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Objective: The relationships among skeletal muscle lipid peroxidation, intramyocellular lipid con-
tent (IMCL), and insulin sensitivity were evaluated in nine insulin-sensitive (IS), 13 insulin-resistant
(IR), and 10 adults with type 2 diabetes (T2DM).

Design: Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp [glucose disposal
rate (GDR)]. Lipid peroxidation was assessed by 4-hydroxynonenal (HNE)-protein adducts and
general oxidative stress by protein carbonyl content. All patients were sedentary.

Results: Protein-HNE adducts were elevated 1.6-fold in T2DM compared with IS adults, whereas IR
showed intermediate levels of HNE-modified proteins. Protein-HNE adducts correlated with GDR,
waist circumference, and body mass index. IMCL was increased by 4.0- and 1.9-fold in T2DM and
IR patients, respectively, compared with IS, and was correlated with GDR and waist circumference
but not BMI. Protein carbonyls were not different among groups and did not correlate with any
of the measured variables. Correlations were detected between IMCL and protein-HNE.

Conclusion: Our data show for the first time that skeletal muscle protein-HNE adducts are related to
the severity of insulin resistance in sedentary adults. These results suggest that muscle lipid peroxidation
couldbeinvolvedinthedevelopmentofinsulinresistance. (JClinEndocrinolMetab97:E1182–E1186,2012)

Recentevidence indicates thatreactiveoxygenspeciesgen-
erated under normal conditions by mitochondria play

important roles inphysiological regulationofglucoseuptake
(1). However, reactive oxygen species generated in excess
may contribute to mitochondrial damage and dysfunction
(2) and form lipid peroxidation products that are highly re-
activewithproteins, lipids,andDNA(3).Reactivealdehydes
such as 4-hydroxynonenal (HNE) are biomarkers of lipid
peroxidation and have been associated with intramyocellu-
lar lipid (IMCL)accumulation in sedentary individuals (4). It

is widely postulated that lipid peroxides modify mitochon-
drialproteinsandcritical componentsof the insulinsignaling
pathway (5, 6), leading to impaired stimulation of glucose
uptake, mitochondrial damage, and additional oxidative
stress, thereby propagating a deleterious cycle (7). However,
few data have been reported to substantiate this theory.

The current study investigated for the first time the
relationships between IMCL and skeletal muscle lipid
peroxidation as determinants of insulin resistance in
humans. We hypothesized that skeletal muscle HNE is
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elevated in insulin-resistant and diabetic patients com-
pared with insulin-sensitive individuals and that HNE
levels correlate with the severity of insulin resistance
and IMCL accumulation.

Patients and Methods

Nine insulin-sensitive (IS), 13 insulin-resistant (IR), and 10 type
2 diabetes mellitus (T2DM) sedentary individuals were studied
with a body mass index (BMI) of 22 kg/m2 or greater and stable
weight (�3%) for 3 months. Exclusion criteria included cardio-
vascular, renal, thyroid, or hepatic disease or the use of phar-
macological agents that affect carbohydrate homeostasis, lipids,
or body composition. T2DM patients were withdrawn from
treatment for 2–3 wk before the study.

Subjects completed a three-day stay in the University of Al-
abama at Birmingham (Birmingham, AL) Clinical Research
Unit, at which they received a eucaloric diet of 20% protein, 30%
fat, and 50% carbohydrate calories. Race was determined by
self-report. Protocols were approved by the University of Ala-
bama at Birmingham Institutional Review Board, and informed
consent was obtained from every subject.

Dual-energy x-ray absorptiometry was performed (DPX-L,
software 1.33; Lunar Radiation, Madison, WI). Height, weight,
and waist circumferences were assessed. Soleus IMCL was quanti-
fied using 1H magnetic resonance spectroscopy (Philips 3T Medical
System, Best, The Netherlands), as detailed (7). Voxels (1 cm3)
avoided gross marbling, facia, and vascular structures. Data are
expressed as arbitrary units per pixel area relative to water.

Insulin resistance was determined by glucose disposal rate
(GDR) via hyperinsulinemic-euglycemic clamp technique, as de-

scribed (8). Regular insulin (Humulin; Eli Lilly, Indianapolis, IN)
was administered at a rate of 200 mU/�2 � min�1, producing a
steady-state insulin concentration of 3480 � 138 pmol/liter,
which is maximally effective for stimulating glucose uptake into
skeletal muscle (8). Whole-body GDR was the glucose infusion
corrected for glucose pool size (assuming 19% distribution volume
and0.65pool fraction). IRwasconsidered if theGDRwas less than
12 mg/kg lean body mass per minute�1, and T2DM was diagnosed
when the fasting plasma glucose was 126 mg/dl or greater.

Vastus lateralis biopsies were performed after an overnight
fast as described (7). Adipose tissue was removed and samples
were divided, frozen in liquid nitrogen, and stored at �80 C. All
tissue samples were carefully treated without reducing agents
and with only two freeze-thaw cycles since collection (one after
tissue collection and the other after preparing homogenate). Pro-
tein extraction, quantification, and carbonyl detection was per-
formed as described (9). For protein-HNE analysis, proteins (15
�g) were loaded onto 10% polyacrylamide gel, electrophoresed
at 90 V for approximately 3 h, and transferred to polyvinyl di-
fluoride membranes overnight at 30 V. Membranes were
blocked 2 h at room temperature with 5% milk and incubated
with HNE polyclonal antibody (1:1000) (� Diagnostics Inter-
national, San Antonio, TX) overnight at 4 C. After incubation
with horseradish peroxidase-conjugated secondary antibody,
bands were visualized (ECL Plus; GE Healthcare, Indianapolis,
IN) and captured (Bio-Rad Imaging System, Hercules, CA).
Whole-lane densitometry was performed (Quantity One, Dis-
covery Series 4.6.5; Bio-Rad Imaging System). Membranes were
stained with Amido Black for protein control.

Sample size was estimated using reported protein-HNE dif-
ferences between lean and obese adults, normalized for IMCL
(4). IMCL and fasting insulin were log transformed for normal-
ity. Univariate ANOVA and Bonferroni post hoc tests were used

TABLE 1. Descriptive characteristics of study participants

IS IR T2DM
Sex 3 M/6 F 5 M/8 F 4 M/6 F
Race 4 EA/5 AA 6 EA/7 AA 5 EA/5 AA
Age (yr) 35.1 � 12 (21–54) 37.2 � 11 (24–58) 43.5 � 11 (27–60)
BMI (kg/m2) 26.1 � 3.4 (22–34) 31.9 � 5.7 (24–39)a 34.8 � 5.5 (29–42)b

Waist circumference (cm) 88.3 � 10 (74–104) 103.7 � 14 (74–122)a 111.0 � 10 (93–123)b

Body fat (%) 36.3 � 10.4 (18–50) 38.8 � 8.0 (28–52) 38.2 � 9.8 (24–55)c

Lean body mass (kg) 45.3 � 8.6 (36–57) 56.1 � 10.6 (43–73)a 57.1 � 9.5 (44–73)a,c

GDR (mg/kg LBM per minute) 16.6 � 2.6 (13–20)d 9.32 � 1.6 (6–11)b 6.69 � 2.1 (4–11)b,d,e

IMCL (AU) 2.03 � 1.0 (0.8–3.7)d 3.80 � 2.8 (0.9–10.9)f 8.06 � 3.8 (4.7–14.0)b,e,g

Protein-HNE (AU) 609 � 170 (436–877) 812 � 239 (496–1232) 971 � 436 (415–1692)a

Carbonyl (AU) 1481 � 470 (971–2017) 1595 � 579 (695–2769) 1407 � 516 (820–2269)
Insulin (�U/ml) 9.31 � 3.5 (5–17) 21.4 � 14 (6–50)f 17.2 � 14 (8–48)c

Glucose (mg/dl) 89.6 � 6.3 (82–101) 95.4 � 12 (78–119) 173.0 � 45 (110–258)a,c,h

Data are expressed as mean � SD (range). M, Male; F, female; EA, European-American; AA, African-American; LBM, lean body mass;
AU, arbitrary unit.
a Different from IS (P � 0.05).
b Different from IS (P � 0.01).
c n � 9.
d n � 8.
e Different from IR (P � 0.05).
f n � 12.
g n � 5.
h Different from IR (P � 0.01; n � 9, 13, and 10 for IS, IR, and T2DM, respectively), unless otherwise indicated.
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to identify mean differences. Relationships among protein-HNE,
IMCL, and GDR were examined with correlations controlled for
the influence of age, overall body fat, and oxidative stress (con-
trol excluded when analyzing carbonyls). Unstandardized resid-
uals of protein-HNE, IMCL, and GDR adjusted for age, body
fat, and carbonyls were calculated. Analyses were performed
with SPSS 19.0 (SPSS Inc., Chicago, IL).

Results

Groups were similar regarding age, race, gender, and body
fat. Waist circumference, body weight, BMI, and lean
body mass were lower in IS than in both IR and T2DM.
Missing were GDR data from three subjects: two who
experienced difficulties with iv access and one who with-
drew before completing dual-energy x-ray absorptiometry
(Table 1). IMCL data were missing from two subjects who
withdrew and from five subjects who were studied before
IMCL measurements were added to the protocol. Even so,
IMCL in T2DM was significantly higher than in IS and IR
(Table 1). A nonparametric comparison of means verified
that the five T2DM missing IMCL data were not different
from the subjects with IMCL measures regarding any of
the other study parameters.

Protein-HNE in T2DM was higher than IS but not IR
(Table 1). Protein-HNE and IMCL correlated negatively
with GDR (Fig. 1), and these correlations persisted when

controlling for age and BMI (r � �0.39, P � 0.04 and r �
�0.47, P � 0.03). Furthermore, when T2DM data were
removed, the negative relationship between GDR and pro-
tein-HNE persisted (Table 1). Protein carbonyl content
did not differ among groups (Table 1) and was not cor-
related with GDR (Fig. 1), protein-HNE (r � �0.34, P �
0.10), or IMCL (r � 0.21, P � 0.35).

The correlation between protein-HNE and IMCL in all
subjects was only borderline significant (Fig. 1); however,
an extreme outlier (greater than 3.0 times the interquartile
range beyond the third quartile) for IMCL (T2DM female)
may have skewed the results. A sensitivity analysis exclud-
ing the outlier was performed. IMCL remained higher in
T2DM than in IS and IR and a significant correlation
between HNE and IMCL emerged (Fig. 1).

Discussion

We tested the hypothesis that skeletal muscle lipid per-
oxidation and IMCL are related to each other and to the
severity of insulin resistance in sedentary individuals. Here
we report that IMCL and protein-HNE are significantly
elevated in T2DM patients compared with IS subjects and
that both of these indices correlate with insulin resistance.
Our findings are consistent with others linking IMCL with
insulin sensitivity, independent of general adiposity (10).

Although others have investigated skel-
etal muscle HNE as it relates to mito-
chondrial function and diabetes in ro-
dents (11, 12) and to IMCL
accumulation (4) in humans, this is the
first study to examine the interrelation-
ships among IMCL, skeletal muscle
protein-HNE, and insulin sensitivity in
humans.

Protein-HNE modifications are
symptomatic of oxidative stress and are
detected in numerous pathological con-
ditions (12, 13). Our data show a neg-
ative relationship between protein-
HNE and GDR that persisted when
data from diabetic subjects were ex-
cluded. This suggests that lipid peroxi-
dation and the accumulation of pro-
tein-HNE adducts characterizes insulin
resistance independent of diabetes in
prediabetic individuals. However, an-
other measurement commonly used to
detect oxidative stress, protein carbon-
yls, did not correlate with peripheral in-
sulin resistance. A possible explanation
is that carbonylation can be introduced

FIG. 1. A–D, Relationships between glucose disposal rate and skeletal muscle protein-HNE (A),
skeletal muscle protein carbonyl content (B), and intramyocellular lipid content (C) in IS (open
circles), IR (filled circles), and T2DM (triangles) patients. D, Relationship between IMCL content and
skeletal muscle protein-HNE. X-axis values reflect unstandardized residual values adjusted for age,
percent body fat, and protein carbonyls, except for B, which is adjusted for only age and percent body
fat. Partial correlations are reported in all subjects (ALL; continuous line) and in A with T2DM removed
(IS/IR only, dashed line).
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into proteins independent of lipid peroxidation (14). Other
measurementsofoxidative stressmaybesimilarlydifficult to
use under chronic or oscillating conditions of oxidative
stress. For example, glutathione is up-regulated under con-
ditions of oxidative stress but is rapidly extruded from cells
(15). Moreover, the high reactivity of most free radicals par-
adoxically limits their ability to incite tissue injury (16) and
makes them difficult to measure accurately in human biop-
sies. Conversely, protein-HNE modifications are relatively
long-lived footprints of lipid peroxidation and are easily
measured through immunological techniques (17). Hence,
the use of specific and metastable protein-aldehyde adducts
makes them useful biomarkers of oxidative stress.

Contrary to our results, a recent study reported no
difference in skeletal muscle protein-HNE content be-
tween BMI-matched, obese, insulin-sensitive adults and
those with type 2 diabetes (11). Although we cannot be
certain why the current data are discrepant with this
previous report, there are a few possible explanations.
The BMI of the IS group in the previous study was higher
than the average BMI of our IS group (32 � 1 vs. 26.1 �

3 kg/m2), and our subgroups differed in BMI and waist
circumference; nevertheless, the relationship we observed
between protein-HNE and GDR was independent of both
BMI and age. Differences in sample preparation impact
protein-HNE detection, e.g. freeze-thaw cycles and the
absence or presence of reducing agents, and may have
resulted in our ability to discern group differences in pro-
tein-HNE adducts.

The results provide evidence of a relationship between
skeletal muscle lipid peroxidation and IMCL. Both are
related to the severity of insulin resistance in sedentary
individuals. This finding is consistent with another study
that found a relationship between HNE and IMCL in sed-
entary individuals (4). Because these are correlative stud-
ies, we cannot conclude that a causal relationship exists.
However, we propose that accumulating IMCL serves as
a substrate for lipid peroxidation and that reactive lipid
aldehydes alter the function of proteins critical to metab-
olism, such as mitochondrial proteins, glucose transporter
4 (GLUT4), and/or insulin receptor substrate-1/2 (IRS 1 or
2). Schrauwen (18) proposed a similar model of lipotox-
icity in which interactions of lipid-derived aldehydes lead
to mitochondrial damage, the propagation of oxidative
stress, and insulin resistance, thereby perpetuating a cat-
astrophic cycle. The present study did not assess mito-
chondrial damage; however, reduced mitochondrial res-
piration was previously shown in type 2 diabetes (11).

Two study limitations must be addressed. First,
IMCL measurements were missing on seven subjects,
five of whom were T2DM. Because T2DM exhibited the
highest levels of IMCL, an underestimation of relation-

ships between IMCL and other variables may have oc-
curred. The observed relationships involving IMCL are
likely conservative; however, there is the potential of a
skewed relationship resulting from the missing data. Sec-
ond, a relationship between soleus IMCL and vastus late-
ralis protein-HNE appeared, despite being measured from
different mixed-fiber muscle groups. However, IMCL ac-
cumulation is independent of fiber type in obese and type
2 diabetic patients (19). Therefore, it is logical to expect
IMCL accumulation to be uniformly proportional in the
soleus and vastus lateralis.

In conclusion, these data show that protein-HNE and
IMCL in skeletal muscle increase as a function of insulin
resistance, whereas protein carbonyls are independent of
insulin sensitivity. Furthermore, these data provide evi-
dence of a relationship between skeletal muscle protein-
HNE and IMCL. The data support the contention that
lipid peroxidation products constitute a group of reactive
species that may be pathogenic in insulin resistance. Fur-
ther research is needed to delineate the role of lipid per-
oxidation in the etiology of insulin resistance.
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