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Context: Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide are
incretins secreted from enteroendocrine cells postprandially in part to regulate glucose homeosta-
sis. Dysregulation of these hormones is evident in type 2 diabetes mellitus (T2DM). Two new drugs,
exenatide (GLP-1 mimetic) and sitagliptin [dipeptidyl peptidase (DPP) 4 inhibitor], have been ap-
proved by regulatory agencies for treating T2DM. Liraglutide (GLP-1 mimetic) and vildagliptin (DPP
4 inhibitor) are expected to arrive on the market soon.

Evidence Acquisition: The background of incretin-based therapy and selected clinical trials of these
four drugs are reviewed. A MEDLINE search was conducted for published articles using the key
words incretin, glucose-dependent insulinotropic polypeptide, GLP-1, exendin-4, exenatide, DPP
4, liraglutide, sitagliptin, and vildagliptin.

Evidence Synthesis: Exenatide and liraglutide are injection based. Three-year follow-up data on
exenatide showed a sustained weight loss and glycosylated hemoglobin (HbA1c) reduction of 1%.
Nausea and vomiting are common. Results from phase 3 studies are pending on liraglutide. Sita-
gliptin and vildagliptin are orally active. In 24-wk studies, sitagliptin reduces HbA1c by 0.6–0.8%
as monotherapy, 1.8% as initial combination therapy with metformin, and 0.7% as add-on therapy
to metformin. Vildagliptin monotherapy lowered HbA1c by 1.0–1.4% after 24 wk. Their major side
effects are urinary tract and nasopharyngeal infections and headaches. Exenatide and liraglutide
cause weight loss, whereas sitagliptin and vildagliptin do not.

Conclusions: The availability of GLP-1 mimetics and DPP 4 inhibitors has increased our armamen-
tarium for treating T2DM. Unresolved issues such as the effects of GLP-1 mimetics and DPP 4
inhibitors on �-cell mass, the mechanism by which GLP-1 mimetics lowers glucagon levels, and
exactly how DPP 4 inhibitors lead to a decline in plasma glucose levels without an increase in insulin
secretion, need further research. (J Clin Endocrinol Metab 93: 3703–3716, 2008)

Glucagon-like peptide-1 (GLP-1) and glucose-dependent in-
sulinotropic polypeptide (GIP), termed “incretins,” are

enteroendocrine hormones released into the bloodstream from L
and K cells dispersed throughout the gastrointestinal tract in
response to ingested nutrients. They provide the additional stim-
ulus to insulin secretion during oral glucose ingestion that is not
present with iv glucose infusion (1, 2). These incretins increase
insulin secretion in a glucose-dependent manner through acti-
vation of their specific receptors on �-cells.

In newly diagnosed type 2 diabetes mellitus (T2DM) with
relatively good glycemic control [glycosylated hemoglobin
(HbA1c) �6.9%], both GIP and GLP-1 secretion in response to

glucose and mixed meal challenges are the same or even increased
when compared with healthy subjects (3, 4). However, in long-
standing T2DM with poor glycemic control (HbA1c �8–9%),
the GLP-1 response is decreased, whereas GIP secretion is un-
changed (5–7). In addition, insulin response to exogenous GLP-1
is 3- to 5-fold lower in T2DM. However, acute GLP-1 admin-
istration is able to increase insulin secretion to normal levels and
to lower plasma glucose effectively (8, 9). In contrast, exogenous
GIP, even at supraphysiological doses, has markedly reduced
insulinotropic actions with little or no glucose-lowering effects in
T2DM (9, 10). Therefore, therapeutic strategies for T2DM
within the incretin field focused on the use of GLP-1, GLP-1
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analogs, and GLP-1 receptor (GLP-1R) agonists or GLP-1 mi-
metics, and not GIP.

GLP-1, when administered at pharmacological doses, also
has other noninsulinotropic effects beneficial for treating
T2DM: suppression of glucagon secretion in the presence of hy-
perglycemia and euglycemia, but not hypoglycemia, leading to
improved hepatic insulin resistance and glycemic control (11,
12); slowing of gastric emptying and gut motility, causing de-
layed nutrient absorption and dampened postprandial glucose
(PPG) excursion (13); and increasing the duration of postpran-
dial satiety, leading to lower food intake, weight loss, and im-
proved insulin resistance (14–16). More importantly, acute
GLP-1 infusion normalized fasting plasma glucose (FPG) in pa-
tients with long-standing, uncontrolled T2DM who were no
longer responsive to sulfonylureas or metformin (17).

One major drawback of GLP-1 treatment is its short half-life (2
min) (18). GLP-1 is rapidly degraded by dipeptidyl peptidase (DPP)
4, which cleaves the N-terminal dipeptides (His7-Ala8) from GLP-1
(7–36) and renders the resulting major metabolite GLP-1 (9–36)
inactive (Fig. 1) (19, 20). In addition, neutral endopeptidase (NEP)
24.11 hydrolyzes GLP-1 at six different places (21). With short
half-life, bolus sc injections resulted in only a transient effect on
insulin secretion and plasma glucose levels (22).

Nonetheless, in patients with T2DM, bolus sc administration
of GLP-1 before breakfast, lunch, and dinner for 7 d significantly
improved PPG and decreased plasma lipid levels (23). Overnight
iv GLP-1 infusions lowered FPG and PPG to near-normal levels,
markedly improved �-cell function, and restored first-phase in-
sulin secretion, the absence of which is a hallmark of T2DM (24).

Continuous sc GLP-1 infusion via a pump for 6–12 wk im-
proved glucose-induced insulin secretion, enhanced insulin-me-
diated glucose disposal, and increased insulin pulse mass and
pulsatile insulin secretion in T2DM (25, 26). Six weeks of GLP-1
infusion also restored first-phase insulin secretion in T2DM,

therefore, demonstrating the insulinotropic potency of long-
term GLP-1 treatment (15).

Recent animal studies suggest that exogenous GLP-1 has the
ability to increase islet size, enhance �-cell proliferation, inhibit
�-cell apoptosis, and regulate islet growth (27, 28). These effects
have tremendous implication in the treatment of T2DM because
they directly address one of the fundamental defects in T2DM,
i.e. �-cell failure.

Collectively, the aforementioned studies demonstrated the
potential of using GLP-1-based therapy for treating T2DM. Two
options for GLP-1-based therapies are GLP-1 mimetics resistant
to DPP 4 activity, therefore, a longer half-life, and agents such as
DPP 4 inhibitors, which increase plasma endogenous GLP-1 lev-
els. In this review we will focus on: 1) exenatide (GLP-1 mimetic)
and sitagliptin (DPP 4 inhibitor), which have been approved by
regulatory agencies for treatment of T2DM, as well as liraglutide
(GLP-1 mimetic) and vildagliptin (DPP 4 inhibitor), which are
expected to arrive on the market soon; and 2) issues that are still
open for debate regarding the actions of these agents.

GLP-1 Mimetics

Given that DPP 4 cleaves peptides with an alanine, proline, or
hydroxyproline in the penultimate N-terminal position, various
modifications of GLP-1 at His7, Ala8, or Glu9 have been inves-
tigated (29). Additional mid-chain modifications of GLP-1 to
prevent NEP hydrolysis are also being investigated to provide
longer plasma half-life. Exenatide and liraglutide are two com-
pounds that exhibit these characteristics.

Exenatide
Exenatide (synthetic exendin-4) is the only GLP-1R agonist

approved by regulatory agencies as an adjunct therapy to pa-
tients with T2DM not achieving satisfactory
glycemic control. It is a 39-amino acid pep-
tide produced in the salivary glands of the
Gila monster (Heloderma suspectum) with
53% amino acid homology to full-length
GLP-1. It binds more avidly to GLP-1R than
GLP-1 in GLP-1R-expressing cells (30).
There appears to be no specific exendin-4
receptor. Exendin-4 is not a substrate for
DPP 4 because it has a Gly8 in place of an
Ala8 (Fig. 1). In addition, it lacks some of the
target bonds for NEP, and its secondary and
tertiary structures may also prevent NEP hy-
drolysis. Exenatide, being a peptide, must be
injected sc, and is eliminated by the kidneys
through glomerular filtration (31). It has a
mean half-life of 3.3–4 h, is detected in the
plasma 15 h after sc injection, and has bio-
logical effect 8 h after dosing (32).

Selected clinical studies
Clinical trials investigating exenatide as

adjuvant therapy to patients with T2DM

FIG. 1. Structure of native GLP-1, exenatide, liraglutide, sitagliptin, and vildagliptin. The N-terminal
dipeptide “HA” of GLP-1 is cleaved by DPP 4, and the remaining fragment does not increase insulin
secretion. For exenatide the substitution of glycine for alanine at position 8 prevents the degradation by
DPP 4. The free-fatty acid derivative that is attached to liraglutide is thought to promote noncovalent
binding of liraglutide to albumin.
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not achieving adequate glycemic control on metformin and/or
sulfonylurea, metformin and/or thiazolidinedione, as well as
comparison trials with insulin glargine and biphasic insulin as-
part, are summarized in Table 1 (33–39). With exenatide 10 �g
twice daily as adjuvant therapy to oral hypoglycemic agents,
a significant number of patients (32– 62%) achieved HbA1c of
7% or less when compared with placebo (7–13%), glargine
(48%), and biphasic insulin aspart (24%), and HbA1c reduc-
tions of 0.8 –1.1% were sustained up to 3 yr. Progressive
weight loss from 1.6 –2.8 kg noted at 30 wk to 5.3 kg at 3 yr
was also noted. Antiexenatide antibodies were detected in
41– 49% of patients in the treatment arms but were not as-
sociated with glycemic control (33–38).

Side effects
A metaanalysis on the randomized controlled trials with ex-

enatide showed that severe hypoglycemia was rare. Mild to mod-
erate hypoglycemia was 16 vs. 7% (exenatide vs. placebo) and
more common with coadministration with a sulfonylurea. The
most common side effects of exenatide were nausea (57%) and
vomiting (17%). Nausea was usually mild to moderate in nature,
and being most common during the initial 8 wk therapy and
declined thereafter. Overall, 4% of patients withdrew from the
studies because of gastrointestinal side effects (40).

Liraglutide
Liraglutide is a long-acting GLP-1 analog with a substitution

of Lys34 with Arg34, and an attachment of a C-16 free-fatty acid
derivative via a glutamoyl spacer to Lys26 (Fig. 1). The free-fatty
acid derivative is thought to promote noncovalent binding of
liraglutide to albumin, therefore, increasing plasma half-life
through protection from renal clearance and slow absorption
rate from injection site (41). Like GLP-1 and exenatide, lira-
glutide needs to be injected sc. After sc injection, maximum
plasma concentrations are reached after 10–14 h, and it has a
half-life of 11–13 h (42, 43).

Selected clinical trials
In a 5-wk dose-escalation study, liraglutide/metformin com-

bination was associated with a 0.8% reduction in HbA1c and a
70 mg/dl reduction in fasting glucose when compared with met-
formin alone. In addition, liraglutide/metformin significantly re-
duced fasting glucose (21.6 mg/dl) and body weight (2.9 kg)
when compared with the metformin/glimepiride group, and li-
raglutide/placebo significantly reduced fasting glucose (25.2 mg/
dl) when compared with the metformin/placebo group (Table 1)
(44). In a 14-wk study of liraglutide vs. placebo, liraglutide sig-
nificantly reduced HbA1c by 1.45, 1.40, and 0.98% in the 1.90,
1.25, and 0.65-mg groups, respectively, whereas placebo group
had an increase of 0.29% in HbA1c. The percentages of patients
that achieved HbA1c of 7% or less were 46, 48, 38, and 5 in the
1.9, 1.25, 0.65-mg groups and the placebo group, respectively
(Table 1) (45). The results from phase 3 trials have not been
presented at scientific meetings or published in peer-reviewed
journals.

Side effects
Most frequently reported adverse events were nausea and

vomiting, especially at the higher doses (40, 45). There is also no
development of antibodies noted in trials up to 14 wk (45–47).

Unresolved Issues Regarding GLP-1 and GLP-1
Mimetics

1. Does GLP-1 and GLP-1 mimetics have favorable
effects on �-cell mass in humans?

Studies have shown that exenatide has favorable effects on
parameters of �-cell function in humans using indirect measures
such as first-phase insulin secretion and homeostasis model as-
sessment �-cell index (48, 49). In rodent studies, GLP-1 induced
glucose sensitivity in glucose-resistant �-cells (50). Exenatide
given to rodents in pharmacological doses appeared to have ben-
eficial effects on �-cell mass not seen with other antidiabetic
agents. However, whether exenatide has a favorable effect on
�-cell mass in humans is unknown.

Exenatide prevented cytotoxic agent-induced apoptosis of ro-
dent islets (51), and chronic treatment increased �-cell turnover
in rodents (52). GLP-1 also inhibited nonchemically induced
�-cell apoptosis in freshly isolated human islets (53). Both de-
creased apoptosis and increased �-cell turnover should and do
lead to increases in islet size and �-cell numbers. The trophic
effects of exenatide on �-cells in rodents are seen with concen-
trations not achieved in clinical practice. Although markers of
�-cell function show improvement in humans with chronic ex-
enatide use of up to 3 yr (39), this improvement in function may
be due to the restoration of glucose-competence to �-cells and the
insulinotropic, glucose-lowering, and weight-loss effects of ex-
enatide, and not because of any direct effect of exenatide on
�-cell mass.

2. What is the mechanism by which GLP-1 and GLP-1
mimetics lower glucagon secretion from �-cells?

Elevated fasting and postprandial plasma glucagon levels
throughout the day are a feature of T2DM (54), and exenatide
treatment lowers both (55). The ability for exenatide and GLP-1
to lower glucagon levels in patients with T2DM most likely con-
tributes to its overall glucose-lowering effect. In addition, by
virtue of enhancing endogenous insulin secretion concurrently
with suppressing glucagon secretion, a more physiological insu-
lin to glucagon ratio in the portal vein should be established,
resulting in better suppression of hepatic glucose output.
Whether GLP-1 and GLP-1 mimetics lower glucagon secretion
from �-cells through direct or indirect mechanisms is still
unclear.

The presence of GLP-1R on human �-cells has not been di-
rectly investigated. Overnight iv GLP-1 administration to fasted
subjects with type 1 diabetes mellitus resulted in the lowering of
plasma glucagon levels that was postulated to be a direct effect
of GLP-1 on �-cells (56). However, given that plasma C-peptide
levels were doubled by GLP-1 infusion, an indirect action me-
diated by the stimulatory effect of GLP-1 on residual neighboring
� (or �) cells resulting in intraislet paracrine inhibition of gluca-
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gon release is also plausible, though at considerably lower insulin
concentrations than in healthy or T2DM subjects. A transgenic
model of �-cell dysfunction also favors a paracrine effect of
GLP-1 on glucagon secretion. Mice with a �-cell-specific muta-
tion of the pdx-1 gene had defective insulin secretory and glu-
cagon suppressive responses to exenatide, both of which were
present in wild-type mice (57). This strongly suggests that a �-cell
secreted factor is absolutely necessary for GLP-1-mediated sup-
pression of glucagon secretion.

Rodent data on the presence or absence of GLP-1R on �-cells
are not convincing either way. Neither GLP-1Rs nor their tran-
scripts could be detected in purified rat �-cells (58, 59). Direct
GLP-1 application to rat �-cells did not alter glucagon secretion
or cause an increase in cAMP levels. However, GLP-1R expres-
sion was detected by immunocytochemistry in a subpopulation
(20%) of glucagon-positive cells in dispersed rat islets (60). Be-
cause this is a small number of cells and the cells were not ob-
tained with precise methodology, such as laser-captured micros-
copy, contaminating cells may be the source of the GLP-1R
expression.

Furthermore, GLP-1 was also recently reported to elicit an
increase in the cAMP content and glucagon secretion in an �-cell
line transfected with the GLP-1Rs (61). Therefore, if �-cells ac-
tually contain GLP-1Rs, increased glucagon secretion would be
the expected response to elevated plasma GLP-1 levels or ex-
enatide therapy. Finally, neuronal control of glucagon secretion
through the autonomic nervous system is well recognized, and
this pathway may be mediated by GLP-1. Therefore, GLP-1 and

exenatide infusion may cause glucagon suppression in vivo via
feedback from vagal afferents where neuronal networks are
intact but not in vitro from dispersed �-cells or cell lines.
Regardless, the mechanism underlying suppressed plasma glu-
cagon levels by exenatide is an interesting area of research and
may offer insights as to how glucagon secretion might be con-
trolled in T2DM.

DPP 4 Inhibitors

If pharmacological levels of exogenous GLP-1 can lower blood
glucose in T2DM, it is logical to assume that supraphysiological
levels of endogenous active GLP-1 (aGLP-1) can also lower
blood glucose. No secretagogue of L cells has been specifically
developed, though clear headway has been made in elucidating
how food products bring about GLP-1 secretion from L cells (Fig.
2) (62–64). Compared with wild-type mice, DPP knockout mice
have elevated fasting incretin levels, lower plasma glucose, and
higher plasma insulin levels after a glucose challenge (65). There
has been immense interest at disrupting DPP 4 activity in humans
to increase plasma aGLP-1 levels. Sitagliptin and vildagliptin are
two such DPP 4 inhibitors.

Sitagliptin
Sitagliptin, an organic molecule, appears to be selective for

DPP 4 and not interact with other closely related proteases (Fig.
1) (66). Sitagliptin is rapidly absorbed, achieving peak plasma

levels 1–6 h after dosing. Its half-life is 8–14
h with bioavailability of 87%, with or with-
out food (67, 68). About 80% of the dose is
excreted unchanged by the kidney, with
15% of the bioavailable drug metabolized
by CYP3A4 and CYP2C8 in the liver (67,
69). At 100 mg daily, greater than 80% of
plasma DPP 4 activity is inhibited over a
24-h period (67, 70). A dose reduction to 50
mg is needed if creatinine clearance is less
than 50 ml/min and to 25 mg if creatinine
clearance is less than 30 ml/min (71).

Selected clinical studies
Five 24-wk trials in T2DM patients exam-

ined the following: sitagliptin monotherapy;
comparison of sitagliptin monotherapy, met-
formin monotherapy, and initial combination
therapy of sitagliptin and metformin; sitaglip-
tin added to ongoing pioglitazone; sitagliptin
added to ongoing metformin; and sitagliptin
added to ongoing sulfonylurea and/or met-
formin (Table 1) (72–76). As initial therapy,
sitagliptin/metformin combination ther-
apy worked better than either sitagliptin
or metformin monotherapy with an
HbA1c reduction of 1.9% compared with
0.6 – 0.7% and 1.13% after 24 wk. As ad-
juvant therapy, sitagliptin in combination

FIG. 2. Mechanism of action of sitagliptin, vildagliptin, and exenatide. GLP-1 is released from L cells
(stained red) of the gut, and is subject to DPP 4 (stained green on endothelial cells of blood vessels of the
gut) degradation in both gut and blood. Sitagliptin and vildagliptin inhibit DPP 4 action in blood and on
endothelial cells. Metformin, orlistat, and �-glucosidase inhibitors increase GLP-1 secretion. Exenatide, a
GLP-1R agonist, increases insulin secretion from �-cells (stained green) in islets of Langerhans. The �-cells
in islets are stained red.
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with metformin, glipizide, or pioglitazone yielded an HbA1c

reduction of 0.6 – 0.7% when compared with placebo.
Preliminary results from 30-wk extension trials on sitagliptin

monotherapy, initial sitagliptin combination therapy with or
without metformin, and sitagliptin as adjuvant therapy to met-
formin showed that the reduction in HbA1c was sustained at wk
54 (77–79). A 52-wk trial on sitagliptin vs. glipizide as adjuvant
therapy to metformin showed a reduction in HbA1c of 0.7% in
both groups, however, the maximal HbA1c reduction was ob-
served at 24–30 wk with a gradual increase in HbA1c from wk
30–52, which raises the issue of declining sitagliptin efficacy
(80). Sitagliptin is reported to be weight neutral. Currently, there
is an ongoing study on adding sitagliptin to exogenous insulin in
patients with or without metformin treatment (81).

Side effects
A pooled analysis of 5141 patients in clinical trials for 2 yr or

less showed that sitagliptin monotherapy or combination ther-
apy (metformin, pioglitazone, sulfonylurea, or sulfonylurea and
metformin) was well tolerated, and hypoglycemia occurred in
the setting of combination therapy (82). The adverse events that
were higher with sitagliptin compared with nonexposed groups
included nasopharyngitis, contact dermatitis, and osteoarthritis.
A systematic review and metaanalysis of incretin therapies
showed that sitagliptin has no risk of gastrointestinal adverse
events but has an increase risk for urinary track infection, head-
ache, and especially nasopharyngitis (40), and may reflect a lack
of DPP 4 activity required for immunosurveillance.

Vildagliptin
Vildagliptin, a selective, reversible, and competitive inhibitor

of DPP 4, is a low molecular weight compound suitable for oral
dosing (83, 84). After dosing, vildagliptin is rapidly absorbed
and achieves peak plasma levels in 1–2 h. Its half-life of 2 h is
shorter than sitagliptin (85, 86). Its bioavailability is 85% (87),
and its pharmacokinetics is not affected by food (88). At 100 mg
daily, it inhibits 98% of DPP 4 activities 45 min after dosing and
60% at 24 h. Approximately 85% of vildagliptin is metablolized
in the liver to LAY151 by hydrolysis: LAY151 is inactive. The
remaining 15% is eliminated unchanged by the kidneys (89). A
study suggested that there was no significant difference in ex-
posure to vildagliptin in patients with various degrees of hepatic
impairment (89). In 2007, the Food and Drug Administration
requested additional data on patients with renal impairment be-
fore granting final approval of vildagliptin (90).

Selected clinical trials
Six clinical trials evaluated vildagliptin as initial mono-

therapy in comparison to placebo, metformin, rosiglitazone, or
acarbose, and also as initial combination therapy with pioglita-
zone in comparison to vildagliptin monotherapy in drug-naive
patients with T2DM (Table 1) (91–97). Patients with worse gly-
cemic control (HbA1c �8.4 vs. 6.7%) had bigger HbA1c reduc-
tion over 24 wk. Data from the extension study on the group with
better glycemic control showed that maximum HbA1c reduction
occurred around 24–30 wk, followed by a gradual increase
thereafter until wk 108 (92). As monotherapy, vildagliptin 50 mg

twice daily was as effective as rosiglitazone 8 mg once daily and
acarbose 100 mg thrice daily in lowering HbA1c but not as ef-
fective as metformin 1000 mg twice daily (94, 95, 97). Initial
combination therapy with vildagliptin and pioglitazone pro-
vided better glycemic control than either vildagliptin or piogli-
tazone monotherapy (96).

Vildagliptin is effective as adjuvant therapy when adminis-
tered to patients inadequately controlled with sulfonylurea, met-
formin, thiazolidinedione, or insulin therapy with HbA1c reduc-
tion of 0.6, 0.9, 1.0, and 0.5%, respectively (98–101). In
addition, vildagliptin and pioglitazone were equally effective as
adjuvant therapy for patients who were inadequately controlled
on metformin, in which HbA1c reductions of 0.9 and 1.0% were
noted, respectively (102).

Side effects
The side effects from vildagliptin are comparable to that of

sitagliptin. In a systematic review and metaanalysis of incretin
therapies, vildagliptin has no risk of gastrointestinal adverse
events but has an increase risk for urinary track infection and
headache (40).

Unresolved Issues Regarding DPP 4 Inhibitors

1. Do DPP 4 inhibitors have favorable effects on �-cell
mass in humans?

Exenatide appears to have beneficial effects on �-cell mass
when given in pharmacological doses to rodents (51, 52). The
effect of DPP 4 inhibitors on �-cell mass is less clear. Three-
month treatment of high-fat-fed diet streptozotocin-induced di-
abetic mice with des-fluoro-sitagliptin preserved �-cells from ap-
optosis with no increase in �-cell mass (103). �-Cells of DPP 4
knockout mice are also reported to be more resistant to the toxic
effects of streptozotocin (104). But against DPP 4 inhibitors be-
ing trophic factors, 8-wk treatment with vildagliptin had no ob-
vious effects on �-cell turnover or �-cell mass in mice (105).

2. Is the modest increase in aGLP-1 levels the sole
modulator of glycemia using DPP 4 inhibitors?

DPP 4 inhibitors were developed to augment biologically ac-
tive, endogenously secreted plasma GLP-1. In humans, sitaglip-
tin, both after a single dose and after a once-daily dose for 10 d,
resulted in about a 2-fold increase in aGLP-1 after meal (67,
106). Furthermore, sitagliptin decreased total GLP-1 (tGLP-1) in
the presence of increased aGLP-1 (107). However, whether the
2-fold increase in aGLP-1 is sufficient to explain the glucose-
lowering effect with reduction of HbA1c in patients on chronic
sitagliptin therapy is controversial.

If DPP 4 inhibitors did lower blood glucose as a direct con-
sequence of increased aGLP-1 levels, plasma insulin levels would
be expected to increase as well. However, fasting and postpran-
dial plasma insulin and C-peptide levels were not different before
and after 10 d DPP 4 inhibition in both healthy and T2DM
subjects (106, 108, 109). Indeed, infusions of GLP-1 that result
in comparable plasma aGLP-1 levels attained by DPP 4 inhibi-
tion do not induce insulin secretion in T2DM (10). Some re-
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viewers noted that with DPP 4 inhibitors, the same amount of
insulin is secreted at a lower glucose level, or insulinogenic index
is improved (110). However, any treatment that lowers plasma
glucose without increasing insulin secretion, such as weight loss,
metformin, or �-glucosidase inhibitors, also improves insulino-
genic indices (111, 112).

Another surprising finding is that DPP 4 inhibition does not
slow gastric emptying (108) when slowed gastric emptying is a
consistent finding with exogenous GLP-1 and exenatide treat-
ments (13, 113). An explanation offered in some reviews is that
the degree of elevation of aGLP-1 is not of sufficient magnitude
to inhibit gastric emptying (110, 114). However, by the same
rationale, one can extrapolate that the elevation in aGLP-1 from
DPP 4 inhibition is also not sufficient to bring about an increase
in insulin secretion (108).

3. How might DPP 4 inhibition lead to a decline in
plasma glucose levels without an increase in insulin
secretion?

DPP 4 inhibition results in lower postprandial plasma gluca-
gon levels (108, 109, 115). However, the reduced glucagon se-
cretion is not evident in the fasting state when it would be most
beneficial to decrease nocturnal hepatic glucose output. The
postprandial glucagon suppressive effects of DPP 4 inhibitors,
whereas significantly different from placebo, are small and short
lived, and the levels are much higher than in nondiabetic subjects,
therefore, unlikely to account for the full antihyperglycemic
effect.

The following is speculation by the authors. Many endoge-
nous compounds are subject to DPP 4 modification, resulting in
their activation or inactivation, and any of these unknown qual-
ities might have effects on glucose homeostasis (116, 117). If
indeed the glucose-lowering effects of DPP 4 inhibition are me-
diated by GLP-1, one would expect to see maximum clinical
effects of one dose of DPP 4 inhibitor on PPG and insulin levels
immediately after a meal when GLP-1 secretion is at its maxi-
mum. However, this is not the case because no clinical effects on
glucose, insulin, glucagon, or C-peptide levels over a 2-h post-
meal period were observed after one dose of sitagliptin (67).
However, after 4 wk sitagliptin, PPG levels were significantly
reduced over a 24-h period in the treatment group, but insulin
and C-peptide levels were comparable between treatment and
placebo groups (118). This phenomenon may signify accumu-
lation, over time, of one or more DPP 4 products that have effects
on glucose uptake.

GLP-1 is known to have effects on the gut-hepatoportal-brain
neural axis. Sitagliptin should directly inhibit DPP 4 activity at
the level of the vascular endothelium in the gut, resulting in
greater activation by GLP-1 of sensory neurons originating in the
nodose ganglion, where GLP-1R gene expression has been
shown to occur (119, 120). It should also cause higher aGLP-1
levels to enter the portal system after eating with subsequent
activation of the vagal hepatic nerves (121). GLP-1R mRNA is
present on nerve terminals of the portal vein in rodents (120), and
there are GLP-1-modifiable glucose sensors in the hepatoportal
bed (122). Dog studies had shown that direct infusion of GLP-1
into the portal vein results in increased glucose uptake (123,

124). Against gut-neuronal pathways being the likely cause of
the improved glucose homeostasis with DPP 4 inhibition is this
– gastric emptying is not altered. GLP-1 is thought to influence
gastric emptying through interacting with afferent sensory neu-
rons. Therefore, if DPP 4 inhibition were of such magnitude as
to influence neuronal pathways through greater GLP-1R acti-
vation, one would also expect to see effects on gastric emptying,
which is not the case.

4. Was the development of DPP 4 inhibitors, which are
not specific for GLP-1 and actually resulted in decreased
tGLP-1 secretion, really needed to increase plasma
aGLP-1 levels?

There are other hypoglycemic agents that cause a minor in-
crease in plasma GLP-1 levels but were thought to not contribute
to their antihyperglycemic effect. Three-day treatment with
phenformin resulted in elevated levels of gut-derived glucagon-
like immunoreactivity (measured before a RIA specific for GLP-1
was available) both during fasting and in response to intraduo-
denal glucose infusions in T2DM (125). One-week metformin
treatment in healthy subjects resulted in dramatic increases in
postprandial glucagon-like immunoreactivity levels when com-
pared with baseline (126). Furthermore, a 2-wk course of met-
formin in obese nondiabetic volunteers resulted in a statistically
significant increase in aGLP-1 levels during an oral glucose load
performed under euglycemic-hyperinsulinemic clamp when
compared with baseline (127). aGLP-1 levels during both fasting
and after the oral glucose load did not change after a single 850
mg dose of metformin but were significantly increased after 4 wk
metformin in obese patients with and without T2DM (128).
Subsequently, metformin was found to inhibit DPP 4 activity in
patients with T2DM (129). Similarly, metformin was found to
decrease DPP 4 activity, increase aGLP-1 levels, and improve
insulin secretory capability to exogenous GLP-1 administration
in diabetic mice (130). However, on a molar basis, specific DPP
4 inhibitors are 15–20 times more effective at reducing DPP 4
activity than metformin. A recent study of healthy subjects
showed the following: both postprandial tGLP-1 and aGLP-1
levels were increased 2-fold with metformin; aGLP-1 levels were
increased 2-fold but tGLP-1 levels were diminished by a third
with sitagliptin; and aGLP-1 levels were increased 4-fold and
tGLP-1 increased by 1.6-fold with metformin/sitagliptin (107).

These data suggest that metformin and sitagliptin increase
aGLP-1 levels through different mechanisms. Most likely met-
formin increases GLP-1 levels through both inhibition of DPP 4
and secretion from L cells. The mechanism by which metformin
might increase GLP-1 secretion is speculative. Biguanides have
inhibited glucose absorption (131, 132). We hypothesize that
this decrease in glucose absorption would prolong exposure of
the sweet taste receptors on intestinal L cells (recently found to
be the modulators of GLP-1 secretion from L cells) to glucose,
resulting in the prolonged activation of the sweet taste receptors
and secretion of GLP-1 (Fig. 2) (62).

Although metformin increases GLP-1 secretion, it is still un-
clear whether this increase has any glucose-lowering effect. It is
well accepted that metformin lowers glucose levels by suppress-
ing hepatic glucose output, mediated through kinase LKB1 in the
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liver (133, 134). Therefore, it is also reasonable to ask whether
sitagliptin, which increases aGLP-1 by the same amount as met-
formin, is actually lowering glucose through aGLP-1. However,
given the synergistic effect of metformin and sitagliptin, both in
terms of increase in aGLP-1 levels and lowering of HbA1c (0.8%
with sitagliptin alone, 1.3% with metformin alone, and 1.8%
with metformin/sitagliptin), combination therapy might actually
have a meaningful impact in glucose lowering through the GLP-1
mechanism (73, 78, 107).

Summary
Exenatide, as adjuvant therapy in T2DM, led to sustained

HbA1c reduction of 1.0%, and improved �-cell function and
weight loss. It is inconvenient to use, but long-acting forms with
once-weekly injection, such as long-acting release exenatide for-
mulation are under development (135). Liraglutide lowered
HbA1c by 1.5% in a 14-wk study, but phase 3 studies are not yet
available in peer-reviewed journals.

The advantage of DPP 4 inhibitors is their availability in oral
form. Sitagliptin monotherapy led to HbA1c reduction of 0.6–
0.7% after 54 wk. Vildagliptin monotherapy lowered HbA1c by
0.9–1.4% after 24 wk. However, patients with mild T2DM on
low-dose vildagliptin showed a return of HbA1c to pretreatment
levels after 108 wk. A similar trend was seen in sitagliptin. Long-
term data on sitagliptin and vildagliptin are needed to evaluate
whether their glucose-lowering effects are sustained. Both DPP 4
inhibitors are weight neutral, and their effects on other DPP 4
substrates need further research.

A better understanding of the effects of GLP-1 and GLP-1
mimetics on �-cell mass in humans and the mechanism of action
by which they lower glucagon secretion from �-cells are needed.
Finally, more work is needed to elucidate how DPP 4 inhibitors
improve insulin sensitivity in humans.
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