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Abstract 

The purpose of this study was to assess insulin-stimulated gene expression in canine 
skeletal muscle with a particular focus on NPPC, the gene that encodes C-type natri-
uretic peptide, a key hormonal regulator of cardiometabolic function. Four conscious 
canines underwent hyperinsulinemic, euglycemic clamp studies. Skeletal muscle biopsy 
and arterial plasma samples were collected under basal and insulin-stimulated condi-
tions. Bulk RNA sequencing of muscle tissue was performed to identify differentially ex-
pressed genes between these 2 steady-state conditions. Our results showed that NPPC 
was the most highly expressed gene in skeletal muscle in response to insulin infusion, 
rising 4-fold between basal and insulin-stimulated conditions. In support of our RNA 
sequencing data, we found that raising the plasma insulin concentration 15-fold above 
basal elicited a 2-fold (P = 0.0001) increase in arterial plasma concentrations of N-terminal 
prohormone C-type natriuretic peptide. Our data suggest that insulin may play a role in 
stimulating secretion of C-type natriuretic peptide by skeletal muscle. In this context, 
C-type natriuretic peptide may act in a paracrine manner to facilitate muscle–vascular 
bed crosstalk and potentiate insulin-mediated vasodilation. This could serve to enhance 
insulin and glucose delivery, particularly in the postprandial absorptive state.
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Over the past 4 decades, intense efforts have been dedi-
cated to defining how atrial natriuretic peptide and brain 
natriuretic peptide regulate cardiac structure, blood pres-
sure, and blood volume. The role C-type natriuretic peptide 
(CNP) plays in regulating cardiometabolic function re-
mains incompletely understood, however. Given that CNP 
possesses antifibrotic, antihypertrophic, antithrombotic, 
anti-atherogenic, anti-inflammatory, and vasorelaxing 
properties [1, 2], leaders in the field have recently dubbed 
the hormone “The Heart’s Guardian Angel” [3].

To date, the tissues that express CNP and the stimuli that 
govern its release have been incompletely described [4, 5]. 
Previous investigations identified CNP in the brain [6, 7], 
chondrocytes [8], and endothelial cells [9, 10], and suggest 
endothelial shear stress [11, 12], growth factors [10, 13], 
and other natriuretic peptides [14] trigger the hormone’s 
release. This information was largely obtained from in vitro 
studies. Far less is known about the factors that induce the 
expression of NPPC, the gene that encodes proCNP, which 
is then cleaved to produce equimolar amounts of biologic-
ally active CNP and its congener, N-terminal proCNP 
(NT-proCNP) [15, 16].

Over the past 2 decades, an increasing number of studies 
have revealed skeletal muscle’s role as a secretory organ, 
which produces and secretes numerous myokines with 
autocrine, paracrine, and endocrine functions [17-19]. 
Emerging literature suggests that these myokines exert an 
effect via muscle–vascular bed crosstalk. Ouchi et al [20] 
recently showed that the myokine Follistatin-like 1 (Fstl1) 
was secreted in association with increased Akt signaling. 
Further, their research suggested that increases in promoted 
endothelial cell function and revascularization in mice. 
Because insulin activates Akt [21], we reasoned that it may 
influence muscle–vascular bed crosstalk to enhance glucose 
delivery to muscle by affecting gene expression and secre-
tion of other peptides, including CNP, a peptide hormone 
known to cause capillary vasodilation. Thus, in the present 
study we aimed to characterize insulin-stimulated differen-
tial gene expression in canine skeletal muscle with a par-
ticular focus on NPPC, the gene that encodes CNP.

Materials and Methods

Animal Care and Surgical Procedures

Four conscious dogs (Canis lupus familiaris) of male sex 
were studied. Dogs were housed in a facility that met the 
standards of the American Association for the Accreditation 
of Laboratory Animal Care guidelines. They were fed a 65 

to 75 kcal/kg/day diet of canned meat and chow (28% pro-
tein, 49% carbohydrate, and 23% fat) and the protocol 
was approved by the Vanderbilt University Medical Center 
Animal Care Committee. Approximately 16 days prior to 
experiments, a silastic sampling catheter was placed in the 
femoral artery and a laparotomy was performed as previ-
ously described to place infusion catheters into the jejunal 
and splenic veins, which drain into the hepatic portal cir-
culation [22]. Experimental inclusion criteria included a 
leukocyte count < 18 000/mm3, hematocrit > 36%, good 
appetite, normal bowel movements, and healthy physical 
appearance.

Experimental Procedures

The dogs were fasted for 18 hours prior to each experi-
ment. On the morning of study, intravenous angiocatheters 
were placed in the cephalic and saphenous veins for infu-
sion of human insulin, 20% dextrose, and somatostatin. 
The distal ends of the intraportal catheters and flow probes 
were exteriorized from their subcutaneous pockets through 
incisions made under local anesthesia (2% lidocaine). Dogs 
rested in a Pavlov harness throughout the study.

Each experiment consisted of a 90-minute resting 
period, a 30-minute basal sampling period, and 2 infu-
sion periods of 150 minutes each in which insulin (Novo 
Nordisk A/S, Copenhagen, Denmark) and somatostatin 
(Bachem, Torrance, CA) were infused in a peripheral vein 
and glucagon (Eli Lilly, Indianapolis, IN) was infused into 
the portal vein (with rates as shown on the top of Fig. 1A). 
Plasma hormone and metabolite samples were collected 
during the final 30 minutes of each infusion period. Insulin 
was infused to raise the peripheral circulation plasma insulin 
concentration 4-fold and 25-fold above basal during the 
first and second infusion periods, respectively. Intraportal 
glucagon was infused at a rate to maintain the hormone’s 
plasma concentration at a basal level throughout the study.

At 2 points, at the end of the basal period just prior to 
infusing hormones and immediately following collection of 
the final plasma hormone and metabolite sample, a <1 cm 
scalpel incision was made over the biceps femoris muscle 
and a small muscle biopsy was collected under local anes-
thesia using sterile technique. Muscle samples were imme-
diately flash frozen in liquid nitrogen and stored at −80 °C.

RNA Sequencing

After completing all canine studies, we dissected 12 frozen 
muscle samples weighing from 8 to 19 mg each. Total 
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Figure 1. Arterial plasma concentrations (mean ± SD) of (A) insulin and (B) NT-proCNP during a hyperinsulinemic, euglycemic clamp study in 4 dogs. 
(C) Bivariate relationship between mean arterial plasma levels of insulin and NT-proCNP during each sampling period in each dog. (D) Heatmap 
depicting differential gene expression in canine skeletal muscle between basal insulin conditions (basal) and insulin-stimulated conditions (insulin-
stimulated). Multiple skeletal muscle samples were taken in each dog under insulin-stimulated conditions and 1 sample was taken from each dog 
during basal conditions. (E) Volcano plot depicting statistical significance (P value) vs magnitude of change (fold change) between basal insulin and 
insulin-stimulated conditions (red = not significant, blue = significant). NPPC had the greatest magnitude of change, as indicated. (F) Hypothesized 
mechanism for insulin-mediated CNP transcription and translation. Solid arrows represent known steps in insulin signaling. Hatched arrows repre-
sent potential linkages between the insulin signaling cascade and NPPC transcription and proCNP protein synthesis. P represents a phosphorylated 
signaling intermediate. Abbreviations: Art, arterial; Bx, biopsy. D2, D3, and D4 indicate Dog 2, Dog 3, and Dog 4, respectively.
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RNA was extracted and purified using Qiagen’s AllPrep 
kit. Sequencing ready libraries were prepared using Takara 
SMARTseq v4 for cDNA synthesis kit and addition of 
sequencing ready adaptors with Nextera XT prep kits 
respectively. Libraries were sequenced on an Illumina 
NovaSeq 6000 to an approximate sequencing depth of 40 
million total reads.

Read alignment was performed using STAR (v2.7.3a) 
aligner. The raw read counts were estimated using HTSeq 
(v0.11.2). Read counts were normalized using DESeq2 to 
get the normalized counts. Additionally, the aligned reads 
were used for estimating expression of the genes using 
cufflinks (v2.2.1). Distribution of mapped reads was per-
formed using RSeQC and RNA-SeQC tools. Analysis 
was performed using R and additional packages which 
included: ggplot2, reshape2 and ggrepel, corrplot, gplots 
and heatmap.2 on normalized counts of all protein coding 
genes for each sample. Differential expression analysis 
was performed using DESeq2 (R Bioconductor package, 
version 3.11). The RNA sequencing data discussed in this 
publication have been deposited in the National Center for 
Biotechnology Information’s Gene Expression Omnibus 
[23] and are accessible through GEO Series accession 
number GSE167026 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE167026).

Metabolite and Hormone Assays

Arterial plasma glucose levels were assayed using the glu-
cose oxidase reaction (Analox Instruments, Stourbridge, 
UK). Arterial plasma insulin (Millipore Cat# PI-12K, 
RRID:AB_2801580, MilliporeSigma, Burlington, MA, USA) 
and glucagon (Millipore Cat# GL-32K, RRID:AB_2757819, 
MilliporeSigma) concentrations were measured by radio-
immunoassay. Arterial plasma NT-proCNP concentrations 
were measured using a sandwich ELISA (Biomedica Cat# 
BI-20812, RRID:AB_2811290, Biomedica, Vienna, Austria).

Statistics

For selecting differentially expressed genes, we used a 
false-discovery rate adjusted P value of <0.05 and fold 
change cutoffs of ± 2. A paired t test was used to com-
pare mean arterial plasma concentrations of NT-proCNP 
between the basal and second insulin-stimulated periods. 
Simple linear regression was used to analyze the correl-
ation between arterial plasma insulin and NT-proCNP 
concentrations. Statistical analysis was computed using 
GraphPad Prism version 8.4.3. Data are summarized as 
means ± SD unless otherwise indicated. Some or all data 
generated or analyzed during this study are included in 

this published article or in the data repositories listed in 
References.

Results

Arterial Plasma Hormone and Glucose 
Concentrations

Insulin concentrations rose 2-fold and 15-fold above basal 
levels during the first and second infusion periods, respect-
ively (Fig. 1A). Glucagon levels remained at basal levels 
throughout the experiment, with mean plasma concen-
trations of 53.2 ± 17.0 and 44.9 ± 6.6 pg/mL during the 
basal and experimental periods, respectively. Plasma glu-
cose concentrations were 91.8 ± 23.7 and 106.3 ± 12.9 mg/
dL during the basal and experimental periods, respect-
ively. Mean glucose infusion rates during the sampling 
period of the first and second infusions were 6.9 ± 3.2 and 
19.7 ± 3.0 mg/kg/min, respectively.

RNA Sequencing Data

Bulk RNA sequencing analysis revealed that insulin infu-
sion decreased the expression of 17 genes and increased the 
expression of 15 genes by more than 2-fold in canine muscle 
tissue (Fig. 1D and available at [24]). Notably, the gene that 
was most highly induced (4-fold) in skeletal muscle in re-
sponse to insulin infusion was NPPC, which encodes for 
the preproprotein precursor of CNP (Fig. 1E). Other differ-
entially expressed genes included ANGPTL4 and BDNF, 
which encode for 2 purported myokines in humans [18] 
(insulin suppressed gene expression to one-quarter and 
one-third of basal levels of each gene, respectively).

Arterial Plasma NT-proCNP Concentrations

Since CNP is a secreted protein, we evaluated plasma 
CNP levels under the steady-state conditions of our 
hyperinsulinemic, euglycemic clamp to determine if the in-
crease in NPPC expression translated into an increase in 
its secreted form in the circulation. Because bioactive CNP 
is subject to rapid clearance after secretion [25], we in-
stead assayed plasma levels of its amino-terminal congener, 
NT-proCNP, which is not rapidly cleared [26]. In support 
of our RNA sequencing data, raising the plasma insulin 
concentration 15-fold above basal elicited a 2-fold increase 
in plasma NT-proCNP (P = 0.0001, Fig. 1B). In addition, 
plasma concentrations of insulin and NT-proCNP were 
highly positively correlated (Fig. 1C), suggestive of a strong 
association between elevations in plasma insulin and in-
creased plasma NT-proCNP.
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Discussion

Our canine data show that an increase in the arterial plasma 
insulin concentration is closely associated with a significant 
increase in skeletal muscle tissue expression of NPPC, which 
encodes the preproprotein precursor of CNP. Moreover, our 
findings suggest increasing levels of plasma insulin may 
stimulate production of CNP. Taken together, our results 
imply that skeletal muscle cells secrete CNP as a myokine 
and that insulin signaling may stimulate this process.

Currently, the transduction pathways that lead to 
upregulation of NPPC expression are incompletely under-
stood [5]. Previous studies examining the effect of growth 
factors on NPPC expression identified several potential 
transcription factors, including Specificity protein 1 (Sp1), 
an Sp1/Sp3 complex, TSC22 Domain Family Member 
1 (TSC22D1), Serine/Threonine Kinase 16 (STK16), 
Krüppel-like Factor 2 (KLF-2), and the Wnt4/β-catenin 
pathway [27-31]. Because no study has determined 
whether CNP production is Akt-dependent (to our know-
ledge), we think the findings in this study call for further 
investigation of this possibility. In the vascular endothe-
lium, insulin is known to stimulate vasodilation via activa-
tion of endothelial nitric oxide synthase to produce nitric 
oxide via phosphatidylinositol 3-kinase and Akt activation 
[32]. Thus, it is possible that an analogous, complementary 
pathway could exist in skeletal muscle, whereby insulin 
stimulates the secretion of CNP, leading to muscle–vascular 
bed crosstalk that potentiates insulin-mediated vasodila-
tion (Fig. 1F). This paracrine effect of CNP would serve 
to facilitate insulin and glucose delivery, particularly in the 
absorptive state when insulin levels are relatively high.

Some limitations of this investigation warrant consid-
eration. First, dogs in the present study have a higher per-
centage muscle mass than humans. Additionally, the fast and 
oxidative muscle fibers in dogs are relatively fatigue resistant 
compared to humans. These teleological differences may 
limit the extent to which our canine data can be extrapolated 
to humans. Second, the sample size in our study was small, 
so further studies are needed to validate the link between 
insulin and CNP. Third, because there was no control group 
where the plasma insulin was fixed at basal levels our results 
cannot exclude the possibility that an unmeasured covariate 
other than insulin may have confounded the relationship 
between insulin and NT-proCNP levels. Fourth, although 
the combination of increased NPPC expression in skeletal 
muscle implies that the rising plasma levels of NT-proCNP 
during the insulin infusion were caused by increased produc-
tion of CNP, these data cannot exclude the possibility that the 
increased NT-proCNP levels were caused by a reduction in 
NT-proCNP clearance. Fifth, although somatostatin’s effects 
on the body are generally inhibitory, we cannot rule out the 
possibility that somatostatin contributed to increased NPPC 

expression via indirect mechanisms. Sixth, while this in vivo 
study demonstrates an association between rising plasma in-
sulin concentrations and increases in skeletal muscle NPPC 
expression and plasma NT-proCNP levels, it cannot exclude 
the possibility that cell types other than, or in addition to, 
myocytes may have contributed to the increase in plasma 
NT-proCNP. Nevertheless, our observation that insulin in-
fusion is associated with an increase in both skeletal muscle 
tissue expression of NPPC and plasma concentrations of 
NT-proCNP is unique and should spur further research to 
elucidate insulin’s role in stimulating CNP synthesis.

Conclusions

Our results suggest insulin plays a role in upregulating 
CNP gene expression in skeletal muscle and stimulating 
the secretion of CNP in the circulation. Additional studies 
are needed to define the mechanism(s) coupling insulin 
signaling to CNP production and to further characterize 
which tissues predominate in producing CNP in the body.
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