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SSR_pipeline is a flexible set of programs designed to effi-
ciently identify simple sequence repeats (e.g., microsatellites) 
from paired-end high-throughput Illumina DNA sequencing 
data. The program suite contains 3 analysis modules along 
with a fourth control module that can automate analyses of 
large volumes of data. The modules are used to 1)  identify 
the subset of paired-end sequences that pass Illumina qual-
ity standards, 2) align paired-end reads into a single compos-
ite DNA sequence, and 3)  identify sequences that possess 
microsatellites (both simple and compound) conforming to 
user-specified parameters. The microsatellite search algorithm 
is extremely efficient, and we have used it to identify repeats 
with motifs from 2 to 25 bp in length. Each of the 3 analysis 
modules can also be used independently to provide greater 
flexibility or to work with FASTQ or FASTA files generated 
from other sequencing platforms (Roche 454, Ion Torrent, 
etc.). We demonstrate use of the program with data from 
the brine fly Ephydra packardi (Diptera: Ephydridae) and pro-
vide empirical timing benchmarks to illustrate program per-
formance on a common desktop computer environment. We 
further show that the Illumina platform is capable of identifying 
large numbers of microsatellites, even when using unenriched 
sample libraries and a very small percentage of the sequenc-
ing capacity from a single DNA sequencing run. All modules 
from SSR_pipeline are implemented in the Python program-
ming language and can therefore be used from nearly any 
computer operating system (Linux, Macintosh, and Windows).
Key words:  next-generation DNA sequencing, Python, simple 
sequence repeat

Next-generation sequencing platforms have opened the 
door to numerous technological and theoretical advances for 
the study of  natural populations. Reducing time and finan-
cial costs while simultaneously increasing the volume of  
data generated by multiple orders of  magnitude, sequence 
data generated by these platforms have broad utility and 
can be used to address numerous research topics (Ekblom 
and Galindo 2011; Haig et  al. 2011; Harrison and Kidner 
2011; Funk et al. 2012). Despite the appeal of  using high-
throughput DNA sequencing platforms to address research 
questions in ecology and evolutionary biology, we suggest 
that more conventional approaches, such as use of  microsat-
ellite loci, are nonetheless likely to remain common into the 
future. Microsatellite loci are broadly applicable to the fields 
of  molecular ecology, evolutionary biology, and conserva-
tion (Schlötterer and Pemberton 1998) and are often more 
than adequate for addressing questions related to genetic 
structure or population history (Selkoe and Toonen 2006). 
They can also excel in situations where interindividual rela-
tionships need to be identified (Jones and Ardren 2003) or 
for forensic investigations (Alacs et al. 2010). Furthermore, 
we note that capillary electrophoresis-based instruments, 
such as ABI 3100 or 3730 style machines, remain commonly 
available worldwide and allow researchers to perform micro-
satellite genotyping of  individuals using well-established and 
relatively inexpensive protocols. The availability of  these 
instruments and protocols will likely ensure that microsatel-
lite loci will continue to be commonplace for the foreseeable 
future.

Identification and development of  microsatellites was 
previously considered to be a time-consuming task (Glenn 
and Schable 2005). However, because of  the continued 
demand for microsatellite loci, next-generation sequencing 
platforms have become useful for circumventing many of  
the laborious stages of  the microsatellite marker develop-
ment process (Allentoft et  al. 2009; Mikheyev et  al. 2010; 
Jennings et al. 2011; Castoe et al. 2012; Zalapa et al. 2012). 
Given the large volumes of  DNA sequence data that are 
generated from high-throughput sequencing runs, computer 
programs can be used to efficiently identify and characterize 
microsatellite DNA using various computational approaches 
(see Du et al. 2013 for a comparison of  different programs). 
In this article, we describe a new computational infrastruc-
ture that is designed to identify microsatellite sequences. 
Our software differs from other programs in that it is opti-
mized for paired-end Illumina sequence reads in FASTQ 
format, the de facto standard for high-throughput sequence 
data (Cock et  al. 2010). However, the program’s modular 
design permits flexibility to deal with FASTQ formatted 
sequences produced by other high-throughput sequencing 
platforms (e.g., Roche 454, Ion Torrent, etc.). A  summary 
of  the program’s design, implementation, and performance 
is provided below.

Journal of Heredity 2013:104(6):881–885
doi:10.1093/jhered/est056
Advance Access publication September 19, 2013

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/104/6/881/798273 by guest on 09 April 2024

mailto:mpmiller@usgs.gov
http://datadryad.org/resource/doi:10.5061/dryad.n65k2
http://datadryad.org/resource/doi:10.5061/dryad.n65k2


Journal of Heredity ﻿

882

Program Description
SSR_pipeline is a small suite of  command line programs based 
on 3 separate analysis modules plus a fourth controller mod-
ule that can be used for analysis automation. The programs 
accept FASTQ (and in some cases FASTA) files as input. 
Given the large volume of  data produced by the Illumina 
platform (and all next-generation sequencing platforms in 
general), the program can optionally accept input files as 
compressed archives (gzip files) in order to reduce computer 
storage requirements. The program is ideally designed for 
analyses of  paired-end sequences from low-coverage whole 
genomic DNA libraries where the sequenced fragments 
have been sized to facilitate a paired-end alignment step (see 
Benchmarking and Code Performance for an example). Data 
from reduced sequence representation approaches (e.g., RAD 
sequencing; Miller et al. 2007) are also appropriate if  paired-
end sequences are generated. Individual program modules 
can also be applied outside of  the SSR_pipeline framework, as 
described in more detail below.

Module SSR_pipeline is designed to automate the opera-
tion of  the other 3 modules contained in the program. It 
is provided to allow users to go quickly and easily from raw 
Illumina DNA sequence data to sets of  candidate microsatel-
lite loci (Figure 1). Analyses will generally follow a 3-step pro-
cess that can be controlled and parameterized using a simple 
configuration file (see Supplementary Material online). First, 
module quality_sort is used to process raw FASTQ files that 
are output from Illumina runs. After a sequencing run, 
the Illumina CASSAVA software automatically performs 

a quality assessment step for each sequence generated. 
However, all sequence data (even those with failed quality 
grades) are included in the output files, and good versus bad 
sequences are identified only by a binary flag included in 
each FASTQ sequence header. Thus, quality_sort reads each 
sequence header to identify high-quality sequences and pre-
serves only the subset of  paired-end reads where sequence 
pairs have passed quality standards. This module may also be 
used independently outside of  the SSR_pipeline framework 
for general paired-end Illumina data filtering purposes (e.g., 
before performing a complete genome assembly, etc.).

Next, module joinseqs analyzes the output from quality_sort 
and aligns the 2 sequences from each paired-end read to pro-
duce a longer single DNA sequence. An additional extension 
to this module (joinseqs_ext) contains a set of  compiled func-
tions that provide substantial performance enhancements. 
The algorithm used by joinseqs is essentially a Python-based 
implementation of  the FLASH sequence alignment protocol, 
which possesses excellent performance and accuracy attrib-
utes (Magoč and Salzberg 2011). User-defined parameters 
for the alignment procedure include the minimum accept-
able overlap length, the maximum proportion of  mismatches 
allowed within the best overlap, and the maximum sequence 
overlap beyond which a penalized mismatch statistic is cal-
culated (Magoč and Salzberg 2011). Outside of  SSR_pipeline, 
joinseqs can be independently applied in any analysis workflow 
desired and may be a particularly effective replacement for 
the original FLASH program, especially if  developers wish 
to use the Python environment for their work.

Finally, module SSR_search is used to analyze the output 
from joinseqs and identify the set of  DNA sequences that 
contain microsatellites. It is based on an extremely efficient 
and flexible search algorithm that theoretically allows for 
detection of  any microsatellite motif  size desired. In prac-
tice, we experienced memory limitations on 32-bit systems 
when trying to detect motifs larger than 25 bp in size. These 
limitations are reduced on 64-bit systems. Users may specify 
search constraint parameters that determine repeat lengths, 
the minimum number of  desired repeats, and lengths of  ter-
minal flanking regions. The latter parameter can be used to 
help ensure that microsatellites are located between flank-
ing regions of  sufficient length and provide space for primer 
design. All sequences identified with SSR_search are annotated 
with information that summarizes sequence motifs, repeat 
length, and sequence positions of  repeats. The program also 
detects compound repeats when present. In addition to being 
used in the context of  SSR_pipeline, the SSR_search module 
has broader utility in that it can independently be used to 
analyze sequence data from any FASTA or FASTQ file, thus 
extending its utility beyond just the Illumina sequencing plat-
form for which it was originally designed.

Many programs that identify microsatellite sequences also 
automate the polymerase chain reaction (PCR) primer design 
process (see summary in Du et al. 2013). Because of  the large 
number of  microsatellites that can be identified with our 
approach (see Benchmarking and Code Performance), we are 
of  the opinion that a quick “manual evaluation” step is more 
useful than an automatic switch to generating PCR primers. 

Figure 1.  Overview of  workflow associated with using 
SSR_pipeline to identify microsatellite DNA. The procedure 
involves 1) quality filtering of  paired-end reads, 2) alignment 
of  paired-end reads, and 3) searches for microsatellites that 
conform to user-specified parameters. The figure provides an 
overview of  the complete analysis pipeline; however, individual 
modules can be used independently from one another for more 
customized analyses. See Program Description for more details.
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In practice, after performing analyses of  a high-throughput 
sequencing data set, we find it easiest to spend 5–10 min visu-
ally inspecting the output from the SSR_search module. Because 
of  the way that the program annotates the sequence headers, it 
is a simple process to quickly identify a few hundred sequences 
that appear to be more conducive to PCR primer design and 
that possess desirable features (i.e., longer simple repeats as 
opposed to shorter repeats or compound repeats). Once that 
small subset of  sequences is identified, existing online resources 
such as BatchPrimer3 (You et al. 2008) or PrimerQuest (http://
www.idtdna.com/Primerquest/Home/Index [last accessed 
26 August 2013]) can be used for PCR primer design.

Benchmarking and Code Performance
We illustrate the performance of  SSR_pipeline using data 
from the brine fly Ephydra packardi (Diptera: Ephydridae). An 
indexed genomic library was prepared using a TruSeq DNA 
library preparation kit (Illumina). Genomic DNA was frag-
mented using a Bioruptor sonicator (Diagenode, Inc.), and 
a 200-bp slice of  gel was subsequently extracted from a 1% 
agarose gel. Unlike other studies (e.g., Jennings et al. 2011), 
no enrichment for microsatellite DNA was performed. The 
E. packardi library was 1 of  21 separate equimolar libraries 
included within a single lane of  an Illumina HiSeq2000 flow 
cell. Thus, the sequencing effort for E. packardi represented 
~4.7% of  the sequencing capacity of  a single lane or ~0.59% 
of  the capacity of  the full flow cell. The E. packardi sequence 
data were generated using a paired-end HiSeq 2000 Illumina 
run (100-bp reads) and resulted in 9  015  656 raw paired-end 
reads once the sequencing run was completed (Short-Read 
Archive # SRA099359).

Table 1 presents empirical benchmarks that illustrate typi-
cal performance and outcomes of  analyses with SSR_pipe-
line. The analyses were performed on a Dell Optiplex 755 
desktop workstation (3 GHz Intel Core 2 Duo CPU with 2 
GB of  RAM) running 32-bit Microsoft Windows XP with 
Service Pack 3. Parameters for the paired-end alignment step 
included a minimum 10-bp overlap, maximum mismatch 
ratio of  0.25, and a maximum overlap that incurred a penal-
ized mismatch ratio of  70 bp. These general parameter values 
work well for alignment of  100-bp paired-end reads (Magoč 
and Salzberg 2011). Of  the more than 9 million paired-end 
reads introduced into the analysis, 91% were preserved after 
evaluation with module quality_sort. Approximately 4.9 mil-
lion reads (60% of  sequences that passed the quality assess-
ment step) were successfully aligned using module joinseqs. 
This percentage is consistent with the ~200-bp fragments 
selected during library construction.

Parameters for the microsatellite searches are listed in 
Table 1 and included the additional imposition of  40-bp flank-
ing regions as a search constraint. Results of  these searches 
demonstrate that large numbers of  candidate microsatellite 
loci can be readily identified using SSR_pipeline and that the 
analyses are easily capable of  running in a matter of  min-
utes on commonly available computer environments. Even 
when using a small fraction of  the full sequencing capacity of  
the Illumina platform, we still identified >60  000 sequences 
that contained microsatellites, with the majority of  those 
sequences containing di-, tri-, and tetranucleotide motifs 
that are most commonly used for genotyping purposes. Of  
these sequences, more than 10  000 contained microsatellites 
at locations between 40-bp flanking regions. This subset of  
sequences may be ideally targeted for formal microsatellite 

Table 1  Benchmark data and numerical examples of  outcomes from SSR_pipeline analyses of  an Illumina DNA sequence data set 
comprised of  9  015  656 paired-end reads from Ephydra packardi (Diptera: Ephydridae) 

Number of 
reads

Analysis time (min:s)

Compressed 
(gzipped) input files

Uncompressed 
input files

Initial number of  read-pairs 9 015 656 n.a. n.a.
Read-pairs passing quality standards 8 209 173 32:01 09:08
Joined read-pairs (FLASH algorithm) 4 919 005 33:42 14:11
Microsatellite search
  2-mers: min. repeats = 7 16 278 (6944) 02:45 02:08
  3-mers: min. repeats = 6 4824 (1821) 02:47 02:06
  4-mers: min. repeats = 5 24 865 (4608) 02:52 02:16
  5-mers: min. repeats = 4 9231 (714) 02:52 02:18
  6-mers: min. repeats = 4 2766 (152) 02:57 02:20
  7-mers: min. repeats = 4 153 (26) 02:57 02:19
  8-mers: min. repeats = 4 3260 (608) 03:02 02:27
  9-mers: min. repeats = 4 168 (38) 03:06 02:24
  10-mers: min. repeats = 4 230 (28) 03:10 02:30
  25-mers: min. repeats = 2 216 (85) 05:17 03:07

Analyses were performed using an Intel Core 2 Duo (3 GHz) desktop computer running 32-bit Microsoft Windows XP. In the “Microsatellite search” sec-
tion, values listed under the “number of  reads” column reflect the total number of  sequences out of  4  919  005 that contained the specified microsatellite 
type. Adjacent values in parentheses list the number of  sequences where microsatellites were located between 40-bp flanking sequences to facilitate primer 
design for downstream PCR-based analyses. We further present benchmark timings when input and output files from analyses were stored in compressed 
versus native forms. n.a., not applicable.
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locus development, as the presence of  the 40-bp flanking 
regions may help facilitate design of  PCR primers for geno-
typing assays.

Data in Table 1 also highlight the tradeoff  between pro-
gram execution speed and use of  compressed (gzipped) ver-
sus uncompressed files. Program execution is slower when 
analyzing compressed files because of  the computational 
overhead required to dynamically extract and uncompress 
data. However, use of  compressed files may be advantageous 
if  data storage space is limited. For example, the uncom-
pressed FASTQ data associated with the 9  015  656 paired-
end reads used in the first stage of  the analysis requires 4.4 
GB of  storage space, and downstream uncompressed files 
generated by SSR_pipeline would require space for an addi-
tional 7.5 GB of  information. By contrast, the input files 
would require 1.5 GB of  storage if  compressed, and SSR_
pipeline’s output would only generate an additional 2.6 GB of  
compressed data after the analysis is completed.

Comparison with Other Programs
SSR_pipeline is unique in that it is optimized for use with a 
particular sequencing platform (paired-end Illumina runs). To 
our knowledge, no other program combines its capabilities 
(sequence quality sorts, paired-end alignments, and micros-
atellite searches) into a single automated pipeline. However, 
numerous programs exist that can facilitate identification of  
microsatellite sequences. Given that module SSR_search can be 
used independently of  the full automated pipeline, we provide 
a summary of  the modules capabilities in comparison to other 
programs that can perform similar analyses. The following 
summary of  SSR_search extends Table 1 of  Du et al. (2013), 
which provides an excellent overview of  9 different micros-
atellite detection programs: SSR_search is capable of  finding 
simple and compound microsatellites but will not identify 
imperfect microsatellite sequences. It is written in the Python 
programming language and can be used under most common 
operating system (Windows, Linux, and Mac). The program is 
run from a command line/console user interface and includes 
features that allow it to batch-process arbitrary numbers of  
file sets. Lengths of  terminal flanking sequences can be speci-
fied as an analysis parameter to facilitate downstream primer 
development, and basic summary statistics of  the microsatel-
lite search procedure are recorded in text-based log files. The 
program does not create formal databases that contain search 
results nor does the program automate the process of  inter-
facing with Primer3 (Rozen and Skaletsky 2000).

Implementation and Availability
SSR_pipeline is implemented in the Python programming 
language (www.python.org), making it capable of  running 
on most common computing platforms (Linux, Macintosh, 
and Windows). The program, its documentation, and sam-
ple data files can be downloaded from http://pubs.usgs.
gov/ds/778/ [last accessed 26 August 2013]. The Python 

code from the joinseqs module is enhanced for performance 
speed by a compiled extension module created using Cython 
(Behnel et al. 2011; www.cython.org [last accessed 26 August 
2013]). Instructions for compiling this extension module 
with freely available tools (the Gnu Compiler Collection or 
Microsoft Visual C++ Express) are provided in the docu-
mentation. The pure Python modules combined with a copy 
of  the self-compiled extension module will be the preferred 
choice for most users. However, for users who are unable to 
compile the extension module or are unable to install Python, 
we have also made available sets of  prepackaged execut-
able files created using PyInstaller (www.pyinstaller.org [last 
accessed 26 August 2013]). These executables contain all 
Python scripts, extension modules, and a minimal installa-
tion of  any necessary Python runtime libraries in a single 
file. The Windows executables were created using Python 
2.7.3 under 32-bit Windows XP and can be used under any 
later Windows version (we have tested with 32-bit Windows 
XP and Vista and 64-bit Windows 7 without any issues). 
32-bit Linux executables are available that were built under 
CentOS 5.8 using Python 2.4 and glibc (Gnu C Library) ver-
sion 2.5. These should work with any 32-bit Linux as long as 
it is using glibc version 2.5 or later. 64-bit Linux executables 
were built under CentOS 6.2 using Python 2.6.6 and glibc 
version 2.12. 64-bit OS X binaries were built under OSX 
10.8.2 using Apple’s system Python (version 2.7.2) and are 
compatible with OS X 10.6 and later.

Supplementary Material
Supplementary material can be found at http://www.jhered.
oxfordjournals.org/.
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