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Abstract

Context: Metabolic flexibility is the physiologic acclimatization to differing energy avail-
ability and requirement states. Effectively maintaining metabolic flexibility remains 
challenging, particularly since metabolic dysregulations in meal consumption during 
cardiometabolic disease (CMD) pathophysiology are incompletely understood. 
Objective: We compared metabolic flexibility following consumption of a standardized 
meal challenge among adults with or without CMDs. 
Design, Setting, and Participants: Study participants (n  =  349; age 37-54  years, 
55% female) received a standardized meal challenge (520 kcal, 67.4  g carbohydrates, 
24.3  g fat, 8.0  g protein; 259  mL). Blood samples were collected at baseline and 2 
hours postchallenge. Plasma samples were assayed by high-resolution, nontargeted 
metabolomics with dual-column liquid chromatography and ultrahigh-resolution mass 
spectrometry. Metabolome-wide associations between features and meal challenge 
timepoint were assessed in multivariable linear regression models. 
Results: Sixty-five percent of participants had ≥1 of 4 CMDs: 33% were obese, 6% had dia-
betes, 39% had hypertension, and 50% had metabolic syndrome. Log2-normalized ratios 
of feature peak areas (postprandial:fasting) clustered separately among participants with 
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versus without any CMDs. Among participants with CMDs, the meal challenge altered 
1756 feature peak areas (1063 reversed-phase [C18], 693 hydrophilic interaction liquid 
chromatography [HILIC]; all q < 0.05). In individuals without CMDs, the meal challenge 
changed 1383 feature peak areas (875 C18; 508 HILIC; all q < 0.05). There were 108 fea-
tures (60 C18; 48 HILIC) that differed by the meal challenge and CMD status, including 
dipeptides, carnitines, glycerophospholipids, and a bile acid metabolite (all P < 0.05). 
Conclusions: Among adults with CMDs, more metabolomic features differed after a meal 
challenge, which reflected lower metabolic flexibility relative to individuals without CMDs.

Key Words:  cardiometabolic disease, metabolomics, metabolic health, meal challenge, postprandial state

Cardiometabolic diseases (CMDs) and other 
noncommunicable diseases account for over 70% of 
deaths globally [1]. More effectively reducing the dis-
ease burden from CMDs remains a major challenge [1]. 
One critical research gap is how to more effectively 
maintain cardiometabolic health, including metabolic 
flexibility in daily physiological processes, across the 
life course [2, 3]. Metabolic flexibility is broadly defined 
as the dynamic acclimatization that occurs to maintain 
energy homeostasis throughout heterogeneous physio-
logic needs and conditions [2, 3]. Healthy systems are 
considered those with metabolic resilience—the ability 
to effectively regulate—in response to differing energy 
states [4].

Impaired metabolic flexibility has been hypothesized to 
influence CMD pathophysiology [2, 3, 5]; however, specific 
contributions remain incompletely understood. One challenge 
is the lack of a single, standard definition of metabolic flexi-
bility, particularly in light of numerous interrelated physio-
logical processes involved in maintaining energy homeostasis 
[2, 3, 6]. Previous studies have begun characterizing different 
aspects of reduced metabolic flexibility, including the de-
creased ability to sense nutrients, maintain energy homeo-
stasis, and shift between macronutrient fuels [6]. Few studies 
have evaluated activity metabolomics in response to meal 
consumption among people with versus without CMDs.

In this study, we defined metabolic flexibility as the 
changes in metabolomic profiles following a physiologic 
meal challenge, relative to while fasting. High-resolution, 
nontargeted metabolomic profiling provides greater granu-
larity and metabolite coverage relative to standard diag-
nostic biomarkers [5, 7-10]. Our study objective was to 
compare the metabolomic profile response following a 
standardized meal challenge of adults with CMDs, relative 
to metabolically healthy participants. We hypothesized that: 
(i) there would be increased changes in metabolomic fea-
tures after the meal challenge among people with CMDs, 
compared to those without CMDs; and (ii) metabolomic 
features in major energy, macronutrient, and bile acid 

pathways would be responsive in the meal challenge and 
differ by CMD status.

1. Materials and Methods

Study participants

We studied adult participants of the Institute of Nutrition 
of Central America and Panama (INCAP) Nutritional 
Supplementation Trial Longitudinal Study [11, 12]. The 
present analysis focuses on participants enrolled in the 
follow-up wave conducted from 2015 to 2017 [13].

Meal challenge

After an overnight fast, participants visited the research 
clinic in the morning. Baseline venous blood samples were 
drawn after confirming fasting. Individuals were excluded 
from the meal challenge if their fasting blood glucose was 
≥180  mg/dL or they self-reported having diabetes. Study 
participants then received a standardized beverage, which 
was comprised of Incaparina (a vegetable protein mixture 
developed by INCAP), skim milk (lactose-free), safflower 
oil, and sugar. Each portion (259  mL) contained 520.0 
kcal, 8.0  g protein, 24.3  g fat, and 67.4  g carbohydrate 
(Supplemental Table 1)  [14]. This composition was in-
tended to reflect a physiologic meal consisting of relatively 
higher fat and higher sugar content. Many geographic 
settings undergoing the nutrition transition have greater 
availability of higher fat and higher sugar-containing diets, 
which have been hypothesized to contribute to CMDs [15]. 
Hyperglycemia and hyperlipidemia are components of dia-
betes and metabolic syndrome, and often co-occur with 
obesity and hypertension [16-19].

Data collection

Trained phlebotomists collected venous blood samples at 
baseline (fasting) and 120 minutes after the meal challenge 
(postprandial). Plasma samples for metabolomic analysis 
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were collected in heparin tubes. Samples were maintained 
on ice prior to centrifugation at 3000 revolutions per 
minute for 10 minutes, and subsequently at −80 °C until 
assay. Blood samples were assayed for plasma glucose, in-
sulin, and lipids (further details regarding assay method-
ology and instruments in Supplemental Table 2) [14].

Trained study staff interviewed study participants re-
garding sociodemographic and clinical information, 
including use of medications [13]. Standard protocols were 
used to obtain anthropometric measurements [13].

Random selection of analysis subset

From the 1139 individuals who participated in the 2015-
2017 data collection wave, we sampled a random subset 
(n = 401; Supplemental Fig. 1) [14]. Exclusion criteria in-
cluded: (i) pregnancy or lactation (n = 4) or missing key 
clinical variables (n = 4); (ii) incomplete metabolomic data 
(<2 timepoints of blood samples; n = 44 for reversed-phase 
[C18], n  = 47 for hydrophilic interaction liquid chroma-
tography [HILIC]); and (iii) failed quality check between 
technical replicates (n = 0 for C18; n = 3 for HILIC). After 
these exclusions, 349 participants with C18 data and 343 
participants with HILIC data were included in the analysis.

High-resolution metabolomics

Pairs of plasma samples (fasting, postprandial state) were 
randomly ordered for nontargeted metabolomic assay. 
Each plasma sample (fasting or postprandial state) was 
assayed in triplicate for high-resolution metabolomic 
data. After frozen samples were thawed, acetonitrile (2:1, 
v/v; HPLC grade; Millipore, MA, USA; Sigma Aldrich, 
MO, USA) was added to precipitate protein [20]. Samples 
were maintained on ice for 30 minutes, centrifuged 
(14 000g for 10 minutes at 4  °C), and the supernatant 
was stored at 4 °C in a refrigerated autosampler prior to 
assay [20, 21].

The following commercially available, stable isotope-
labeled internal standards were included: [13C6]-d-glucose, 
[15N]-indole, [2-15N]-l-lysine dihydrochloride, [13C5]-l-
glutamic acid, [13C7]-benzoic acid, [3,4-13C2]-cholesterol, 
[15N]-l-tyrosine, [trimethyl-13C3]-caffeine, [15N2]-uracil, 
[3,3-13C2]-cystine, [1,2-13C2]-palmitic acid, [15N,13C5]-l-
methionine, [15N]-choline chloride, and 2’-deoxyguanosine-
15N2,

13C10-5’-monophosphate [20, 21]. Human reference 
plasma from the National Institute of Standards and 
Technology (standard reference material 1950)  and a 
pooled reference plasma (Q-std3) prepared from commer-
cial human plasma samples (Equitech Bio, TX, USA) were 
included for quality control [22]. Q-std3 was included 

before and after every 20 samples; specifically, triplicates of 
2 Q-Std3 samples were included as the beginning, middle, 
or end of every batch of 40 samples.

Liquid chromatography mass spectrometry

Plasma samples were assayed by liquid chromatography–
Fourier transform mass spectrometry (LC-FT-MS) with 2 
chromatographic columns: C18 (Higgins Analytical, Targa, 
2.1 × 50 mm) with negative electrospray ionization, and 
HILIC (Waters BEH Amide 2.1  ×  50  mm) with positive 
electrospray ionization [21, 23]. A Switchos control valve 
(LC Packings) allowed for alternation between the 2 col-
umns [21]. Data acquisition occurred by mass spectrom-
eter (Orbitrap Fusion mass spectrometer; Thermo Fisher 
Scientific, MA, USA) with specifications as previously 
described [21]. The scan range for the detection of mass-
to-charge ratio (m/z) scan was between 85 and 1250, and 
mass resolution was 120 000.

Data extraction

Raw data (.raw files) were collected throughout the 
chromatographic separation and converted to .cdf files 
(Xcalibur software; Thermo Fisher Scientific, CA, US). 
apLCMS [24] and xMSanalyzer [25] were used for the ex-
traction and initial preprocessing of chromatographic data. 
Preprocessing included noise reduction, peak identification, 
retention time correction, peak alignment, feature quantifi-
cation, weak signal detection, and batch effect adjustment 
with ComBat [24-26]. A  feature was defined as a unique 
combination of m/z and retention time. The ion intensity 
(peak area) of each feature was integrated.

Standard operating procedures and quality control were 
based on prior studies, including via xMSanalyzer [25]. For 
each sample, pairwise Pearson correlations between repli-
cates were assessed and averaged. Prior to exclusions of 
participants and data filtering of features (Supplemental 
Fig. 1 [14]), the median averaged pairwise Pearson correl-
ation between replicates was 98.7% (interquartile range 
[IQR], 97.0%, 99.5%) across samples from C18 data, 
and 99.5% (IQR, 98.6%, 99.8%) across all samples from 
HILIC data. Samples (n = 0 for C18; n = 3 for HILIC) with 
mean Pearson correlation coefficients <0.75 across tech-
nical replicates were excluded.

Features observed in <80% of study participant samples 
in each column (C18, HILIC) were filtered [27]. Any fea-
ture peak area values that were missing or zero were subse-
quently assigned as half of the lowest observed value (limit 
of detection) of the feature peak area across all samples for 
each column.
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Definitions

CMD definitions were based on guidelines of the World 
Health Organization, American Diabetes Association, 
American College of Cardiology, American Heart 
Association, and National Cholesterol Education Program 
(Adult Treatment Panel III report; Supplemental Table 
2)  [14, 16-19]. Participants were characterized as being 
metabolically unhealthy if they had any of 4 CMDs (obesity, 
hypertension, diabetes, metabolic syndrome).

Statistical analysis

Statistical analysis was conducted utilizing R (version 
3.5.1; R Foundation for Statistical Computing; Vienna, 
Austria) and SAS (version 9.4; SAS Institute Inc.; Cary, NC, 
US). We used a complete case approach (Supplemental Fig. 
1) [14]. Prior to analysis, we converted feature intensities 
(peak areas) to log2-normalized values. For each feature, we 
calculated the peak area ratio as the postprandial timepoint 
divided by the fasting timepoint. Statistical significance 
was based on 2-sided hypothesis tests, and α value <0.05. 
After feature-by-feature multivariable regressions with 
metabolomic data, the P values were collectively adjusted 
for a false discovery rate (FDR), which controls the propor-
tion of selected features that incorrectly reject the null hy-
pothesis. FDR-adjusted q < 0.05 was considered significant 
for Stages 1 and 2A. In regressions with interaction terms 
(Stages 2B), P < 0.05 was considered significant.

Descriptive analysis and visualizations

Continuous variables were reported as mean (standard de-
viation) or median (IQR), and categorical variables were 
reported as n (%). Subgroups were compared by Kruskal-
Wallis, Wilcoxon rank-sum, or Mantel-Haenszel chi-square 
test statistics. Correlations between log2-normalized feature 
peak areas and their ratios (postprandial/fasting), and CMD 
biomarkers were evaluated by Spearman rank correlation 
coefficients. We compared differences of log2-normalized 
feature peak area ratios between participants with versus 
without any CMDs with MetaboAnalystR [28]. As ex-
amples, we visualized the clustering of feature peak area 
ratios with unsupervised dimensionality reduction (prin-
cipal components analysis) and supervised discriminant 
analysis approaches (eg, partial least squares–discriminant 
analysis [PLS-DA], orthogonal partial least squares–dis-
criminant analysis [OPLS-DA]) [28].

Feature selection approach via regressions

We used a 2-stage feature selection approach based on 
multivariable linear mixed regressions with repeated 

measurements (Supplemental Fig. 2)  [14]. In Stage 1, we 
assessed whether the peak areas of each feature differed by 
the meal challenge timepoint, adjusting for age and sex. 
The model equation was:

Features with beta coefficients of the meal challenge 
(β 1) with FDR-adjusted q  <  0.05 were annotated, con-
sidered in functional pathway analysis, and eligible for 
Stage 2.  In Stage 2A, we assessed whether feature peak 
areas responded to the meal challenge, accounting for age 
and sex, among participants either with or without CMDs. 
The same Stage 1 regression equation was used among 
these 2 stratified groups of participants. In Stage 2B, we 
additionally included CMD status and the 2-way multi-
plicative interaction term between the meal challenge 
timepoint (postprandial, fasting) as independent variables 
in the Stage 1 regressions. The Stage 2B regression 
equation was:

Features with beta coefficients of the interaction term 
(β 5) with P < 0.05 were annotated and considered in func-
tional pathways.

Feature annotations

We used annotations from xMSannotator, which con-
siders multiple criteria in its algorithm [29] and incorpor-
ates Human Metabolome Database reference database 
information [30] for putative identification of features 
(Supplemental Fig. 3)  [14]. We considered feature annota-
tion confidence and assigned identification confidence scores 
to some features, based on the 5-level system proposed by the 
Metabolomics Standards Initiative (MSI; Supplemental Fig. 
3) [14, 31]. Annotations of select metabolites in Stage 2B re-
gressions were compared to identities by co-elution and MS/
MS fragmentation patterns relative to authentic standards.

Ethical conduct of research

The Institutional Review Boards at Emory University 
(Atlanta, Georgia, US) and INCAP (Guatemala City, 
Guatemala) approved the study protocol. All participants 
provided their written informed consent.

Y (log2-normalized feature peak area)i,j,t 
=  β 0i,j,t + β 1X1 (timepoint [postprandial, fasting]) i,j,t  

+ β 2X2 (age at study visit)i + β 3X3 (sex)i

where study participant = i, feature = j, and timepoint = t.

Y (log2-normalized feature peak area)i,j,t 
=  β 0i,j,t + β 1X1 (timepoint [postprandial, fasting]) i,j,t  

+ β 2X2 (any CMD)i + β 3X3 (age at study visit)i  
+ β 4X4 (sex)i + β 5X5 (timepoint*anyCMD)i

where study participant = i, feature = j, timepoint = t.
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2. Results

Sociodemographic and cardiometabolic health character-
istics of the 349 study participants are in Table 1. Briefly, 
among study participants (37-54 years of age), 116 (33%) 
had body mass index (BMI) considered obese, 22 (6%) had 
diabetes, 135 (39%) had hypertension, and 173 (50%) had 
metabolic syndrome (Table 2). One hundred twenty-three 
adults were considered metabolically healthy insofar as 
they had none of these 4 CMDs (35%; Table 2). A lower 
proportion of men (51%) had at least 1 CMD compared 
with women (76%; P  <  0.01; Table  2). Relative to men, 
greater proportions of women had obesity (43% vs 21%), 
metabolic syndrome (65% vs 31 %), and any CMD (76% 
vs 51%; all P  <  0.01; Table  2). Several CMD indicators 
(postprandial glucose, glycated hemoglobin, cholesterol 
[total, HDL, non-HDL]) differed between men and women 
(all P < 0.01; Table 2).

We observed 9849 C18 and 13 908 HILIC metabolomic 
features in total (Supplemental Fig. 1) [14]. After data fil-
tering, 5085 C18 and 7444 HILIC features remained eli-
gible for the feature selection process, (Supplemental Fig. 
1) [14]. Among all participants, 2090 features (C18: 1288; 
HILIC: 802) had peak areas that were altered following the 
meal challenge, compared to fasting (all q < 0.05; Table 3). 

Among these features, 1180 (56.5%) had putative annota-
tions (49.2% C18; 68.1% HILIC, Table 3).

Comparing metabolomic response to meal 
challenge among participants with versus 
without CMDs

Among participants with CMDs (n = 226), 1063 C18 and 
693 HILIC features had differential peak areas pre– versus 
post–meal challenge (all q  <  0.05; Fig.  1A; Table  3). Of 
these C18 features, 747 increased and 316 decreased after 
the meal challenge. Among the HILIC features, 400 in-
creased and 293 decreased following the meal challenge.

In individuals without the 4 CMDs (n = 123), 875 C18 
and 508 HILIC features had peak areas that differed after 
the meal challenge (all q < 0.05; Fig. 1A; Table 3). Of these 
C18 features, 613 increased and 262 decreased after the 
meal challenge. Among these HILIC features that were re-
sponsive to the meal challenge, 325 features increased and 
183 features decreased.

Subtracting the overlapping differential features ob-
served in both groups, 658 feature peak areas (369 C18; 
289 HILIC) were altered following the meal challenge only 
among individuals with CMDs (Fig.  1A). In participants 

Table 1. Sociodemographic and Clinical Characteristics of Adult Study Participants (n = 349)

Overall Males Females Pa

n 349 n 157 n 192

Median (IQR) Median (IQR) Median (IQR)

Sociodemographics
 Age at follow-up (years)b 349 44.0 (40.0, 47.0) 157 44.0 (40.0, 47.0) 192 44.0 (41.0, 47.5) 0.79
Anthropometry        
 BMI (kg/m2) 349 27.8 (24.8, 31.1) 157 26.5 (24.3, 29.4) 192 28.9 (25.9, 32.4) <0.01
Biochemical indicators
 Glucose profile
  Fasting blood glucose (mg/dL) 349 98.6 (93.1, 105.2) 157 97.5 (93.2, 104.0) 192 99.3 (93.0, 105.6) 0.65
  Postprandial glucose (mg/dL) 349 109.3 (95.6, 123.6) 157 100.7 (90.8, 116.4) 192 116.6 (102.9, 128.4) <0.01
  Glycated hemoglobin (%) 348 5.8 (5.5, 6.0) 157 5.7 (5.5, 5.9) 191 5.8 (5.6, 6.0) <0.01
 Lipid profile
  Triglycerides (mg/dL) 349 144.0 (100.0, 207.0) 157 142.0 (98.0, 213.0) 192 144.5 (101.5, 197.0) 0.89
  Total cholesterol (mg/dL) 349 175.0 (151.0, 198.0) 157 167.0 (143.0, 189.0) 192 182.0 (158.0, 208.0) <0.01
  HDL-cholesterol (mg/dL) 349 40.7 (36.3, 46.8) 157 37.8 (33.7, 44.6) 192 42.5 (37.9, 48.9) <0.01
  Non-HDL-cholesterol (mg/dL)c 349 132.1 (110.7, 154.3) 157 124.4 (104.0, 149.6) 192 136.9 (116.7, 159.1) <0.01
 Clinical
  Systolic blood pressure (mm Hg) 349 122.0 (113.5, 132.0) 157 123.0 (114.5, 132.0) 192 120.5 (112.0, 131.8) 0.24
  Diastolic blood pressure (mm Hg) 349 73.5 (67.5, 80.5) 157 73.5 (67.5, 79.5) 192 73.3 (67.5, 80.5) 0.60

Data values are either median (IQR) or n (%). Among study participants with available metabolomic data at both timepoints and key variables of interest (CMDs, 
Atole exposure).
Abbreviations: BMI, body mass index; CMDs, cardiometabolic diseases; HDL, high-density lipoprotein; IQR, interquartile range. 
aP values based on Wilcoxon rank-sum tests.
bAt study visit date (of biological sample collection) in 2015–2017 data collection.
cNon-HDL-cholesterol (mg/dL) calculated as the difference between total (mg/dL) and HDL-cholesterol (mg/dL) plasma concentrations.
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without CMDs, 285 unique features (181 C18; 104 
HILIC) changed in the meal challenge and were not ob-
served in the CMD subgroup (Fig.  1A). Log2-normalized 
postprandial:baseline peak area ratios clustered separately 
among metabolically healthy versus unhealthy participants, 
based on OPLS-DA (Fig. 1B) and PLS-DA (Supplemental 
Fig. 4) [14].

We also assessed whether the response of each 
metabolomic feature peak area to the meal challenge 
varied by CMD status by examining the 2-way multiplica-
tive interaction between CMD status and the meal chal-
lenge timepoint. A  total of 108 feature peak areas (60 

Table 3. Summary of Metabolomic Features Differing by 

Meal Challenge and CMD Statusa

Differing features (#) Meal 
Challenge

Any CMD

LC-FT-MS columns C18 HILIC C18 HILIC

nb,c 349 343 349 343
Feature selection  
Stage 1: Overall linear regressiond     
 q < 0.05 e 1288 802 --- ---
Stage 2A: Stratified linear regressionf,g  
 CMDs subgroupg  
 q < 0.05e --- --- 1063 693
 No CMDs subgroupg     
 q < 0.05e --- --- 875 508
Stage 2B: Overall linear regressiong,h  
 Interaction term (subgroup × time)g  
 P < 0.05e --- --- 60 48
 q < 0.05 --- --- 0 0
Annotations Stage 1 Stage 2B
 Annotated features 634 546 27 32
 Total annotations 3406 5238 153 281

Abbreviations: CMD, cardiometabolic disease; FDR, false discovery rate; 
HILIC, hydrophilic interaction liquid chromatography; LC-FT-MS, liquid 
chromatography–Fourier transform mass spectrometry.
aValues in this table indicate the number of features with log2-normalized peak 
areas, which differed by the key subgroups of interest (meal challenge, any 
CMDs).
bThe total features observed were 9849 (C18) and 13  908 (HILIC). After 
data filtering, 5085 (C18) and 7444 (HILIC) features remained eligible for 
the feature selection approach. A  complete case approach was utilized in 
multivariable regressions.
cAll regressions with C18 data were available among 349 participants with 
2 samples (fasting, postprandial) of metabolomic data and key variables 
of interest (utilized to define CMDs). HILIC regressions were among 343 
participants, based on data availability of key variables.
d Stage 1 feature selection was based on multivariable regressions. For each fea-
ture, a linear model with repeated measurements was utilized (Proc Mixed in 
SAS); the model equation was: Y (log2-normalized feature peak area)i,j,t = β 0i,j,t 
+ β 1X1 (timepoint [postprandial, baseline]) i,j,t + β 2X2 (age at study visit)i + 
β 3X3 (sex)i, where each study participant was denoted as i, feature was j, and 
timepoint was t. Features remained eligible for Stage 2 feature selection if the 
beta-coefficient of the meal challenge timepoint (β 1) had FDR-adjusted P-value 
(q) < 0.05.
e These features were subsequently eligible for visualizations, annotations, and 
pathway analysis.
f Stage 2A feature selection utilized the same regression equation as in Stage 
1, except these sets of regressions were stratified by CMD status (any versus 
none). In each subgroup, the total number of features with q < 0.05 of the 
beta-coefficient (β 1) of the meal challenge timepoint are included in this table.
g Among 1288 C18 features, or among 802 HILIC features
h Among features eligible from Stage 1 selection, these were also considered 
with multivariable regressions that additionally considered subgroups of 
interest and their interaction terms with meal challenge as independent 
variables (Stage 2B). A  linear model with repeated measurements was 
utilized (Proc Mixed in SAS); the model equation was: Y (log2-normalized 
feature peak area)i,j,t = β 0i,j,t + β 1X1 (timepoint [postprandial challenge, base-
line]) i,j,t + β 2X2 (any CMDs)i + β 3X3 (age at study visit)i + β 4X4 (sex)i, + β 5X5 
(anyCMDs*timepoint)i where each study participant was denoted as i, feature 
was j, and timepoint was t. The number of features with P < 0.05 and q < 0.05 
the beta-coefficient (β 5) of the interaction term were included in this table.

Table 2. CMDs Among Guatemalan Adults (n = 349)

Overall Males Females Pa

N = 349 n = 157 n = 192

n (%) n (%) n (%)

CMDs
 Obesityb 116 (33%) 33 (21%) 83 (43%) <0.01
 Diabetesc 22 (6%) 8 (5%) 14 (7%) 0.40
 Pre-diabetesc 130 (37%) 52 (33%) 78 (41%) 0.15
 Hypertensiond 135 (39%) 59 (38%) 76 (40%) 0.70
 Pre-hypertensiond 67 (19%) 36 (23%) 31 (16%) 0.11
 Metabolic syndromee 173 (50%) 48 (31%) 125 (65%) <0.01
  Central obesitye 210 (60%) 35 (22%) 175 (91%) <0.01
 High fasting 

blood glucose or 
medication usee

151 (43%) 60 (38%) 91 (47%) 0.09

  High triglycerides 
or statin usee

167 (48%) 76 (48%) 91 (47%) 0.85

   Low HDL- 
cholesterole

241 (69%) 91 (58%) 150 (78%) <0.01

   High blood  
pressure or 
medication usee

113 (32%) 48 (31%) 65 (34%) 0.52

 Any CMDf 226 (65%) 80 (51%) 146 (76%) <0.01

Data values are either median (IQR) or n (%). Among study participants with 
available metabolomic data at both timepoints and key variables of interest 
(CMDs, Atole exposure).
Abbreviations: BMI, body mass index; CMDs, cardiometabolic diseases; 
HDL, high-density lipoprotein; IQR, interquartile range. 
a P values based on Mantel-Haenszel chi-square tests.
b According to World Health Organization categorization [16].
c Defined by recommendations of the American Diabetes Association [17] (See 
Supplemental Table 2 [14]).
d Per hypertension diagnosis cutoff values from the 2017 American College 
of Cardiology/American Heart Association Guideline for the Prevention, 
Detection, Evaluation, and Management of High Blood Pressure in Adults [18] 
(See Supplemental Table 2 [14]).
e Metabolic syndrome was defined as having 3 or more of the 5 criteria, 
based on the National Cholesterol Education Program guidelines [19] (See 
Supplemental Table 2 [14]).
f Metabolically unhealthy defined as having any of the 4 assessed CMDs. In 
other words, presence of obesity, hypertension, diabetes, and/or metabolic syn-
drome, including comorbidities.
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C18; 48 HILIC) were associated with this interaction term 
(all P < 0.05; Table 3). Among these features, 59 (54.6%) 
had putative annotations (45.0% C18; 66.7% HILIC; 
Table 3). Excluding features with low xMSannotator con-
fidence scores (MSI Level 4), delta parts per million (ppm) 
≤5, there were 13 features from C18 data and 9 features 
from HILIC data with annotations (Supplemental Table 
3)  [14]. The interaction term was respectively associated 
with increased carnitines (trans-2-dodecanoylcarnitine) 
and dipeptides (histidinyl-tryptophan or tryptophyl-
histidine) peak areas (all P  <  0.05; MSI Levels 2 and 3 
[31]; Supplemental Table 3 [14], Table 4). The interaction 
term was also associated with phospholipids, specific-
ally increased phosphatidic acid (PA) 34:2 and decreased 
phosphatidylcholine (PC) 38:3 peak areas (all P  <  0.05; 
Supplemental Table 3 [14], Table 4). Decreased peak area of 
a bile acid metabolite (chenodeoxycholic acid glycine con-
jugate or glycoursodeoxycholic acid) was associated with 

the interaction term (P < 0.05; Table 4). Increased 3b-17-b-
dihydroxyetiocholane (a steroid hormone) and 1H-indole-
3-carboxaldehyde (a microbiome-derived product) peak 
areas were respectively associated with the interaction term 
(both P < 0.05; MSI Levels 2 and 3 [31]; Table 4).

Correlations between log
2 feature peak area ratios 

(postprandial/fasting) and a panel of CMD biomarkers are 
shown in Fig. 2. The peak area ratio of isovalerylcarnitine 
or valerylcarnitine (m/z 246.1697, retention time [RT] 
28)  was positively correlated with BMI, diastolic blood 
pressure, and triglycerides (all P  <  0.05), and negatively 
correlated with HDL-cholesterol (P < 0.01). The peak area 
ratio of phosphatidylcholine (38:3; m/z 834.5970, RT 
27) was negatively correlated with BMI and fasting plasma 
glucose (both P < 0.05). The peak area ratio of histidinyl-
tryptophan or tryptophyl-histidine (m/z 346.1367, RT 
60)  was positively correlated with postprandial glucose 
(P = 0.03).

Figure 1. Metabolomic feature peak area changes following standardized meal challenge differed between metabolically healthy versus unhealthy 
individuals. 1A: In this Venn diagram, each circle represents the numbers of features with beta coefficients with FDR-adjusted P values (q) < 0.05 in 
stratified regressions (Stage 2A in feature selection approach) in each subgroup (metabolically healthy or unhealthy). Circle diameters were propor-
tionally scaled by the number of features (C18, HILIC) represented. 1B: OPLS-DA was used to compare whether feature peak area ratios (postprandial/
fasting) clustered in distinct patterns among metabolically healthy versus unhealthy participants. Each circle represents an individual (metabolically 
healthy—light gray, metabolic unhealthy—dark gray). Data are from LC-FT-MS (C18, negative electrospray ionization). 1C: Examples of C18 (*) and 
HILIC (**) feature peak areas with putative annotations (from xMSannotator results among features selected in Stage 2B regressions with P < 0.05) 
are represented in boxplots, stratified by sex, meal challenge, and CMD status (Supplemental Table 4 [14]). Abbreviations: CMD, cardiometabolic 
disease; FDR, false discovery rate; HILIC, hydrophilic interaction liquid chromatography; LC-FT-MS, liquid chromatography Fourier transform mass 
spectrometry; OPLS-DA, orthogonal partial least squares–discriminant analysis.
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3. Discussion

Our results showed that a greater number of metabolomic 
feature peak areas differed following a standardized meal 
challenge among adults with CMDs (1756 features), com-
pared with those without CMDs (1383 features). This 
finding reflected reduced metabolic flexibility, or worsened 
ability to acclimatize to the standardized meal challenge, 
among adults with CMDs. Metabolomic features that dif-
fered by the meal challenge and CMD status included di-
peptides, glycerophospholipids, carnitines, and a bile acid 
metabolite.

Metabolic flexibility in CMDs

Our finding that more features changed after a meal chal-
lenge among adults with CMDs was consistent with the 
increased metabolic dysregulation in CMDs that has been 
previously described [2-4]. Healthy metabolism has been 
described as having metabolic resilience, or the ability to 
maintain stability in energy homeostasis during dynamic 
changes, such as caloric availability in a postabsorptive 
state or deficit in a fasting state [2-4]. One hypothesis is 
that during CMD pathophysiology, physiologic challenges 
result in short-term compensatory mechanisms of the body 
that gradually create an “allostatic load” or an inability 
to adequately respond, such as abnormal accumulation 
of lipids [32]. Different facets of metabolic inflexibility, 
including dysregulation of substrate availability (“push”) 
and requirement (“pull”), are associated with elevated or 
reduced biomarkers in obesity, insulin resistance, and defi-
ciency [2, 3]. Increased triglycerides in skeletal muscle are 
often observed with insulin resistance and are hypothesized 
to be explained by abnormal muscle glucose oxidation (in-
creased in a basal state, decreased with insulin administra-
tion) [33]. Other evidence has also shown metabolomic 
profiles associated with CMD status although many prior 
studies have been cross-sectional [5, 7-10, 34] and difficult 
to directly compare to our findings.

Protein metabolism in CMDs

We found that the meal challenge response of dipeptides and 
carnitines differed among participants with versus without 
CMDs. Prior evidence has corroborated that protein ca-
tabolites differed in CMDs [5, 7-10]. Murine studies have 
provided potential mechanisms of how catabolic protein 
metabolites affect systemic insulin resistance and obesity 
[35, 36]. Decreased relative concentrations of histidine 
and tryptophan were found in urine of rats with diabetes, 
compared with healthy controls [37]. One explanation 
is that large neutral amino acids, including tryptophan, 

phenylalanine, leucine, isoleucine, and valine, compete for 
cellular transport in mammalian cells [10]. In a dysregulated 
state, an imbalance of amino acids could result in decreased 
activities involving the other amino acids [10]. For example, 
it has been hypothesized that excess branched-chain amino 
acids (BCAAs) could result in decreased neurotransmitters 
such as serotonin, which is derived from tryptophan [10]. 
Other issues arising from an imbalance of amino acids in-
clude: (i) a BCAA catabolite increases trans-endothelial 
fatty acid transport; (ii) greater BCAAs activate the mam-
malian target of rapamycin (mTOR), which can cause the 
uncoupling of insulin signaling; and (iii) mitotoxic me-
tabolites result in dysregulated beta-cell mitochondrial 
function [35, 36]. In vivo human studies have found that 
plasma tryptophan and histidine concentrations differed by 
type 2 diabetes [8, 37] and obesity [38] status.

We found that trans-2-dodecanoylcarnitine peak areas 
differed by CMD status and the meal challenge. There is 
limited previous evidence that can be directly compared, 
however prior studies with other study designs have high-
lighted the plausibility of our result. Dodecanoylcarnitine 
(C12) and other acylcarnitine peak intensities were in-
creased among overweight participants after being ran-
domly assigned a low-calorie diet for 12 weeks [39]. 
Several previous studies have reported the association 
between acylcarnitines and diabetes indicators, how-
ever the directionality of findings have been inconsistent 
[40-42]. One study found that lower concentrations of 
acylcarnitines were associated with improved diabetes in-
dicators such as insulin sensitivity [40]. A  separate study 
found that arachidonoyl-carnitine was associated with 
greater plasma glucose concentration [41]. A  supplemen-
tation study among participants with impaired glucose 
tolerance showed that 2  g/day of L-carnitine increased 
acylcarnitine concentrations in skeletal muscle but had no 
effects on whole-body insulin sensitivity [42].

Putative mechanisms have been hypothesized to explain 
the observed links between acylcarnitines, obesity, and dia-
betes [43]. Bariatric surgery has been associated with im-
proved type 2 diabetes and major metabolic alterations, 
including fatty acid metabolism [43, 44]. Medium- and 
long-chain fatty acids are transported as acylcarnitines 
across mitochondrial membranes for β-oxidation [6, 45]. 
Dodecanoylcarnitine and other acylcarnitines have a key 
role in fatty acid β-oxidation and have been hypothesized 
to indicate metabolic flexibility [43, 44].

Three dietary supplementation studies have shown 
that L-carnitine, a natural form found in red meats, im-
proved metabolic flexibility [42, 46, 47]. A  randomized, 
placebo-controlled, double-blind crossover trial showed 
that L-carnitine supplementation restored metabolic flexi-
bility (evaluated by hyperinsulinemic-euglycemic clamp 
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and high-energy meal challenge) among individuals with 
impaired glucose tolerance [42]. Murine studies have also 
confirmed the links between carnitines and metabolic flexi-
bility [48, 49]. One study found that mice with a gene 
deletion of carnitine acetyltransferase had lower whole-
body carbohydrate oxidation after a meal challenge [49]. 
L-carnitine supplementation resulted in increased average 
daily respiratory exchange ratio, which reflected systemic 
carbohydrate oxidation, among mice with obesity and in-
sulin resistance [46].

Phospholipids in CMDs

Our findings showed that 2 glycerophospholipids (phos-
phatidylcholine and phosphatidic acid) were associated with 
the interaction between CMD status and meal challenge 
timepoint. Prior literature has established links between 
phospholipids with mitochondrial function [50], which is 
linked with metabolic flexibility [6]. Mitochondria have a 
central role in energy homeostasis at the cellular level, and 
the ability to alternate between converting different carbon 
sources (fatty acids, glucose, amino acids) to acetyl-CoA, 

which is substrate for the tricarboxyclic acid cycle [6]. 
Phosphatidylcholines and phosphatidylethanolamines 
account for the majority of phospholipids in mitochondrial 
membranes [51]. Fasting plasma insulin was positively 
associated with membrane lipids (phosphatidylcholine, 
phosphatidylethanolamine, sphingomyelin; all P  <  0.05) 
among women with obesity and no diabetes [52].

Bile acids in dysregulated metabolism

In our study, the response of bile acid metab-
olite (chenodeoxycholic acid glycine conjugate or 
glycoursodeoxycholic acid) in a meal challenge differed 
by CMD status. Prior studies have found associations be-
tween glycoursodeoxycholic acid and diabetes treatment 
(metformin) [53] as well as outcomes (gestational diabetes) 
[54]. Metformin upregulates conjugated bile acids such as 
glycoursodeoxycholic acid, which is hypothesized to ex-
plain the lower circulating cholesterol concentrations ob-
served with metformin treatment [53].

Bile acids have nonclassical functions in regulating en-
ergy homeostasis, including glucose and lipid metabolism 

Figure 2. Correlations between CMD biomarkers and metabolomic feature peak area ratios (postprandial/fasting), stratified by column. *All values 
are Spearman rank correlations of each bivariate associations between a log2-normalized feature peak area ratio (postprandial/fasting) and CMD 
biomarker. ** Chenodeoxycholic acid glucine conjugate was another potential annotation. *** Other potential annotations included histidinyl-
tryptophan and tryptophyl-histidine. Abbreviations: m/z, mass-to-charge ratio; RT, retention time.
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[55-57]. Bile acid sequestration reduces plasma glucose 
and glycated hemoglobin among people with type 2 
diabetes mellitus [56]. Putative mechanisms include the 
ability of bile acids to activate a cell surface receptor 
(G-protein–coupled receptor [GPCR] TGR5 [GPR131]) 
to improve glucose tolerance [58], and nuclear receptors 
(pregnane X receptor, constitutive androstane receptor, 
vitamin D receptor) that can subsequently affect tran-
scriptional activities of bile acid, lipid, and glucose me-
tabolism [59-61].

Limitations and strengths

We were unable to consider each of the 4 CMDs separ-
ately, given the limited power to detect differences across 
the respective subsets of people with each individual 
CMDs (eg, diabetes). Causal inferences could not be 
made based on our findings, given that CMD status was 
assessed during the same study visit as the meal challenge 
response. Our interpretation that a greater number of 
feature changes could reflect lower metabolic flexibility 
was based on the assumption that most metabolomic 
features have homeostatic regulation between the study 
timepoints among healthy individuals. There are still un-
resolved challenges in nontargeted metabolomics, par-
ticularly in resolving the major bottleneck of accurately 
identifying large numbers of known and unknown fea-
tures [62]. Interpretations of our findings should account 
for the methodological limitations of nontargeted 
metabolomics, including that feature peak areas are 
relative quantifications. Future studies with orthogonal 
methods, including MS/MS, are needed for validation and 
confirmation. Features could not be converted to concen-
trations by reference standardization [22] as known con-
centrations of the calibrated reference were not available 
for annotated features selected by Stage 2B regressions. 
We did not assess the potential influences of genetics, the 
gut microbiome, or adipose or skeletal tissues on our as-
sociations of interest [3, 63].

Strengths of our study included the standardized meal 
challenge, which addresses the heterogeneity of meal 
challenge (eg, macronutrient composition, intake fre-
quency, follow-up duration) in prior literature consid-
ering metabolomics. To our knowledge, our sample size 
was larger than other metabolomic studies with meal 
challenges among individuals with metabolic diseases 
[64, 65]. Nontargeted high-resolution metabolomic 
data have greater coverage of metabolites compared 
with other approaches [5]. The utilization of dual col-
umns (C18, HILIC) and different electrospray ioniza-
tion modes (positive, negative) additionally provided 

increased feature coverage [21]. Stable isotope-labeled 
internal standards and 2 sets of quality controls were 
included in the metabolomic assays, in order to monitor 
and correct potential sources of bias (eg, instrument 
drift).

4. Summary

Following a standardized meal challenge, a greater 
number of metabolomic feature peak areas differed 
among participants with CMDs, relative to those 
without CMDs, which could reflect increased metabolic 
dysregulation and decreased flexibility. Features that 
were altered by the meal challenge and CMD status in-
cluded dipeptides, glycerophospholipids, carnitines, and 
a bile acid metabolite.
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