
Increases in Bone Mineral Density in Response to Oral
Dehydroepiandrosterone Replacement in Older
Adults Appear to Be Mediated by Serum Estrogens

Catherine M. Jankowski, Wendolyn S. Gozansky, John M. Kittelson, Rachael E. Van Pelt,
Robert S. Schwartz, and Wendy M. Kohrt

Division of Geriatric Medicine (C.M.J., W.S.G., R.E.V.P., R.S.S., W.M.K.), Department of Medicine, and Department of Preventive
Medicine and Biometrics (J.M.K.), University of Colorado Denver, Aurora, Colorado 80045

Context: The mechanisms by which dehydroepiandrosterone (DHEA) replacement increases bone
mineral density (BMD) in older adults are not known.

Objective: The aims were to determine the effects of DHEA therapy on changes in sex hormones
and IGF-I and their associations with changes in BMD.

Design, Setting, and Participants: A randomized, double-blinded, placebo-controlled trial was
conducted at an academic research institution. Participants were 58 women and 61 men, aged
60–88 yr, with low serum DHEA sulfate (DHEAS) levels.

Intervention: The intervention was oral DHEA 50 mg/d or placebo for 12 months.

Main Outcome Measures: BMD and serum DHEAS, testosterone, estradiol (E2), estrone (E1), SHBG,
IGF-I, and IGF binding protein 3 were measured before and after intervention. Free testosterone
and estrogen (FEI) indices were calculated.

Results: The average changes in hip and spine BMD (DHEA vs. placebo) ranged from 1.1 to 1.6%.
Compared with placebo, DHEA replacement increased serum DHEAS, testosterone, free testos-
terone index, E1, E2, FEI, and IGF-I (all P � 0.001) and decreased SHBG (P � 0.02) in women and, in
men, increased DHEAS, E1, FEI (all P � 0.001), and E2 (P � 0.02) and decreased SHBG (P � 0.037). The
changes in total and regional hip BMD were associated with 12-month E2 (all P � 0.001) and FEI (all
P � 0.013). The effects of DHEA treatment were eliminated by adjustment for 12-month E2.

Conclusions: The significant increases in hip BMD in older adults undergoing DHEA replacement
were mediated primarily by increases in serum E2 rather than direct effects of DHEAS. (J Clin
Endocrinol Metab 93: 4767–4773, 2008)

The adrenal hormone dehydroepiandrosterone (DHEA) is a
major source of androgens and estrogens in postmeno-

pausal women and older men (1). The age-related decline in
DHEA and its sulfate, DHEAS, may predispose older adults to
loss of bone mass secondary to a changing sex hormone milieu.
Previously we reported that, when compared with placebo,
DHEA replacement therapy (50 mg/d) for 1 yr improved hip
(total, trochanter, and shaft regions) bone mineral density
(BMD) in older women and men and lumbar spine BMD in

women (2). The mechanisms by which DHEA replacement pro-
motes an increase in BMD are not known. DHEAS may impart
direct effects on bone metabolism (3) or may act through its
conversion to testosterone and/or subsequent aromatization to
estrogens (4). Another possibility is that the increase in serum
IGF-I that is commonly observed in response to DHEA therapy
exerts anabolic effects on bone (5, 6). The purpose of this study
was to determine the effects of DHEA therapy on changes in
serum testosterone, estrogens, IGF-I, and IGF binding protein
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(IGFBP)-3, and evaluate the independent associations of serum
DHEAS, testosterone, estradiol (E2), and IGF-I with the changes
in BMD that occurred in response to DHEA replacement therapy
in older women and men.

Subjects and Methods

Study participants
Participant characteristics and intent-to-treat and secondary compli-

ance analyses of the changes in BMD and body composition in response
to DHEA replacement therapy have been reported (2). Briefly, partici-
pants were women and men aged 60� years, with low serum DHEAS
(�3.8 �mol/liter, 140 �g/dl), and no use of prescribed or over-the-
counter hormone therapies or oral glucocorticoids in the previous 6
months. Volunteers were excluded for unstable health and contraindi-
cations for sex hormone therapy. The study was approved by the Col-
orado Multiple Institutional Review Board. Written informed consent
was obtained from all volunteers.

Intervention
Participants were randomly assigned with stratification by sex to

receive oral DHEA 50 mg/d (Belmar Pharmacy, Lakewood, CO) or pla-
cebo for 1 yr. The intervention was administered in a double-blinded
manner. The dose was selected because it raises serum DHEAS levels of
older adults to the normal range for young adults (6, 7). Compliance with
the intervention was assessed by measuring serum DHEAS levels at
3-month intervals. The secondary analyses reported herein included only
participants compliant to the intervention (119 of 140), as previously
described (2).

Procedures

Dual-energy x-ray absorptiometry (DXA)
BMD of the proximal femur (total hip, neck, trochanter, and shaft

regions) and lumbar spine (L2-L4) was measured by DXA at baseline and
after 12 months of intervention as described previously (2). Body mass,
fat mass, and fat-free mass were measured by DXA.

DHEAS, sex hormones, and bone markers
Serum DHEAS was measured as described previously (2). Serum total

testosterone (Beckman Coulter, Fullerton, CA), E2, estrone (E1), and
SHBG (all Diagnostic Systems Laboratory, Webster, TX), were mea-
sured at baseline and 12 months and stored at �80 C for subsequent
batched analyses by RIA. Intra- and interassay coefficients of variation
(CVs) were: 1) testosterone, 2.1 and 5.1%; 2) E2, 9.0 and 7.7%; 3) E1,
8.7 and 11.7%; and 4) SHBG, 5.1 and 12.0%. Serum albumin was
measured using the bromcresol purple method at the time of collection
at baseline and 12 months (interassay CV 1.3–2.0%).

Free testosterone index (FTI) and free estradiol index (FEI) were
calculated using the equations of van den Beld et al. (8). Testosterone
binding constants for albumin and SHBG were 4.06 � 104 and 5.97 �
108 liters/mol, respectively; E2 binding constants for albumin and SHBG
were 4.21 � 104 and 3.15 � 108 liters/mol, respectively (9).

Serum C-terminal telopeptide of type 1 collagen (CTX) was measured
by ELISA (Nordic Bioscience Diagnostics A/S, Herlev, Denmark) and
bone-specific alkaline phosphatase (BAP; Quidel Corp., San Diego, CA)
by enzyme immunoassay at baseline and 12 months. The intra- and
interassay CVs were 6.6 and 17.6% for CTX and 3.0 and 13.1% for BAP.

Statistical analyses
The primary outcome variables were specified a priori as the 12-

month changes in BMD (expressed as percent of baseline) at the lumbar
spine and hip regions. The primary explanatory variables were E1, E2,
FEI, testosterone, FTI, and IGF-I. The 12-month concentrations, as op-

posed to the 12-month changes, were used because baseline testosterone
levels were undetectable in some women. Separate analyses were also
conducted using the 12-month changes in serum sex hormone and IGF-I
concentrations to determine whether findings were consistent across ap-
proaches. Serum testosterone was assumed to be 0.58 nmol/liter (16.9
ng/dl) when concentrations were below the detection limit of 0.59 nmol/
liter (17.0 ng/dl). Based on preliminary descriptive analyses, a logarith-
mic transformation of the hormone and IGF-I data was used to reduce
skew and reduce influence from high-leverage cases. No transformation
of percent BMD change was necessary.

The primary analyses used linear regression methods with percent
BMD change as the outcome and 12-month serum hormone or IGF-I
concentration as explanatory variables. These models were adjusted for
baseline BMD to increase the precision of the inference. A sequence of
multivariate regression models was used to evaluate potential mediators
of DHEA effects on BMD. Specifically, the role of sex hormones as
mediators of the DHEA effect on BMD was assessed by evaluating the
difference between the crude (unadjusted) DHEA coefficient and the
DHEA coefficient after adjustment for changes in the sex hormone(s). A
difference between the crude and adjusted coefficients was evidence of
mediation by the hormone. All analyses were performed in S-plus version
7 (Insightful Corporation, Seattle, WA); results are reported as estimates,
95% confidence intervals, and two-sided P values unless otherwise
indicated.

Results

Baseline characteristics
There were no significant differences between the placebo and

DHEA groups in baseline characteristics (Table 1). Body weight

TABLE 1. Baseline characteristics (mean � SD)

Placebo DHEA P value

Women, n 33 25
Age, yr 69.1 (6.4) 69.3 (7.5) 0.88
Weight, kg 68.7 (14.7) 69.1 (13.4) 0.93
Height, m 1.62 (0.06) 1.61 (0.06) 0.76
Fat-free mass, kg 39.6 (4.8) 38.2 (5.5) 0.45
Fat mass, kg 27.5 (11.2) 28.8 (8.6) 0.62
Fat mass,

percent of
body mass

38.7 (8.2) 41.0 (5.8) 0.23

BMD, g/cm2

Total hip 0.836 (0.136) 0.837 (0.113) 0.98
Femoral neck 0.758 (0.154) 0.753 (0.113) 0.90
Trochanter 0.667 (0.117) 0.689 (0.096) 0.46
Femoral shaft 0.983 (0.171) 0.957 (0.148) 0.56
Lumbar spine 0.996 (0.162) 1.040 (0.177) 0.33

Men, n 31 30
Age, yr 69.1 (6.5) 69.4 (6.7) 0.88
Weight, kg 86.8 (13.0) 81.0 (11.5) 0.07
Height, m 1.76 (0.05) 1.74 (0.06) 0.27
Fat-free mass, kg 57.3 (5.7) 54.9 (4.6) 0.08
Fat mass, kg 26.5 (9.4) 23.1 (8.4) 0.15
Fat mass,

percent of
body mass

29.7 (6.7) 27.8 (6.6) 0.28

BMD, g/cm2

Total hip 1.035 (0.148) 1.027 (0.138) 0.83
Femoral neck 0.955 (0.152) 0.927 (0.144) 0.47
Trochanter 0.865 (0.159) 0.896 (0.141) 0.43
Femoral shaft 1.201 (0.170) 1.170 (0.160) 0.48
Lumbar spine 1.241 (0.263) 1.252 (0.249) 0.87
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and fat-free mass tended (P � 0.07 and P � 0.08, respectively) to
be greater in the men in the placebo arm compared with men in the
DHEA arm. Relative body fat was not significantly different be-
tween the placebo and DHEA groups in the women or men.

There were no significant differences between the placebo and
DHEA groups in baseline serum hormone concentrations, IGF-I,
IGFBP-3, CTX, or BAP (Table 2 and Fig. 1). Total testosterone

concentration at baseline was below the limit of detection in 25
women (11 placebo, 14 DHEA).

Changes in BMD and bone markers
As previously reported (2), women and men who were com-

pliant to DHEA replacement therapy for 1 yr had significant
increases in hip BMD (total, trochanter, and shaft regions). Ad-

ditionally, in exploratory sex-specific anal-
yses, women on DHEA had a significant
increase in lumbar spine BMD. Average
changes in BMD (DHEA vs. placebo; ad-
justed for baseline BMD) in the cohort pre-
sented herein were: total hip, 1.14% (95%
confidence interval: 0.19–2.10; P � 0.02);
femoral shaft, 1.56% (0.26–2.86; P �

0.02); trochanter, 1.46% (0.17–2.75; P �

0.03); and lumbar spine, 1.09% (�0.24 to
2.43; P � 0.10). Although both CTX and
BAP tended to decrease in response to
DHEA therapy, only the decrease in BAP
was significantly (P � 0.02) different from
the change in the placebo group (Fig. 1).

Sex-specific changes in sex hormones
and IGF-I (Table 2)

DHEA replacement therapy resulted in
increases in serum DHEAS (P � 0.001)
in women and men. In women, there were
increases (all P � 0.001) in serum total tes-
tosterone, FTI, E1, E2, FEI, and IGF-I and a
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FIG. 1. Serum markers of bone resorption (CTX) and formation (BAP) before intervention (top panels) and
changes in response to 12 months of DHEA or placebo therapy (bottom panels). Values are mean � SE. *,
Different from change in placebo group, P � 0.05.

TABLE 2. Serum sex hormones, IGF-I, and IGFBP-3

Placebo DHEA

Baseline 12 months Baseline 12 months P valuea

Women
DHEAS (�mol/liter) 1.2 (0.7) 1.1 (0.7) 1.5 (1.0) 7.1 (5.0) �0.001
Total testosterone (nmol/liter)b 1.0 (0.3) 0.9 (0.4) 1.2 (0.8) 2.2 (1.3) �0.001
SHBG (nmol/liter) 182.5 (83.7) 183.2 (88.4) 149.1 (67.1) 121.9 (61.7) 0.005
FTI (pmol/liter)c 7.0 (4.0) 8.0 (4.0) 9.0 (6.0) 25.0 (15.0) �0.001
E2 (pmol/liter) 116.7 (43.0) 118.9 (45.9) 113.8 (30.8) 183.2 (71.6) �0.001
E1 (pmol/liter) 94.7 (43.3) 94.0 (37.4) 105.0 (42.9) 187.2 (99.1) �0.001
FEI (pmol/liter)c 2.2 (1.2) 2.3 (1.0) 2.3 (1.4) 5.1 (2.7) �0.001
IGF-I (nmol/liter) 14.8 (6.6) 13.8 (5.2) 14.0 (5.3) 17.2 (6.3) 0.028
IGFBP-3 (nmol/liter) 114.8 (31.2) 117.6 (34.3) 119.7 (36.4) 118.3 (36.4) 0.941

Men
DHEAS (�mol/liter) 1.7 (0.7) 2.9 (0.6) 1.7 (0.7) 8.8 (4.9) �0.001
Total testosterone (nmol/liter) 13.9 (4.6) 14.1 (4.7) 13.6 (3.9) 12.4 (3.2) 0.114
SHBG (nmol/liter) 126.0 (64.3) 126.7 (66.5) 107.8 (41.4) 96.7 (39.3) 0.037
FTI (pmol/liter) 156.0 (48.0) 161.0 (42.0) 169.0 (52.0) 172.0 (56.0) 0.417
E2 (pmol/liter) 171.4 (45.2) 175.8 (34.1) 174.7 (42.6) 235.3 (83.3) 0.001
E1 (pmol/liter) 127.2 (58.1) 128.0 (53.3) 119.5 (53.6) 176.8 (102.1) 0.022
FEI (pmol/liter) 5.9 (1.6) 6.0 (1.4) 6.6 (1.4) 8.7 (2.9) 0.001
IGF-I (nmol/liter) 15.5 (6.5) 14.1 (5.6) 15.5 (5.6) 16.0 (6.1) 0.207
IGFBP-3 (nmol/liter) 98.7 (34.0) 96.2 (36.0) 104.6 (34.3) 104.0 (36.0) 0.413

Values are mean (SD).
a Between-group comparisons of 12-month values; differences between groups at baseline were not significant (P � 0.05).
b Total testosterone was below the limit of detection (0.59 nmol/liter) in 26 women (11 placebo, 14 DHEA) at baseline and 16 women (11 placebo, five DHEA) at
12 months.
c Cases with undetectable total testosterone concentrations were assumed to be 0.58 nmol/liter for the calculations of the FTI and FEI.
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decrease (P � 0.02) in SHBG in the DHEA group when com-
pared with the placebo group. Total testosterone remained be-
low the limit of detection at the end of the study in the 11 placebo-
treated women in whom levels were undetectable at baseline and
in five DHEA-treated women. Men in the DHEA group also had
increases in FEI, E1 (both P � 0.001), and E2 (P � 0.02) and a
decrease in SHBG (P � 0.037) when compared with controls.
There was a trend for a reduction in total testosterone in men in
the DHEA group (P � 0.11). IGFBP-3 concentration did not
change significantly in women or men in response to DHEA
replacement.

Univariate associations of sex hormones and IGF-I with
changes in BMD (Table 3)

The changes in hip (total and regional) and spine BMD were
not significantly associated with total testosterone, FTI, or IGF-I.
In contrast, the changes in total hip, femoral shaft, and trochan-
ter BMD were associated with E2 (all P � 0.001) and FEI (all P �

0.013). Increases in total hip and trochanter BMD were also

associated with E1 concentrations (both P � 0.02). Because of
the discordant effects of DHEA replacement on total testoster-
one and IGF-I by sex, we repeated these analyses in women only,
but neither testosterone nor IGF-I was significantly associated
with changes in BMD at any site.

Mediating effects of sex hormones on BMD (Table 4)
The potential mediating effects of sex hormones on BMD

were evaluated by determining whether there was a substantial
change in significance of the unadjusted compared with hor-
mone-adjusted DHEA effects. For example, adjusting for E2 con-
centrations abolished the significant association of DHEA treat-
ment with change in hip BMD (unadjusted P � 0.019, adjusted
P � 0.686). Using total hip BMD as an example, Table 4 illus-
trates the following: 1) in the T�E2 model, the association of E2

remained as strong or stronger than in the univariate model (E2

alone), and there was a trend (P � 0.056) for testosterone to
become inversely associated with change in hip BMD; 2) in the
DHEA�T model, the association of DHEA treatment with BMD
remained as strong as in the univariate model (DHEA alone) after

TABLE 4. Associations of DHEA treatment and 12-month
serum sex hormone concentrations with changes in BMDa

Coefficient (P value)

Model DHEA Testosteroneb E2
b

Total hip BMD
DHEA 1.14 (0.019)
T 0.00 (0.991)
E2 2.03 (�0.001)
T � E2 �0.31 (0.056) 2.44 (�0.001)
DHEA � T 1.18 (0.018) �0.07 (0.666)
DHEA � E2 0.22 (0.686) 1.91 (�0.001)
DHEA � T � E2 0.17 (0.742) �0.31 (0.059) 2.34 (�0.001)

Femoral shaft BMD
DHEA 1.56 (0.019)
T 0.01 (0.971)
E2 2.15 (0.001)
T � E2 �0.37 (0.099) 2.68 (�0.001)
DHEA � T 1.63 (0.017) �0.10 (0.634)
DHEA � E2 0.60 (0.432) 1.84 (0.016)
DHEA � T � E2 0.56 (0.460) �0.36 (0.105) 2.38 (0.004)

Trochanter BMD
DHEA 1.46 (0.027)
T �0.03 (0.878)
E2 2.31 (0.001)
T � E2 �0.34 (0.120) 2.75 (�0.001)
DHEA � T 1.49 (0.025) �0.08 (0.688)
DHEA � E2 0.62 (0.386) 2.00 (0.011)
DHEA � T � E2 0.54 (0.452) �0.33 (0.137) 2.47 (0.004)

Lumbar spine BMD
DHEA 1.09 (0.108)
T 0.12 (0.545)
E2 0.93 (0.145)
T � E2 �0.04 (0.875) 0.99 (0.183)
DHEA � T 1.06 (0.125) 0.08 (0.696)
DHEA � E2 0.82 (0.281) 0.59 (0.401)
DHEA � T � E2 0.81 (0.288) �0.01 (0.969) 0.61 (0.458)

DHEA, DHEA replacement group; T, serum total testosterone.
a Adjusted for baseline BMD.
b log2.

TABLE 3. Associations of the 12-month serum sex hormone
and IGF-I values with changes in BMDa

Coefficientb 95% CI P value

Total testosteronec

Total hip BMD 0.02 (�0.29, 0.33) 0.904
Femoral shaft BMD 0.03 (�0.38, 0.43) 0.903
Trochanter BMD �0.02 (�0.43, 0.40) 0.940
Lumbar spine BMD 0.15 (�0.26, 0.55) 0.471

FTIc

Total hip BMD 0.13 (�0.15, 0.41) 0.372
Femoral shaft BMD 0.13 (�0.24, 0.50) 0.498
Trochanter BMD 0.10 (�0.28, 0.49) 0.595
Lumbar spine BMD 0.18 (�0.19, 0.55) 0.342

E2

Total hip BMD 2.08 (1.15, 3.00) �0.001
Femoral shaft BMD 2.07 (0.85, 3.30) 0.001
Trochanter BMD 2.62 (1.25, 3.99) �0.001
Lumbar spine BMD 0.93 (�0.29, 2.14) 0.137

FEIc

Total hip BMD 1.01 (0.42, 1.61) 0.001
Femoral shaft BMD 1.15 (0.37, 1.93) 0.005
Trochanter BMD 1.08 (0.24, 1.92) 0.013
Lumbar spine BMD 0.57 (�0.18, 1.33) 0.142

E1

Total hip BMD 0.77 (0.13, 1.41) 0.020
Femoral shaft BMD 0.56 (�0.31, 1.44) 0.209
Trochanter BMD 1.35 (0.48, 2.22) 0.003
Lumbar spine BMD 0.82 (�0.04, 1.68) 0.066

IGF-I
Total hip BMD �0.05 (�0.88, 0.77) 0.897
Femoral shaft BMD �0.25 (�1.37, 0.86) 0.656
Trochanter BMD 0.28 (�0.88, 1.45) 0.635
Lumbar spine BMD �1.10 (�2.22, 0.01) 0.056

CI, Confidence interval.
a Adjusted for baseline BMD.
b Slope coefficient for the regression of the relative change in BMD on log2 of
the 12-month hormone or IGF-I levels. The slope coefficient is interpreted as the
percent change in BMD if the 12-month serum analyte concentration differed by
2-fold.
c Cases with undetectable total testosterone concentrations were assumed to be
0.58 nmol/liter for the calculations of the FTI and ETI.
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adjusting for testosterone; 3) in the DHEA�E2 model, adjusting
for E2 concentrations abolished the significant univariate asso-
ciation of DHEA treatment with change in BMD; and 4) in the
DHEA�T�E2 model, only E2 was significantly associated with
change in BMD; as in the T�E2 model, there was a trend (P �

0.059) for testosterone to become inversely associated with
change in BMD. Similarly, for the femoral shaft and trochanter,
the increases in BMD in response to DHEA therapy were medi-
ated by serum E2 and not testosterone. Although changes in
lumbar spine BMD were not significantly associated with DHEA
treatment, adjustment for E2 (and not testosterone) resulted in a
major shift in the DHEA coefficient (unadjusted: 1.09; adjusted:
0.82), which was consistent with the E2 mediation effects ob-
served for other skeletal sites. Similar results were obtained in
sex-specific models and when DHEA treatment group was re-
placed by 12-month serum DHEAS as a continuous variable in
the multivariate models (data not shown). Note that although
Tables 3 and 4 have certain (i.e. univariate) models in common,
the coefficients within these models differ because cases with
missing data were excluded from the multivariate analyses.

Discussion

The primary aims of the study were to determine the effects of
DHEA therapy on changes in circulating sex hormones and IGF-I
concentrations and to evaluate whether the changes in these fac-
tors mediated the increases in BMD that occurred in response to
DHEA replacement therapy. The major findings were that
DHEA therapy resulted in significant increases in serum DHEAS
and estrogens in women and men and significant increases in
serum testosterone and IGF-I in women and that the effects of
DHEA treatment to increase BMD of the total hip and trochan-
teric and shaft subregions were mediated by increases in serum
estradiol but not testosterone or IGF-I.

Changes in serum sex hormones, IGF-I,
and bone markers

Although the biological effects of DHEA and DHEAS in hu-
mans are not well understood, it is likely that effects are mediated
through conversion to sex hormones (4). This conversion occurs
in peripheral target tissues via the actions of steroidogenic en-
zymes (3). In both women and men, the increase in serum
DHEAS concentration in response to DHEA replacement ther-
apywasabout600%,whichbrought levels into thenormal range
for young women and men (1). This robust increase in prohor-
mone resulted in modest changes in serum sex hormone levels.
Serum E1, E2, and testosterone levels increased in women on
DHEA by 60, 78, and 157%, respectively, and changes in men
were 36, 50, and �5%, respectively.

The relatively small changes in serum sex hormone levels in
response to the large increase in DHEAS were likely related to
two factors. First, the capacity for synthesis of androgens and
estrogens from DHEAS in target tissues is limited by steroido-
genic enzyme activity. It was reported recently that saturation of
androgen synthesis occurs at a serum DHEA concentration of
27.4 nmol/liter (7.9 ng/ml) (10). Although we did not measure

serum DHEA in the current study, this would be roughly equiv-
alent to a DHEAS concentration of 2.74 �mol/liter (102 �g/dl;
based on 1:100 ratio of DHEA to DHEAS). Thus, serum DHEAS
in the women and men on treatment in the current study ex-
ceeded levels for saturation of androgen synthesis by 2- to 3-fold.
This suggests that a lower dose of DHEA than that used in the
current study could optimize the conversion to sex hormones.
Second, it has been suggested that only a fraction of the andro-
gens that are synthesized locally diffuse into the circulation; it is
not clear whether the same is true for estrogens (11). Support for
this comes from observations that serum levels of glucuronide
metabolites of androgens increase to a relatively greater extent
than do androgens in response to DHEA therapy (11). As a result
of the local synthesis and metabolism of androgens and es-
trogens in target tissues in response to DHEA therapy, it is
possible that changes in serum levels of sex hormones provide
only crude estimates of the potential biological effects of DHEA
in bone. The enzymatic machinery for hormone production in
bone is evidenced by the expression in human osteoblast-like
cells of steroid-metabolizing enzymes, including some 17�-hy-
droxysteroid dehydrogenases (12) and aromatase (13).

The relative increases in serum testosterone, E2, and E1 and
decrease in SHBG in response to DHEA in women were generally
consistent with magnitudes of change observed in previous stud-
ies of DHEA replacement therapy (5, 7, 14–18). One notable
exception was the study of Genazzani et al. (14), in which both
early and late postmenopausal women had 5-fold increases in
serum E2 levels, from about 18 to about 90 pg/ml, in response to
12 months of oral DHEA (25 mg/d). The reason for the robust
increase in E2 in that study was not apparent.

The increase in serum E2 and decrease in SHBG in men in the
current study were consistent with previous studies of DHEA
replacement therapy (7, 17, 19). However, changes in serum E2

in response to DHEA replacement vary widely in men (5, 6, 15,
18). The lack of increase in serum testosterone in men was also
consistent with previous reports (5, 7, 15, 18–21) Interestingly,
both we and Nair et al. (17) observed trends for total serum
testosterone to decrease in men in response to oral DHEA ther-
apy. In young men treated with an aromatase inhibitor and vary-
ing doses of E2, there was a dose-dependent effect of serum E2 to
inhibit gonadotropin secretion and a strong inverse association
(r � �0.80) between serum E2 and testosterone concentrations
(22). This suggests that the increase in E2 in response to DHEA
therapy in men could have suppressed endogenous testosterone
production.

The biological effects of DHEA and DHEAS in humans may
also be mediated through the GH-IGF-I axis. Serum IGF-I re-
sponses to DHEA replacement have been varied across studies
but overall support an increase in IGF-I (5–7, 14, 20, 23). We
found an approximately 23% increase in serum IGF-I concen-
trations in women but a nonsignificant 3% increase in men in the
DHEA treatment groups. As also reported by von Muhlen et al.
(18), the increase in serum IGF-I in women was not due to an
increase in IGFBP-3, suggesting greater bioavailable IGF-I. It is
not clear whether DHEA replacement increases serum IGF-1 by
direct action on the GH-IGF-I axis, by modulating hepatic re-
lease of IGFs or indirectly by raising circulating estrogens and
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androgens. DHEA replacement did not increase the GH response
to a GHRH challenge in postmenopausal women despite in-
creased basal serum IGF-I (23). These responses argue against a
direct effect of oral DHEA replacement on GH production but
favor stimulation of hepatic IGF-I release. Whether the estro-
genic and/or androgenic effects of DHEA replacement alter the
IGF-I/IGFBP-3 system is difficult to elucidate. Short-term trans-
dermal testosterone administration did not alter serum IGF-I or
IGFBP-3 in postmenopausal women (24). These findings suggest
that the effects of oral DHEA replacement on IGF-I likely result
from hepatic metabolism.

The finding that DHEA therapy resulted in a decrease in se-
rum BAP and a trend for a decrease in CTX suggests that there
was an attenuation of bone turnover in the DHEA group. This is
consistent with the notion that the effects of DHEA on bone were
mediated through estrogen, rather than through anabolic actions
of testosterone or IGF-I.

Associations of DHEA treatment and sex hormones with
changes in BMD

The changes in circulating sex hormones and IGF-I that we
found in response to oral DHEA replacement support the plau-
sibility that these factors could have mediated increases in BMD.
The multivariate regression analyses underscored the dominant
role of serum E2 as mediator of the increases in BMD of the total
hip, femoral shaft, and greater trochanter in response to DHEA
therapy. When E2 was in the model, DHEA therapy was no
longer an independent determinant of changes in BMD.

The importance of estrogens for maintaining BMD in women
is well established. In men, the importance of E2 has been dem-
onstrated in cases of estrogen receptor (25) or aromatase anom-
alies (26–28) and observational studies (29, 30). Men with es-
trogen receptor-� deficiency or mutations of the CYP19 (P450
aromatase) gene have been reported to have osteopenia and an
increased rate of bone turnover. In prospective observational
studies, serum E2 concentration was directly correlated with
changes in BMD in older men (29, 30). Gennari et al. (29) found
that the greatest losses of hip and spine BMD over 4 yr occurred
in older men in the lowest quartile of free E2 and that neither free
nor total testosterone was associated with the change in BMD.
Slemenda et al. (30) found that serum E2 was a significant, pos-
itive correlate of radial, lumbar spine, femoral neck, and tro-
chanteric BMD in older men who were followed up for approx-
imately 2 yr, even after controlling for age, body weight, and
serum testosterone. Interestingly, Slemenda et al. (30) found that
testosterone was negatively associated with lumbar spine and
trochanteric BMD after controlling for E2. This latter finding is
intriguing because we also found inverse, albeit not significant,
associations of serum testosterone with total and regional hip
BMD when E2 was included in the multivariate models. It seems
unlikely that testosterone has detrimental effects on BMD be-
cause testosterone is known to increase bone formation and in-
hibit bone resorption (31). This finding could be an artifact of
statistical analyses based on linear models. It may also have a
biological basis in that the inverse association of testosterone
with BMD, after accounting for E2, may be an indicator of low
aromatase activity.

A limitation of this study was that serum measures of sex
hormones and IGF-I in response to DHEA replacement are only
surrogates of their bone-specific activity. It was beyond the scope
of the study to differentiate the potential paracrine and/or au-
tocrine actions of DHEAS and IGF-I.

In summary, DHEA replacement for 12 months increased
circulating estrogens in women and men and testosterone and
IGF-I in women. The significant increases in BMD in older
women and men in response to DHEA replacement were medi-
ated primarily by increases in serum E2, rather than by testos-
terone or direct effects of DHEAS.
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