serum 25(OH)D status measured by HPLC
in this cohort.
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uals with a 25(OH)D less than 30 ng/ml by HPLC, a positive
bias of 5.2 ng/ml persisted.

This study population was of mixed race, with 37 report-
ing their race as white, 27 as Asian, 18 as multiracial, and 7
as Hawaiian/Pacific Islander. Given the small number, in-
dividuals reporting their race/ethnicity as Black or Hispanic
(1 and 2, respectively) were not included in this analysis.
Serum 25(OH)D was higher (P � 0.01) among whites (mean
37.1 � 1.6 ng/ml) than among Asians (mean 24.7 � 1.3
ng/ml) or in multiracial individuals (mean 28.9 � 1.7 ng/
ml). In addition, the maximum L score, indicating whiter
skin, was higher (P � 0.01) in those reporting their race as
white (mean 66.3 � 0.6) than among Asians (mean 62.2 � 0.8)
and multiracial individuals (mean 62.7 � 1.0).

Serum cholecalciferol (D3)

In the subset of 19 subjects in whom circulating D3 was
measured, a logarithmic relationship (r2 � 0.67) between
serum D3 and 25(OH)D was observed. It was not until serum
D3 exceeded approximately 15–20 ng/ml that serum
25(OH)D was definitively higher than 30 ng/ml (Fig. 5).
Serum D3 concentration was not correlated with sun index,
delta skin color, or BMI (data not shown).

Discussion

In this cohort of young adults, substantial variability in
serum 25(OH)D concentration exists despite abundant sun
exposure. Surprisingly, a 25(OH)D concentration that many
would argue to be too low (10), is common in this highly
sun-exposed population. Furthermore, regardless of the
amount of sun exposure, the serum 25(OH)D concentration
does not increase to more than approximately 60 ng/ml.

Although the presence of “low” 25(OH)D concentration in
this population seems counterintuitive, this might be antic-
ipated from an evolutionary standpoint because the high
calcium intake of early humans (27) may have allowed main-
tenance of calcium homeostasis despite low vitamin D status.
Moreover, it is certainly plausible that genetic differences
exist in the amount of vitamin D necessary to maintain op-
timal physiological function. Such differences could contrib-
ute to the lack of a direct relationship between serum PTH

and 25(OH)D on an individual basis that is observed in many
studies (28, 29). This absence of a direct relationship between
PTH and 25(OH)D emphasizes that PTH measurement can-
not be used clinically as a surrogate marker of vitamin D
deficiency, as exemplified by enhanced calcium absorption at
higher vitamin D levels despite normal PTH status (30). In
addition, it is possible that genetic differences in the cyto-
chrome P450 enzymes activating and degrading vitamin D
exist. Finally, the data reported here are consistent with prior
reports of highly sun-exposed individuals that also demon-
strate substantial variability in 25(OH)D status. For example,
in 18 Puerto Rican farmers with self-reported sun exposure
from 32–70 h/wk, two individuals had a 25(OH)D level less
than 30 ng/ml (31). Similarly, low 25(OH)D values were
reported in some subjects who used a tanning bed at least
once a week for 6 wk (32) and among outdoor workers with
a sun index of 11.5 (22). Thus, even substantial sunlight or UV
exposure does not ensure maintenance of vitamin D ade-
quacy for all individuals, according to currently accepted
standards. This implies that the common clinical recommen-
dation to allow sun exposure to the hands and face for 15 min
may not ensure vitamin D sufficiency.

A probable explanation for the “low” 25(OH)D status of
some individuals is found in their failure to obtain high
circulating D3 concentrations. Possible explanations for this
include inadequate cutaneous production of D3, enhanced
cutaneous destruction of previtamin D3 or vitamin D3, down-
regulation of cutaneous synthesis by sun-induced melanin
production, or abnormalities of transport from the skin to the
circulation. In this regard, Holick et al. (33) documented that
human skin has the intrinsic ability to limit vitamin D pro-
duction. Moreover, a reduction in cutaneous concentration of
7-dehydrocholesterol and a concomitant declining capacity
of the skin to make vitamin D occur with advancing age (34,
35). However, in our study the population was predomi-
nantly young, which should have obviated such reduced
capability for vitamin D synthesis. Importantly, lizards with
behaviorally high sun exposure have a lower capacity to
produce vitamin D than closely related species with habit-
ually less sun exposure (36). Thus, it appears likely that
factors exist, which are not yet well understood, that can
restrict skin production of vitamin D in response to UV
radiation. In any case, it is crucial that we do not wantonly
accept the concept that vitamin D deficiency is due exclu-
sively to inadequate UV exposure. Rather, it seems self-
evident from this study that low vitamin D status, as it is
currently defined, may occur despite “more than adequate”
sun exposure.

An alternate explanation for the “low” values in these
highly sun-exposed adults and the corresponding high prev-
alence of low vitamin D status might reflect 25(OH)D assay
variability. However, the prevalence of low vitamin D status
in this population is substantial whether 25(OH)D is mea-
sured using HPLC or RIA. The systematic bias between
HPLC and RIA observed in this study emphasizes the dif-
ficulty with setting a single cutpoint value, e.g. 30 ng/ml,
below which individuals are classified as having low vitamin
D status. The widespread availability of 25(OH)D assay cal-
ibrators currently being developed by the National Institute

FIG. 5. Circulating vitamin D3 in relationship to 25(OH)D concen-
tration. In this population of 19 individuals with a mean sun exposure
without sunscreen of 20.2 h/wk and a mean sun exposure index of
10.9, low circulating vitamin D3 values exist.
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of Standards and Technology could be expected to reduce the
magnitude of systematic bias noted here.

These results may allow for rational provision of guidance
for clinicians prescribing vitamin D treatment, in that the
highest 25(OH)D concentration achievable by sun exposure
is approximately 60 ng/ml. An apparent physiological ceil-
ing does not support attempts to achieve higher values by
pharmacological intervention. It is of interest that the highest
25(OH)D values observed in this study are quite similar to
that reported in other highly sun-exposed populations. For
example, the individuals in this study with the three highest
levels had serum 25(OH)D concentrations of approximately
60 ng/ml. Similarly, among Nebraska outdoor workers, the
three highest reported values were between 81 and 84 ng/ml
(22). However, it should be noted that these values were
obtained using a competitive protein binding assay for
25(OH)D that measures other vitamin D metabolites in ad-
dition to 25(OH)D (37) and, therefore, results in a higher
value than that obtained with the HPLC system used in this
study.

Limitations of this report include the cross-sectional de-
sign and self-report of sun exposure. It is possible that some
individuals incorrectly reported their sun exposure and/or
body surface exposed. Despite this limitation, this popula-
tion was clearly highly sun exposed as documented by dark-
ening of exposed skin. In addition, because this study in-
cluded only highly sun exposed individuals, these
observations may not be generalizable to those with less sun
exposure. Additionally, it may be argued that the use of 30
ng/ml as a cutpoint is inappropriately high. However, even
if a more conservative cutpoint of 20 ng/ml, as suggested by
some (10, 29), is used, a substantial minority (�10%) of these
individuals would still be “low.” Moreover, as noted previ-
ously, it is possible that racial and/or genetic differences
underlay differences in vitamin D status. However, the racial
groups in this study are of insufficient size to define such
potential differences. Further investigation of this possibility
is appropriate. Finally, this study was conducted following
the Hawaiian equivalent of winter during which time there
is reduced capability for cutaneous vitamin D production.
Despite this limitation, given the low latitude of Hawaii,
substantial UV exposure and, therefore, vitamin D produc-
tion are possible year round (38, 39).

In conclusion, high amounts of sun exposure do not ensure
what is currently accepted as vitamin D adequacy. Thus,
clinicians should not assume that individuals with abundant
sun exposure have adequate vitamin D status. In the event
of vitamin D deficiency, the goal of vitamin D replacement
therapy should be no greater than the maximum that appears
attainable, a serum 25(OH)D concentration of approximately
60 ng/ml.
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