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Context: Both circulating levels and genetic variation of IGFs have
been associated with cancer risk, yet the relationship between the two
is not well understood.

Objective: To investigate whether common genetic variation in
IGF1, IGF binding protein 1 (IGFBP1), and IGFBP3 influences cir-
culating levels of IGF-I, IGFBP-1, and IGFBP-3, we conducted a
cross-sectional study of African-American, Native Hawaiian,
Japanese-American, Latino, and white men and women in the Mul-
tiethnic Cohort.

Design: Plasma levels of IGF-I, IGFBP-1, and IGBFP-3 were mea-
sured by ELISA in a random sample of 837 Multiethnic Cohort par-
ticipants. Previously identified tag single nucleotide polymorphisms
(SNPs) for IGF1 (29 tag SNPs) and IGFBP1/IGFBP3 (23 tag SNPs)
were genotyped among the 837 participants. Analysis of covariance

was conducted to test for differences in mean IGF-I, IGFBP-1, and
IGFBP-3 levels across respective IGF1, IGFBP1, and IGFBP3 geno-
types, adjusting for previously identified dietary and lifestyle
correlates.

Results: Five highly correlated IGFBP3 SNPs (rs3110697,
rs2854747, rs2854746, rs2854744, and rs2132570) demonstrated
strongly significant associations with IGFBP-3 levels when conser-
vatively adjusted for multiple hypothesis testing (Bonferroni adjusted
P trends � 7.75 � 10�8 to 1.44 � 10�5). Patterns of associations were
consistent across the five racial/ethnic groups.

Conclusion: In summary, our study suggests that common genetic
variation in IGFBP3 influences circulating levels of IGFBP-3 among
African-Americans, Native Hawaiians, Japanese-Americans, Lati-
nos, and whites. (J Clin Endocrinol Metab 92: 3660–3666, 2007)

IGFs PLAY A KEY ROLE in regulating cellular growth.
Circulating levels of IGF-I, IGF binding protein

(IGFBP)-1, and IGFBP-3 have been associated with increased
risk of breast, colorectal, and prostate cancers (1–3). More
recently, genetic polymorphisms within IGF1, IGFBP1, and
IGFBP3 have been investigated for their influence on cancer
susceptibility (2, 4–6). However, the relationship between
circulating levels of IGF-I, IGFBP-1, and IGFBP-3 and their
genetic polymorphisms has yet to be clearly defined.

Twin studies have estimated that approximately 40–60%
of the interindividual variation in circulating levels of IGF-I,
IGFBP-1, and IGFBP-3 are attributed to heritable factors (7,
8). Previous studies have focused primarily on a small num-
ber of polymorphisms, such as the IGF1 (CA)n repeat poly-
morphism (9–11) and the IGFBP3 A-202C (rs2854744) poly-
morphism (4, 11–18), whereas a recent study investigated

IGF1, IGFBP1, and IGFBP3 tagging polymorphisms (4). From
these studies, the most consistently observed association is
the lower levels of circulating IGFBP-3 in the presence of the
C allele of the IGFBP3 A-202C promoter polymorphism (4,
11–18). The great majority of these previous studies have
been limited to whites (4, 12–16, 18), and whether this as-
sociation exists in other racial/ethnic groups is a question
that has yet to be explored fully.

Within the Multiethnic Cohort (MEC), we have recently
demonstrated that common genetic variation in IGF1 influ-
ences prostate cancer susceptibility (6). Furthermore, we
have previously identified dietary and lifestyle regulators of
circulating levels of IGF-I, IGFBP-1, and IGFBP-3 (19–21).
These studies have identified racial/ethnic differences in
circulating levels of IGF-I and IGFBP-3, as well as the inter-
active effects between race/ethnicity and obesity on IGF-I
levels (19, 20). Building on this prior work, we investigated
within the MEC whether inherited variation in IGF1, IGFBP1,
and IGFBP3 influences circulating levels of IGF-I, IGFBP-1,
and IGFBP-3. This is the first multiethnic study to assess
comprehensively the genetic diversity of these loci in relation
to their circulating levels.
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Subjects and Methods
MEC

The MEC study is a large population-based cohort study of more than
215,000 men and women from Hawaii and Los Angeles. The cohort is
comprised predominantly of five racial/ethnic groups: African-Amer-
icans, Native Hawaiians, Japanese-Americans, Latinos, and whites. Par-
ticipants between the ages of 45 and 75 yr were recruited from 1993–1996,
and completed a 26-page self-administered questionnaire that included
information regarding height, weight, medical history, family history,
diet, dietary supplements and medication use, and physical activity. All
participants were between the ages of 47 and 82 yr at the time of blood
draw. Further details are provided elsewhere (22).

The blood samples used in this study were collected on a subcohort
of about 5000 randomly selected participants. The draw was completed
in the morning, typically at the person’s home, after informed consent
was obtained. The participation rate for providing a blood sample was
66%. This study was approved by the institutional review boards of the
University of Hawaii and University of Southern California.

Plasma levels of IGF-I, IGFBP-1, and IGFBP-3 were measured among
a random sample of 1000 of these MEC control participants [100 subjects
in each sex and racial/ethnic group with equal representation of each
5-yr age group at blood draw (�45 yr for men and �55 yr for women)]
(19–21). A total of 959 subjects had complete plasma measurements of
IGFs, of whom 133 subjects were excluded for having prevalent breast,
prostate, or colon cancer, or were premenopausal or taking estrogen
replacement therapy at the time of blood draw, or had incomplete body

mass index (BMI) information. A total of 826 subjects were included in
this analysis.

Plasma measurement

To reduce interbatch variation, we blinded laboratory personnel to
the sex and ethnicity of samples, and included an equal number of
subjects from each sex/ethnic group for each assay batch. Plasma levels
of IGF proteins were measured by ELISAs from Diagnostic System
Laboratories (Webster, TX). IGF-I assays included an acid-ethanol pre-
cipitation of IGFBPs to minimize the interference of IGFBPs. The overall
average intrabatch coefficient of variation was less than 10% for all
IGF-related proteins (19–21). The overall average interbatch coefficients
of variation were 13.9%, 14.6%, and 10.4% for IGF-I, IGFBP-1, and
IGFBP-3, respectively (19–21).

Tag single nucleotide polymorphism (SNP) selection

For IGF1, we previously selected 29 tag SNPs to capture the common
genetic variation of 64 SNPs (minor allele frequency � 5%) that were
genotyped in a multiethnic panel of 349 controls, spanning 156 kb at a
density of one SNP every 2.4 kb (the results can be found in supple-
mental Table 1, which is published as supplemental data on The En-
docrine Society’s Journals Online web site at http://jcem.endojournals.
org) (6). The proportion of IGF1 SNPs that were captured at a pairwise
r2 � 0.8 was 75% for African-Americans, 98% for Native Hawaiians, 96%
for Japanese-Americans, 88% for Latinos, and 90% for whites. For

FIG. 1. Association between 29 IGF1 tag SNPs and circulating IGF-I levels. Horizontal line indicates P � 0.05.

TABLE 1. Study characteristics of 826 MEC participants used for IGF analyses

African-
Americans

Native
Hawaiians

Japanese-
Americans Latinos Whites

n (%) 150 (18.2) 161 (19.5) 170 (20.6) 180 (21.8) 165 (20.0)
Mean age � SD (yr) 65.9 � 8.2 65.4 � 7.7 66.9 � 8.2 65.9 � 8.4 66.1 � 8.3
No. of males (%) 73 (48.7) 98 (60.9) 92 (54.1) 90 (50.0) 92 (55.8)
BMI (kg/m2)

�25, n (%) 35 (23.3) 44 (27.3) 102 (60.0) 43 (23.9) 57 (34.6)
25–29, n (%) 62 (41.3) 61 (37.9) 56 (32.9) 89 (49.4) 75 (44.9)
�30, n (%) 53 (35.3) 56 (34.8) 12 (7.1) 48 (26.7) 34 (20.6)
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IGFBP1 and IGFBP3, we previously identified 23 tag SNPs to capture the
common genetic variation of 36 SNPs (minor allele frequency � 5%) that
were genotyped in a multiethnic panel, spanning the 71-kb locus at a
density of one SNP every 2.0 kb (the results can be found in supple-
mental Table 2, which is published as supplemental data on The En-
docrine Society’s Journals Online web site at http://jcem.endojournal-
s.org) (5). The IGFBP3 missense polymorphism (rs2854746) and the
A-202C polymorphism (rs2854744) were “forced” in to be selected as
tags to ensure that these potentially relevant SNPs were examined. The
proportion of IGFBP1 and IGFBP3 SNPs that were captured at a pairwise
r2 � 0.8 was 76% for African-Americans, 84% for Native Hawaiians, 89%
for Japanese-Americans, 86% for Latinos, and 91% for whites.

Genotyping

IGF1, IGFBP1, and IGFBP3 tag SNPs were genotyped using the Taq-
Man allelic discrimination assay (Applied Biosystems, Foster City, CA)
by the University of Southern California/Norris Cancer Genomics Core
Facility (5, 6). We tested for Hardy-Weinberg equilibrium for each SNP
among controls of each racial/ethnic group. All SNPs were in Hardy-
Weinberg equilibrium (at P � 0.01 level). For IGF1, the concordance for
replicate samples was 99.7%, and the average successful genotyping was
97.9%. For IGFBP1/IGFBP3, the concordance for replicate samples was
99.8%, and the average successful genotyping was 97.4%.

Statistical analysis

We conducted an analysis of covariance to test for differences in mean
IGF-I, IGFBP-1, and IGFBP-3 levels across respective IGF1, IGFBP1, and
IGFBP3 genotypes/haplotypes. Haplotype frequencies were estimated
by the expectation-maximization algorithm using the tagSNP software
(23). Haplotype dosage (i.e. an estimate of the number of copies of
haplotype h) for each individual and each haplotype, h, was computed
using that individual’s genotype data and haplotype frequency esti-
mates obtained from the E-M algorithm (24). Statistical analyses were
performed on logarithmically transformed values of IGF-I, IGFBP-1, and
IGFBP-3. Our multivariate regression analyses were based on the pre-
viously described models reported by DeLellis Henderson et al. (19–21).
For IGF-I levels, our model included age, racial/ethnic group, sex, BMI,
an interaction term for racial/ethnic group and BMI, and genotype/
haplotype. For IGFBP-1 levels, our model included age, racial/ethnic
group, sex, BMI, regular soda intake, an interaction term for age and
BMI, and genotype/haplotype. For IGFBP-3 levels, our model included
age, racial/ethnic group, sex, BMI, fat from meat intake, and genotype/
haplotype. We calculated the partial correlation between genotype/
haplotype and respective IGF levels, controlling for aforementioned

covariates to determine the contribution of genotype/haplotype to the
variance in IGF levels. We tested for heterogeneity of genotype effects
across racial/ethnic groups by including an interaction term between
genotype and racial/ethnic group in a multivariable model. We used the
r2 selection method in conjunction with Mallow’s Cp to evaluate which
combination of genotypes provided the best fit of our model of IGF
levels. All analyses were performed in SAS version 9.0 (SAS Institute
Inc., Cary, NC).

Results

Selected characteristics of the 826 MEC participants used in
this study are presented in Table 1. Approximately 18–22% of
the study subjects were from each of the five racial/ethnic
groups. The mean age (�66 yr) was similar across the five
groups. As previously reported, BMI varied markedly across
the five racial/ethnic groups. African-Americans had the high-
est proportion of BMI more than 25 kg/m2, followed by Latinos,
Native Hawaiians, whites, and Japanese-Americans.

For IGF-I, there were no significant associations between
the 29 IGF1 tag SNPs and circulating levels of IGF-I (P trends
�0.06; Fig. 1). For IGFBP-1 and IGFBP-3, seven of the 23
IGFBP1/IGFBP3 tag SNPs were nominally statistically sig-
nificantly associated with IGFBP-1 and IGFBP-3 levels (P
trends � 3.37 � 10�9 to 0.047; Fig. 2). In addition, four IGF1
SNPs [SNP11 (rs10735380), SNP25 (rs2139570), SNP27
(rs4764695), and SNP28 (rs1520219)] and one IGFBP3 SNP
[SNP16 (rs2453839)] displayed evidence of heterogeneity
across racial/ethnic groups on IGF levels. Results stratified
by racial/ethnic groups for these five SNPs are presented in
supplemental Table 3 (published as supplemental data on
The Endocrine Society’s Journals Online web site at
http://jcem.endojournals.org).

The most compelling associations were seen in IGFBP3, in
which five SNPs were strongly associated with circulating
IGFBP-3 levels: SNP17 (rs3110697), SNP19 (rs2854747),
SNP20 (rs2854746), SNP21 (rs2854744), and SNP22
(rs2132570) (P trends � 3.37 � 10�9 to 6.24 � 10�7) (Table 2).
We applied a Bonferroni correction of 23 IGFBP1/IGFBP3
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SNP tests to the P values of these five SNPs, and the adjusted
P values remained statistically significant (P trends � 7.75 �
10�8 to 1.44 � 10�5). Geometric mean circulating levels of
IGFBP-3 decreased with additional copies of the minor allele
for four IGFBP3 polymorphisms (SNP17, SNP19, SNP21, and
SNP22), while IGFBP-3 levels increased with additional cop-
ies of the minor allele for SNP20. For all five racial/ethnic
groups, these five IGFBP3 polymorphisms displayed rela-
tively consistent patterns of associations on IGFBP-3 levels
(Table 3).

The five associated IGFBP3 polymorphisms (SNP17,
SNP19, SNP20, SNP21, and SNP22) were reasonably highly
correlated with each other across the five racial/ethnic
groups (Table 4), with the exception of SNP22 (rs2132570)
among African-Americans (r2 � 0.07–0.18). Of these five
polymorphisms, SNP20 (rs2854746) and SNP22 (rs2132570)
together provided the best fit for our model of IGFBP-3 levels
using the r2 selection method in conjunction with Mallow’s
Cp. SNP20 and SNP22 explained approximately 1% of the
overall variance in IGFBP-3 levels, with our full model cap-
turing 11.5% of variance in IGFBP-3 levels.

The IGFBP3 locus is located within a region of strong
linkage disequilibrium from SNP17 to SNP23 (5). Two com-
mon haplotypes within this region, 3A (total frequency 44%)
and 3B (total frequency 19%) (5), were significantly asso-
ciated with circulating IGFBP-3 levels (P � 3.83 � 10�5 and
P � 1.76 � 10�5, respectively; data not shown). Haplotype 3A
was associated with higher levels of IGFBP-3 with increasing
number of haplotypes. In contrast, haplotype 3B was asso-
ciated with lower levels of IGFBP-3 with increasing number
of haplotypes. These two haplotypes differed only at the
alleles of the five IGFBP3-associated SNPs (SNP17, 19, 20, 21,
and 22). Haplotype 3A harbored the alleles of these five
polymorphisms that were associated with higher IGFBP-3
levels, whereas haplotype 3B harbored the alleles associated

TABLE 2. Geometric means for plasma IGFBP-3 levels (ng/ml) by
genotype for the five associated IGFBP3 SNPs

All

n Geometric mean (95% CI)a

SNP17 GG 284 2749.51 (2640.04, 2863.52)
rs3110697 GA 347 2647.85 (2554.60, 2744.50)

AA 175 2343.20 (2223.60, 2469.24)
P trend 4.83 � 10�9

SNP19 AA 291 2743.02 (2635.04, 2855.43)
rs2854747 AG 342 2659.70 (2565.40, 2757.47)

GG 172 2326.08 (2205.86, 2452.85)
P trend 3.37 � 10�9

SNP20 GG 259 2415.25 (2311.13, 2524.07)
rs2854746 GC 329 2644.32 (2548.84, 2743.37)

CC 211 2801.95 (2667.28, 2943.41)
P trend 1.24 � 10�9

SNP21 AA 239 2729.96 (2609.67, 2855.80)
rs2854744b AC 356 2665.86 (2571.91, 2763.23)

CC 209 2384.72 (2271.44, 2503.65)
P trend 6.24 � 10�7

SNP22 GG 477 2714.55 (2631.64, 2800.08)
rs2132570 GT 270 2542.76 (2440.00, 2649.85)

TT 57 2251.47 (2054.75, 2467.02)
P trend 1.56 � 10�7

CI, Confidence interval.
a Adjusted for age, ethnicity, sex, BMI, and fat from meat intake.
b IGFBP3 A-202C. T
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with lower IGFBP-3 levels. These IGFBP3 haplotypes ex-
plained approximately 1% and the full model 12% of the
overall variance in IGFBP-3 levels.

Discussion

In this multiethnic study of African-Americans, Native
Hawaiians, Japanese-Americans, Latinos, and whites, we
comprehensively examined the genetic diversity in IGFI,
IGFBP1, and IGFBP3, and tested whether common genetic
variation at these loci influences circulating levels of IGF-I,
IGFBP-1, and IGFBP-3. Our results indicate that inherited
variation in IGFBP3 was associated with circulating levels of
IGFBP-3. Specifically, we identified five IGFBP3 polymor-
phisms that were consistently associated with circulating
IGFBP-3 levels across the five racial/ethnic groups. In ad-
dition, when we corrected for multiple hypotheses testing
using a conservative Bonferroni approach, these IGFBP3
polymorphisms remained highly significant.

A previous study from the United Kingdom similarly ex-
amined IGF1 and IGFBP3 tagging polymorphisms in relation
to circulating IGF-I and IGFBP-3 levels (4). Of nine IGF1
polymorphisms tested in that study, five and two polymor-
phisms were associated with circulating levels of IGF-I
among females and males, respectively (4). We examined
two of the IGF1 polymorphisms [rs1520220 (SNP18) and
rs2946834 (SNP21)] that were associated with IGF-I levels in
the United Kingdom study (P � 0.003 and P � 0.02, respec-
tively) and found no association (P � 0.55 and P � 0.85,
respectively). This discrepancy may be due to our reduced
power for white-specific analysis, having 168 whites in con-

trast to 937 European subjects in the United Kingdom study.
Of four IGFBP3 polymorphisms tested in the United King-
dom study, three and two polymorphisms were associated
with circulating levels of IGFBP-3 among females and males,
respectively (4). We examined the A-202C polymorphism
that was the most strongly associated with IGFBP-3 levels in
the United Kingdom study (P � 10�9 for females; P � 0.00004
for males) and found similar highly significant effects (P �
6.24 � 10�7). In total, nine studies, including our current
study, have examined the IGFBP3 A-202C polymorphism in
relation to IGFBP-3 levels and have consistently reported
significant effects (4, 11–16, 18). In a study from the European
Prospective Investigation Cohort, seven IGFBP1 polymor-
phisms were tested for their association with circulating
IGFBP-1 levels, and no significant associations were ob-
served (18). The two nominally associated IGFBP1 polymor-
phisms (rs10228265 and rs1065781) in our study have not
previously been examined.

Because of the strong regional correlation across the
IGFBP3 locus (5), the predisposing allele responsible for in-
fluencing circulating levels of IGFBP-3 remains to be iden-
tified. The IGFBP3 A-202C polymorphism is a promising
candidate because it was originally shown by Deal et al. (12)
to influence promoter activity. The A allele has been shown
in an in vitro assay to have a higher promoter activity, com-
pared with the C allele. This is in line with the lower levels
of IGFBP-3 observed in the presence of the C allele. In light
of the strong biological support for this polymorphism, cou-
pled with the consistent evidence of this association from
prior reports and our multiethnic study, future work should

TABLE 4. Pairwise correlation (D� and r2) between the IGFBP3 SNPs associated with plasma IGFBP-3 levels by racial/ethnic group

SNP17 rs3110697 SNP19 rs2854747 SNP20 rs2854746 SNP21 rs2854744 SNP22 rs2132570

African-Americans
rs3110697 0.97 1.00 0.93 0.68
rs2854747 0.85 1.00 0.96 0.51
rs2854746 0.25 0.23 1.00 1.00
rs2854744 0.69 0.67 0.31 0.87
rs2132570 0.14 0.09 0.07 0.18

Native Hawaiians
rs3110697 1.00 0.92 0.93 1.00
rs2854747 0.94 1.00 1.00 1.00
rs2854746 0.59 0.65 1.00 1.00
rs2854744 0.67 0.73 0.89 1.00
rs2132570 0.56 0.60 0.38 0.43

Japanese-Americans
rs3110697 1.00 1.00 1.00 1.00
rs2854747 0.96 1.00 1.00 1.00
rs2854746 0.96 1.00 1.00 1.00
rs2854744 0.96 1.00 1.00 1.00
rs2132570 0.95 1.00 1.00 1.00

Latinos
rs3110697 1.00 1.00 0.96 1.00
rs2854747 1.00 1.00 0.96 1.00
rs2854746 0.69 0.69 1.00 1.00
rs2854744 0.76 0.76 0.84 1.00
rs2132570 0.45 0.45 0.30 0.36

Whites
rs3110697 0.94 0.93 0.95 0.81
rs2854747 0.86 1.00 1.00 0.94
rs2854746 0.35 0.41 1.00 1.00
rs2854744 0.45 0.51 0.81 1.00
rs2132570 0.29 0.38 0.18 0.22

The upper matrix represents D� values among SNPs. The lower matrix represents r2 values among SNPs.
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examine the relationship between this polymorphism and
tissue expression to assess further its functional role.

For four of the five IGFBP3 polymorphisms that were
strongly associated with circulating levels of IGFBP-3, lower
levels were observed in the presence of the minor allele.
Because IGFBP-3 is the principal binding protein of circu-
lating IGF-I, binding more than 90% of IGF-I in conjunction
with the acid-labile subunit (25), lower levels of IGFBP-3 due
to genetic variation may increase the bioavailability of IGF-I.
This may ultimately influence the bioactivity of IGF-I in the
circulation and tissues, leading to cellular growth and cancer
susceptibility.

In previous nested case-control studies within the MEC,
there was no association between common genetic variation
in IGFBP3 and breast and prostate cancer risk (5). The sig-
nificant effect of the five IGFBP3 polymorphisms on circu-
lating IGFBP-3 levels in the absence of an effect on cancer
highlights the complexity of the hormonal milieu of the IGF
system. It is possible that other genetic variants and envi-
ronmental factors may act individually or in concert to mod-
ulate the exposure of target tissues to IGFs and cancer sus-
ceptibility. As well, it is possible that IGFBP3 variants may
influence hormonal levels, but not cancer risk. This has been
seen for CYP19, in which genetic variation at this locus pre-
dicts estrogen levels, but not breast cancer risk (26).

Our study has several limitations. Although we were able
to capture the majority of the common genetic variation
across the IGF1, IGFBP1, and IGFBP3 genes, we have not
exhaustively captured all of the common genetic diversity of
these loci among the five racial/ethnic groups, especially
among African-Americans (see Tag single nucleotide polymor-
phism (SNP) selection). In addition, our study cannot exclude
the possibility that rare genetic variants may influence cir-
culating levels.

In conclusion, our study of African-Americans, Native
Hawaiians, Japanese-Americans, Latinos, and whites sug-
gests that common genetic variation in IGFBP3 influences
circulating IGFBP-3 levels, beyond the effects of previously
reported dietary and lifestyle correlates. With replication in
larger cohorts such as the National Cancer Institute Breast
and Prostate Cancer Cohort Consortium (http://epi.grants.
cancer.gov/BPC3/), additional fine-mapping and mechanis-
tic work will be needed to pinpoint the causal variant. Fur-
thermore, it remains to be determined whether other genes
in the GH (17) and IGF family impact circulating levels of
IGFs because it may be the cumulative effect of several genes
that drives cancer predisposition.
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