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Insulin Stimulates Human Skeletal Muscle Protein
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Endothelial-Dependent Vasodilation and Mammalian
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Objective: Our objective was to determine whether endothelial-dependent vasodilation is an
essential mechanism by which insulin stimulates human skeletal muscle protein synthesis and
anabolism.

Subjects: Subjects were healthy young adults (n = 14) aged 31 + 2 yr.

Design: Subjects were studied at baseline and during local leg infusion of insulin alone (control, n =
7) or insulin plus the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (-NMMA, n = 7) to
prevent insulin-induced vasodilation.

Methods: We measured skeletal muscle protein metabolism with stable isotope tracers, blood flow
with indocyanine green, capillary recruitment with contrast enhanced ultrasound, glucose me-
tabolism with stable isotope tracers, and phosphorylation of proteins associated with insulin (Akt)
and amino acid-induced mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling
(mTOR, S6 kinase 1, and eukaryotic initiation factor 4E-binding protein 1) with Western blot
analysis.

Results: No basal differences between groups were detected. During insulin infusion, blood flow
and capillary recruitment increased in the control (P < 0.05) group only; Akt phosphorylation and
glucose uptake increased in both groups (P < 0.05), with no group differences; and mTORC1
signaling increased more in control (P < 0.05) than in -NMMA. Phenylalanine net balance in-
creased (P < 0.05) in both groups, but with opposite mechanisms: increased protein synthesis
(basal, 0.051 + 0.006 %/h; insulin, 0.077 = 0.008 %/h; P < 0.05) with no change in proteolysis in
control and decreased proteolysis (P < 0.05) with no change in synthesis (basal, 0.061 = 0.004 %/h;
insulin, 0.050 + 0.006 %/h; P value not significant) in .-NMMA.

Conclusions: Endothelial-dependent vasodilation and the consequent increase in nutritive flow
and mTORC1 signaling, rather than Akt signaling, are fundamental mechanisms by which insulin
stimulates muscle protein synthesis in humans. Additionally, these data underscore that insulin
modulates skeletal muscle proteolysis according to its effects on nutritive flow. (J Clin Endocrinol
Metab 95: 3848-3857, 2010)
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he longstanding debate on whether insulin stimulates
T skeletal muscle protein synthesis in humans has yet to
be settled. Insulin has been reported to stimulate skeletal
muscle protein synthesis in animals (1-4) and humans (35,
6). Conversely, some human studies could not demon-
strate significant changes in muscle protein synthesis with
hyperinsulinemia while reporting an inhibitory effect on
proteolysis (7-9). We have hypothesized that these dis-
crepancies may be due to differences in muscle perfusion,
nutritive flow, and/or amino acid availability, which then
modulate insulin’s effect on muscle protein synthesis and
breakdown (10-12). However, the fundamental question
of how insulin stimulates human skeletal muscle protein
synthesis and anabolism remains unanswered.

At the cellular level, insulin induces phosphorylation of
Akt/protein kinase B (PKB) and mammalian target of
rapamycin (mTOR) with a subsequent increase in the
phosphorylation of eukaryotic initiation factor 4E-bind-
ing protein 1 (4E-BP1) and p70 ribosomal protein S6 ki-
nase 1 (S6K1). That is, insulin increases mTOR complex
1 (mTORC1) signaling, promoting translation initiation
and accelerating muscle protein synthesis (13). Insulin also
stimulates endothelial-dependent vasodilation by activat-
ing endothelial nitric oxide synthase (eNOS) (14-16), in-
creasing capillary recruitment, microvascular volume, and
nutritive flow to skeletal muscle in healthy young adults
(17). This increased muscle perfusion raises the amount of
muscle tissue exposed to insulin, nutrients, and amino ac-
ids, which can increase Akt and mTORCT signaling, stim-
ulating muscle protein synthesis (10). Conversely, skeletal
muscle protein synthesis is resistant to insulin in healthy
nondiabetic older subjects, a defect associated with both
reduced vasodilation (12) and blunted Akt/mTORCT sig-
naling, which a single bout of aerobic exercise can reverse
(18). In general, the ability of insulin to promote muscle
protein synthesis and net deposition correlates positively
with muscle blood flow and amino acid delivery in young and
older subjects(10-12, 18). Amino acids activate mTORC1
signaling (19), making it very difficult to determine the main
mechanism through which insulin stimulates human skeletal
muscle protein synthesis, i.e. directly, via Akt signaling, or
indirectly, via endothelial-dependent vasodilation increasing
tissue exposure to insulin and amino acids and, conse-
quently, mTORCI signaling, or both.

The purpose of the present study was to determine the role
of insulin-induced endothelial-dependent vasodilation on
the insulin stimulation of muscle protein synthesis and net
protein anabolism. We hypothesized that pharmacological
inhibition of endothelial-dependent vasodilation would at-
tenuate the stimulatory effect of insulin on skeletal muscle
protein synthesis in young healthy subjects. To test this hy-
pothesis, we measured skeletal muscle blood flow, perfusion,
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anabolic signaling, protein synthesis, and glucose kinetics in
young healthy subjects at baseline and during local hyperin-
sulinemia in one leg. During insulin infusion, one group also
received a concomitant infusion of the nitric oxide synthase
inhibitor NG-monomethyl-L-arginine (L-NMMA) to pre-
vent insulin-induced vasodilation (20).

Subjects and Methods

Ethical approval

After approval by the Institutional Review Board of the Uni-
versity of Texas Medical Branch (Galveston, TX) and the U.S.
Food and Drug Administration (IND 73,870), all subjects read
and signed a written informed consent form before enrollment.

Subjects (Table 1)

Fourteen young subjects from the Houston/Galveston, TX,
area participated in a single acute experiment after random as-
signment to a control group receiving insulin only or an exper-
imental group receiving insulin plus .-NMMA. All subjects were
healthy and had normal glucose tolerance based on clinical his-
tory, physical examination, and laboratory tests, including a 2-h
75-g oral glucose tolerance test.

Study design

We measured skeletal muscle blood flow, perfusion, anabolic
signaling, protein synthesis, phenylalanine kinetics, and glucose
kinetics in the postabsorptive basal state (0240 min) and during
infusion of insulin (240—420 min) alone (control) or with L-
NMMA (L-NMMA). Subjects were admitted to the University of
Texas Medical Branch Clinical Research Center the afternoon
before the experiment. They received a standardized meal at
1900 h (one third of their estimated daily energy requirements)
and a snack at 2200 h, after which they were allowed only water
until the end of the study (1400 h).

The next morning at 0600 h, polyethylene catheters were in-
serted into a forearm vein for stable isotope tracers (Isotec Inc.,
Sigma-Aldrich, Miamisburg, OH) and dextrose infusion, a con-
tralateral hand vein for arterialized blood sampling, and the com-
mon femoral artery and vein of one leg for blood sampling. The
arterial line was also used for infusion of indocyanine green (ICG)
(IC-Green; Akorn, Lake Forest, IL), insulin, and L-NMMA. At
0700 h, we drew a background blood sample for phenylalanine and
glucose enrichment and ICG concentration and started (time = 0
min) a primed-continuous infusion of L-[ring-'*C,|phenylalanine

TABLE 1. Subjects’ characteristics

Control .-NMMA
n 7 7
Sex 5 females, 2 males 4 females, 3 males
Age (yr) 32+2 32*3
Weight (kg) 67.7 5.5 70.8 5.8
Height (cm) 1.63 + 0.04 1.68 = 0.05
Body mass index 25+ 1 25 £ 1

(kg/m?)

Leg volume (liters) 9.09 = 0.6 9.90 = 0.7

Values are the mean = st.
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FIG. 1. Study design. Blood and muscle sampling is indicated by arrows.
A detailed description of the study design is provided in the text.

(prime, 2 umol/kg; infusion, 0.05 wmol/kg - min) and D-[6,6-
2H,]glucose (prime, 19 umol/kg; infusion, 0.22 wmol/kg + min),
which was maintained until the end of the study (Fig. 1). After 120
min, a first muscle biopsy was taken from the vastus lateralis of the
leg bearing the femoral catheters, using aseptic technique, local an-
esthesia (1% lidocaine), and a 5-mm Bergstrom needle. The tissue
(100-200 mg) was quickly rinsed with ice-cold saline to remove
excess blood, blotted gently with a sterile sponge, frozen in liquid
nitrogen, and stored at —80 C until analyzed.

At 150 min ICG (0.5 mg/min) was started into the common
femoral artery. After 10 min, four sequential blood samples were
drawn at 10-min intervals from both femoral vein and hand vein
to measure blood flow. At 180 min, after stopping the ICG in-
fusion, we infused perflutren lipid microsphere (Definity; Lan-
theus Medical Imaging, N.Billerica, MA) in the wrist vein to
measure muscle perfusion of the vastus lateralis. Subsequently,
four blood samples were drawn at 5-min intervals from the hand
vein and femoral vein and artery to determine insulin concen-
trations as well as phenylalanine and glucose concentrations and
enrichments. At 240 min, the second muscle biopsy was taken
from the same incision of the first, at a different needle angle.

After the second biopsy, we started an insulin infusion (Novolin
R; Novo Nordisk, Princeton, NJ; 0.15 mU/min - 100 ml of leg) in
the femoral artery of both groups and continued it until the end of
the experiment (420 min). This insulin infusion rate was used to
increase leg insulin concentration and availability to the same post-
prandial levels in both groups, while avoiding hypoaminoacidemia
due to systemic hyperinsulinemia (7, 9, 21). Dextrose (20%) en-
riched 2% with p-[6,6-*H, |glucose was infused at a variable rate to
maintain blood glucose at the basal concentration (hyperinsuline-
mic-euglycemic clamp). In the L-NMMA group, we also infused
L-NMMA at variable rate into the femoral artery to prevent insulin-
induced vasodilation based on frequent Doppler measures (Philips
ATL Ultrasound, Andover, MA) of the superficial femoral artery.
Average .-NMMA infusion rate during the last hour of the exper-
iment was 0.089 * 0.009 mg/kg - min.

Additional muscle biopsies were taken from a new incision, 5 cm
proximal to the first, at 330 and 420 min. Between 360 and 420
min, the blood flow and muscle perfusion measurements were re-
peated, and blood samples were drawn for tracer enrichment and
phenylalanine, glucose, and insulin concentration as described
above.

Analytical methods
Plasma glucose concentration was measured using an auto-
mated glucose analyzer (Yellow Springs Instrument Co., Yellow

Insulin, Vasodilation, and Protein Anabolism

J Clin Endocrinol Metab, August 2010, 95(8):3848-3857

Springs, OH). ELISAs were used to determine insulin (Linco, St.
Charles, MO) and endothelin-1 (R&D Systems, Inc., Minneap-
olis, MN) concentrations with a microplate reader (Bio-Rad,
Hercules, CA).

Blood flow was measured based on ICG concentration in
femoral and wrist veins by spectrophotometrical determination
(Beckman Coulter, Fullerton, CA) at A = 805 (22).

Muscle perfusion was measured at baseline and during hy-
perinsulinemia using contrast enhanced ultrasound as described
by others (23, 24). Ultrasound imaging of the vastus lateralis
muscle was performed in a transaxial plane approximately
15-20 cm above the patella over the midportion of the muscle
using a P4-2 phased array transducer. An octafluoropropane
gas-filled albumin microbubbles suspension (Definity, St. Louis
Park, MN) was infused iv (3.5 ml/min for 8 min), using a me-
chanical index of 1.3 and compression of 80%. Once the sys-
temic microbubble concentrations reached steady state (~2
min), background images were obtained at a frame rate of 1/sec.
Intermittent imaging was performed using an internal timer at
pulsing intervals (PI) ranging from 1-25 sec, allowing progres-
sively greater replenishment of the ultrasound beam elevation
between destructive pulses. Depth, focus, and gain were opti-
mized at the beginning of each experiment and held constant
throughout. Data were recorded on a SVHS tape and digitized
for analysis using an offline system. A minimum of three images
were acquired at each PL. The background-subtracted video in-
tensity at each PI was measured from a region of interest within
the vastus lateralis muscle. PI vs. video intensity data were curve
fitted to the function y = A X (1 — e P"), where y is the video
intensity at PI time t, A is the plateau video intensity (an index of
microvascular blood volume), and B is the rate of microvascular
refilling (an indicator of microvascular flow velocity) (25).

Total and phosphorylated Akt, tuberous sclerosis complex 2
(TSC2), mTOR, 4E-BP1, and S6K were measured in skeletal
muscle samples collected at 120, 330, and 420 min using SDS-
PAGE and immunoblotting (Bio-Rad) as previously described
(26). Primary antibodies were purchased from Cell Signaling
Technology (Beverly, MA). The concentrations and binding sites
were as follows: phospho-Akt (Ser473, 1:1000, and Thr308,
1:1000), phospho-TSC2 (Thr1462, 1:500), phospho-mTOR
(Ser2448, 1:1000), phospho-4E-BP1 (Thr37/46, 1:1000), and
phospho-p70 S6K1 (Thr389, 1:500). AntirabbitIgG horseradish
peroxidase-conjugated secondary antibody (Amersham Bio-
science, Piscataway, NJ) was used at a concentration of 1:2000.
For each protein, total content was detected using an antibody
dilution of 1:1000. Both phosphorylated and total proteins were
normalized to a rodent internal loading control. Data are ex-
pressed as normalized phosphorylated protein.

Muscle tissue was ground, and free amino acids and proteins
were extracted as previously described (27). After protein hydro-
lysisand amino acid purification, mixed muscle protein-bound phe-
nylalanine enrichment was determined using gas chromatography-
mass spectrometry (Agilent Technologies, Palo Alto, CA) and the
external standard curve approach (27). Blood and intracellular free
phenylalanine concentrations and enrichments, and blood glucose
enrichments were determined by gas chromatography-mass spec-
trometry as previously described (27).

Calculations

The fractional synthesis rate (FSR) of mixed muscle proteins
was calculated between 120-240 and 240-420 min from the
incorporation rate of L-[ring-'?>C,]phenylalanine into the pro-
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teins and the free-tissue phenylalanine enrichment using the pre-
cursor-product model: FSR = {(AE /t)[(Eyg1y + Eng2))/21}s
where AE,, is the increment of protein-bound phenylalanine en-
richment between two sequential biopsies, t is the time interval
between the two sequential biopsies, and Ey;, and Ey,,, are
phenylalanine enrichments (tracer/tracee ratio) in the free muscle
pool in two subsequent biopsies. Results are presented as per-
centage per hour.

Muscle phenylalanine kinetics was calculated using two- and
three-pool models that provide unique information regarding leg
plasma and intracellular phenylalanine kinetics, respectively
(28). The parameters include the following: delivery to the leg =
CxX BF; output from the leg = Cy,X BF; net balance (NB) =
(Co— Cy) X BF; leg rate of appearance (Ra) = BF X C, [(E5/
Ey) — 1];leg rate of disappearance = leg Ra + NB = BF X [(C,—
E./Ey) — Cyl; release from proteolysis (Fy; o) = {[(Exq— Ey)/
(Ex— Enm) X Cyl + Cp} X [(EA/Ep) — 1] X BF; and utilization
for protein synthesis = Fy,, + NB, where C, and C,, are
phenylalanine concentrations in the femoral artery and vein,
respectively; E,, Ey, and E; are phenylalanine enrichments
(tracer to tracee ratio) in the femoral artery, femoral vein, and
muscle; and BF is blood flow. Data are expressed as per 100
ml of leg volume.

Basal whole-body endogenous glucose production and utili-
zation were calculated using the single-pool model (27): endog-
enous glucose production = whole-body glucose utilization =
1I/GE,, where GE, is glucose arterial enrichment and i is tracer
infusion rate. During clamp, endogenous glucose production
was calculated by subtracting the exogenous glucose infusion
rate from whole-body glucose utilization.

Leg glucose utilization was calculated as the product of blood
flow by the arteriovenous difference in glucose concentration
(Ga— Gy): leg glucose utilization = (G,— Gy) X BF.

Insulin delivery to the leg was calculated as the product of
femoral vein insulin concentration by blood flow.

Statistical analysis

Subjects’ characteristics and baseline values for all measured
variables were analyzed using one-way ANOVA. To determine
the effects of inhibition of insulin-dependent vasodilation, com-
parisons were performed using ANOVA with repeated mea-
sures. The factors were subject, time (basal and insulin), and
group (control and L-NMMA). Post hoc pairwise multiple com-
parisons were performed using the Bonferroni 7 test. The level of
significance was set at P < 0.05 and the trend level at P < 0.10.
Statistical procedures were performed using SigmaStat 3.5 (Sys-
tat Software Inc., San Jose, CA).

Results

No baseline differences were detected between groups for
any measured parameters.

Blood flow, muscle perfusion, and endothelin-1
(Fig. 2)

Blood flow and muscle perfusion increased signifi-
cantly during insulin infusion in the control group only
(P < 0.05) but did not change in the L-NMMA group.
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FIG. 2. Leg blood flow by dye dilution (ICG) (A), muscle microvascular
flow by contrast enhanced ultrasound (CEU) (B), and endothelin-1
concentrations in the femoral vein (C) in two groups of healthy young
subjects at baseline and during local insulin infusion in one leg with
(L-NMMA) or without (control) concomitant infusion of the eNOS
inhibitor -NMMA. Data are the mean = se. *, P < 0.05 vs. baseline.
AU, Arbitrary units.

Endothelin-1 decreased significantly (P < 0.05) with hy-
perinsulinemia only in the control group and did not
change in the .-NMMA group.

Insulin and glucose kinetics (Table 2)

During hyperinsulinemic-euglycemic clamp, arterial
glucose concentration did not significantly change in ei-
ther group, whereas systemic and femoral insulin concen-
trations, insulin delivery to the leg, and leg and whole-
body glucose utilization increased significantly (P < 0.05)
in both groups with no differences between groups. En-
dogenous glucose production decreased significantly (P <
0.05) in both groups during hyperinsulinemia, with no
between-group differences.

Anabolic signaling (Fig. 3)
There were no significant differences in total protein
across biopsy times for any proteins measured. During in-
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TABLE 2. Insulin and glucose concentrations and kinetics in two groups of healthy young subjects at baseline and
during local insulin infusion in one leg with (.-NMMA) or without (control) concomitant infusion of the eNOS

inhibitor -NMMA

Control L-NMMA
Baseline Insulin Baseline Insulin

Insulin

Systemic concentration (pmol/liter) 35+4 65 = 59 28 +7 68 + 79

Femoral vein concentration (pmol/liter) 27 =4 248 *+ 339 29+ 6 282 + 287

Delivery to leg (pmol/min - 100 ml leg) 0.10 = 0.02 1.00 = 0.13° 0.12 = 0.04 1.03 = 0.167
Glucose

Arterial concentration (mmol/liter) 49 + 0.1 49 + 0.1 5.4+ 0.1 5.1 0.1

Leg uptake (umol/min - 100 ml leg) 03=*02 2.3 *0.67 04 *£0.1 3.5+0.87

Endogenous production (umol/kg + min) 99+0.38 7.1 =047 10.3 0.5 7.6 £0.2°

Whole-body uptake (umol/kg - min) 9.9 +0.8 144 +1.3° 10.3 £ 0.5 17.0 £ 1.1°

Values are the mean =+ st.
2 P < 0.05 vs. baseline.

sulin infusion, Akt>*™*”® phosphorylation increased signifi-

cantly from baseline (P < 0.05) in both groups, with no
differences between groups. A similar pattern was observed
for Akt™398 whereas TSC2 1462 phosphorylation did not
change significantly in either group. mTOR®"2**% phosphor-
ylation significantly increased from baseline with hyperin-
sulinemia only in the control group (P < 0.05). S6K 1387
phosphorylation increased during insulin infusion in both
groups (P < 0.05) but was larger in the control group than
in L-NMMA at the end of the infusion (P < 0.05). 4E-
BP1Thr37/4¢ phosphorylation increased significantly with in-
sulin at biopsy 3 in the control group only (P < 0.05).

Mixed-muscle FSR (Fig. 4)

During insulin infusion, FSR increased significantly in
the control group (P < 0.05) but did not change in the
L-NMMA group.

Phenylalanine kinetics (Table 3)

During hyperinsulinemia, phenylalanine arterial, ve-
nous, and muscle concentrations slightly but significantly
decreased (P < 0.05), whereas phenylalanine arterial, ve-
nous, and muscle enrichments increased significantly (P <
0.05), with no differences between groups. Phenylalanine
delivery tended to increase (P = 0.07) in the control group
(+16.0 = 9.4%) but did not change in the L-NMMA
group (—7.2 = 6.9%). Conversely, phenylalanine output
from the leg did not change in the control group but de-
creased significantly (P < 0.05) in the .L-NMMA group. As
a result, phenylalanine net balance increased significantly
in both groups (P < 0.05) with no group differences, but
opposite mechanisms underlay this effect. The Control
group had a significant increase (P < 0.05) in phenylala-
nine utilization for protein synthesis, with no change in
proteolysis. The .L-NMMA group showed a significant de-

crease (P < 0.05) in phenylalanine release from muscle,
with no change in utilization for protein synthesis.

Discussion

Our results provide a first mechanistic demonstration that
the endothelial-dependent increase in blood flow and muscle
perfusion is a fundamental mechanism by which insulin stim-
ulates skeletal muscle protein synthesis in young, healthy
subjects. Our novel data indicate that insulin-stimulated va-
sodilation promotes muscle protein synthesis by increasing
nutritive flow and, consequently, mTORC1 signaling,
whereas Akt/PKB signaling is either not directly involved or
only facilitates the process.

Specifically, local hyperinsulinemia at physiological post-
prandial levels induced significant increase in leg blood flow
(10, 12) and muscle perfusion (17), enhancing Akt and
mTORCI1 signaling while also increasing skeletal muscle
protein synthesis, resulting in an overall net anabolic effect.
Conversely, administration of the eNOS inhibitor -NMMA
during local insulin infusion prevented the insulin-induced
increase in blood flow and muscle perfusion, resulting in
decreased amino acid delivery to the muscle, reduced
mTORCT signaling, and complete obliteration of the insu-
lin-stimulatory effect on muscle protein synthesis. Interest-
ingly, .-NMMA infusion did not prevent Akt signaling and
the net muscle protein anabolic effect of insulin. However,
the insulin’s anabolic effect with .-NMMA was due to inhi-
bition of proteolysis rather than an increase in synthesis.

Our findings that insulin enhances blood flow and
microvascular recruitment, which can be blocked by
L-NMMA, are consistent with previous reports (14, 20, 29—
31). In our experiment, microvascular perfusion underwent
a greater relative increase than total blood flow. This is in
agreement with a previous report that the insulin effect on
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(31), our results indicate that endothelial-
dependent vasodilation is not an essential
contributor to muscle Akt/PKB signaling
and glucose uptake in the later phases of
hyperinsulinemia (1.5-3 h). Further-
more, a positive effect of insulin-induced
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FIG. 3. Phosphorylation of Akt>¢™73 (A), Akt™"398 (B), TSC2Th"1462 (C), mTOR®e"2448 (D),
S6K1Thr389 (E) and 4E-BP1™37/46 (F) in the skeletal muscle of two groups of healthy young
subjects at baseline (biopsy 1 at 120 min, Bx1), and during local insulin infusion (biopsy 3 at
330 min, Bx3; and biopsy 4 at 420 min, Bx4) in one leg with (.-NMMA, n = 7) or without
(control, n = 7) concomitant infusion of the eNOS inhibitor L-NMMA. Blots for
phosphorylated and total proteins are from a single representative control and -NMMA
subject, respectively. Data are the mean =+ se. *, P < 0.05 vs. baseline; #, P < 0.05 vs.

control. AU, Arbitrary units.

microvasculature precedes and is not necessarily associated
with changes in total blood flow (17). Besides stimulating
vasodilation directly, nitric oxide synthesis through eNOS
activation reduces production of the potent vasoconstrictor
endothelin-1 (32), which is typically elevated in conditions
associated with endothelial dysfunction, such as aging and
insulin resistance (18, 33). We observed significantly lower
endothelin-1 concentrations during isolated hyperinsulin-
emia, whereas administration of .-NMMA with insulin pre-
vented this effect, mimicking the endothelial dysfunction of
aging (12, 18).

) Bx1 Bx3 Bx4

vasodilation on glucose metabolism is
more evident at higher glucose uptake
levels than that achieved in our study,
when increased perfusion and flow pro-

Insulin

vide more uniform tissue exposure to glu-
cose and reduce the artery-to-vein glucose
gradient (14, 29, 31).

Conversely, our data clearly prove
that the insulin-induced increase in
mTORCI signaling relies upon the hor-
mone’s effects on nutritive flow, which
increases both nutrient delivery and the amount of muscle
tissue exposed to circulating nutrients. Increased amino acid
availability has been reported to stimulate mTOR phosphor-
ylation independent of Akt/PKB phosphorylation (19, 36).
Although the exact mechanisms underlying the ability of
amino acids to regulate mMTORC1 phosphorylation are not
completely understood, the ability of amino acids to regulate
the interaction of Rheb GTP with the mTOR complex may
play a pivotal role because the binding of Rheb to mTOR
appears to be necessary for mTORC1 activation (37, 38).
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FIG. 4. Skeletal muscle mixed protein FSR in two groups of healthy
young subjects at baseline and during local insulin infusion in one leg
with (.-NMMA) or without (control) concomitant infusion of the eNOS
inhibitor .-NMMA. Data are the mean = st. *, P < 0.05 vs. baseline.

Thus, the observed increases in mTORS™2448, §gK 1 Thr389,
and 4E-BP1"37/46 phosphorylation and muscle protein syn-
thesis in our control group likely resulted from the blood
flow-mediated increase in amino acid delivery, a phenome-
non that did not occur in the L-NMMA group. Because Akt/
PKB can also phosphorylate mTORC1 (19), it might have
exerted a facilitating effect on mMTORCT signaling and pro-
tein synthesis. However, phosphorylation of TSC2 1462 5
mTORCT inhibitor that can be directly phosphorylated and
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inactivated by Akt (39, 40), did not change in either group,
suggesting that Akt played a minor role under these experi-
mental conditions. Akt>™”3 and Akt™38 data also suggest
that upstream signaling through phosphatidylinositol 3-ki-
nase and phosphoinositide-dependent kinase 1 was not dif-
ferent between the two groups (41), allowing us to exclude a
significant role of phosphoinositide-dependent kinase 1 on
mTORCIT signaling (42). The slight discrepancies between
mTORS448 SeK 1387 and 4E-BP1 T™r37/4¢ phosphory-
lation patterns could be due to the fact that the phosphory-
lation status at one site does not always predict mTOR
activity or that we missed the peak of mTOR®">**8 phos-
phorylation due to the timing of the muscle biopsies. Re-
gardless, mTOR activity increased in both groups, but more
so in the control group as shown by the increased phosphor-
ylation of its primary downstream effector, S6K1. We have
also reported an alternate, differential mTOR regulation of
4E-BP1 and S6K1 phosphorylation in humans during exer-
cise (26), which is analogous to the current findings. These
results also suggest that our findings are unlikely due to a
direct effect of L-NMMA on skeletal muscle cell signaling. It
was recently shown in myotubes that NOS blockade by 1-
NMMA prevents the nitric oxide-induced attenuation of
mTOR signaling and downstream translation (43). If
L-NMMA had a direct effect on muscle, it should have en-
hanced, rather than blocked, mTOR phosphorylation and
protein synthesis. In the .-NMMA group, prevention of the
insulin-induced increase in nutritive flow and amino acid
delivery perhaps outweighed any direct effect of nitric oxide
availability on mTORCT signaling. However, this area war-

TABLE 3. Leg free phenylalanine concentrations, enrichments, and kinetics in two groups of healthy young subjects

at baseline and during local insulin infusion in one leg with (-NMMA) or without (control) concomitant infusion of

the eNOS inhibitor -NMMA

Control .-NMMA
Baseline Insulin Baseline Insulin

Phenylalanine concentration (umol/liter)

Femoral artery 59 +3 56 + 37 60 =4 58 + 37

Femoral vein 63 *+3 55 + 3¢ 65 +4 57 = 3¢

Muscle 72 £5 62 = 47 77 =8 66 * 47
Phenylalanine enrichment (tracer/tracee, %)

Femoral artery 79+03 9.0 = 0.5° 7.6 +0.3 8.3+ 047

Femoral vein 6.4 +0.3 7.6 +0.37 6.0+ 0.6 6.7 +0.37

Muscle 56 *+0.2 6.5 = 0.4° 50=*0.2 6.0 = 0.2°
Phenylalanine kinetics (nmol/min - 100 ml leg)

Net balance -14+3 3+ 3 —15=*2 4 + 3°

Delivery to the leg 211 = 30 240 + 31° 217 = 24 202 + 29

Output from the leg 225 *= 31 237 + 34 232 =25 198 = 277

Leg rate of appearance 49 = 8 44 + 9 58 £5 46 + 4°

Leg rate of disappearance 35+7 47 * 7° 43 £ 5 51 +7

Release from proteolysis 55+9 54 = 11 66 + 7 52 = 57

Utilization for protein synthesis 40 = 8 56 + 10° 51+7 56 +8

Values are the mean =+ st.
2 P < 0.05 vs. baseline.
b p=0.07 vs. baseline.
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rants further investigations. Finally, L-NMMA is not eNOS
specific and could interfere with muscle contraction via in-
hibition of nNOS (44). Additionally, .-NMMA attenuates
exercise-induced vasodilation (45), reducing the anabolic ef-
fect of exercise. However, our experiments were performed
at rest, making it unlikely that these mechanisms were re-
sponsible for our findings. Collectively, these data suggest
that insulin-induced increases in blood flow, microvascular
flow, and amino acid delivery are key, interconnected, com-
ponents of insulin’s anabolic properties on skeletal muscle
proteins.

The notion that insulin stimulates skeletal muscle pro-
tein synthesis in adult humans has long been debated be-
cause some studies reported that insulin administration
was unable to stimulate muscle protein synthesis while it
decreased protein breakdown (8, 9, 21), whereas several
others reported an increase in protein synthesis with no
change in breakdown (6,46 -48). We have previously dis-
cussed this issue at length (10-12, 18), suggesting that
differences in vasodilation and amino acid delivery might
have explained these discrepancies. Studies reporting re-
duced proteolysis with no change in protein synthesis em-
ployed systemic insulin administration in the absence of
exogenous amino acid administration, resulting in de-
creased amino acid concentration and delivery (9,21, 49).
Conversely, studies reporting increased protein synthesis
prevented hypoaminoacidemia using local insulin admin-
istration (as in the present study) or systemic infusion with
amino acid coinfusion (6, 46-48, 50). The present study
provides the mechanistic proof that our original hypoth-
esis is correct, showing not only that blockade of insulin-
induced vasodilation prevents the increase in protein syn-
thesis but also that when this occurs in a subject with an
otherwise intact insulin signaling apparatus, proteolysis
decreases with a consequent protein-sparing effect. This
finding does not appear to be an artifact of the mathemat-
ical models employed to calculate protein breakdown be-
cause both the two- and the three-pool models provided
qualitatively comparable results. We can only speculate on
the basic mechanisms underlying these opposite responses
of muscle protein breakdown to hyperinsulinemia. It has
clearly been shown that insulin activation of Akt/PKB in-
hibits protein breakdown probably via FOXO-mediated
down-regulation of ubiquitin-proteasome activity (51,
52). However, this effect may be prevented when there is
aconcurrentincrease in amino acid availability to the mus-
cle tissue. This increase in nutritive flow may directly ac-
tivate mMTORCT1 signaling (rather than mTORC2) because
mTORC2 activation appears to be an essential component
of the Akt-FOXO pathway (53). We cannot definitively
determine from our data what cellular mechanisms are
regulating these opposite responses of muscle protein

jcem.endojournals.org 3855

breakdown to hyperinsulinemia, but future studies should
examine the role of both mTOR complexes in the control
of muscle protein turnover.

In summary, this is the first study to mechanistically
demonstrate that insulin stimulates muscle protein syn-
thesis not through Akt/PKB signaling but through
increases in capillary recruitment, nutritive flow, and
mTORCT signaling. It also underscores that although
insulin exerts a protein-sparing effect on the skeletal
muscle of young individuals with normal insulin sensi-
tivity, the mechanism is dependent on its ability to stim-
ulate muscle perfusion. Further studies are needed to
determine the mechanisms by which insulin controls
skeletal muscle protein breakdown in relation to nutri-
tive flow and whether endogenous meal-stimulated hy-
perinsulinemia acts through similar mechanisms to
stimulate skeletal muscle protein synthesis.
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