
881

Published by Oxford University Press on behalf of the American Genetic
Association 2013. This work is written by (a) US Government employee(s)

and is in the public domain in the US.

Computer Note

SSR_pipeline: A Bioinformatic
Infrastructure for Identifying
Microsatellites From Paired-End
Illumina High-Throughput DNA
Sequencing Data
Mark P. Miller, Brian J. Knaus, Thomas
D. Mullins, and Susan M. Haig

From the U.S. Geological Survey, Forest and Rangeland
Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis,
OR 97331 (Miller, Mullins, and Haig); and the Horticultural
Crop Research Unit, USDA-ARS, Corvallis, OR (Knaus).

Address correspondence to Mark P. Miller at the address
above, or e-mail: mpmiller@usgs.gov.

Data deposited at Dryad: http://dx.doi.org/10.5061/dryad.
n65k2

SSR_pipeline is a flexible set of programs designed to effi-
ciently identify simple sequence repeats (e.g., microsatellites)
from paired-end high-throughput Illumina DNA sequencing
data. The program suite contains 3 analysis modules along
with a fourth control module that can automate analyses of
large volumes of data. The modules are used to 1) identify
the subset of paired-end sequences that pass Illumina qual-
ity standards, 2) align paired-end reads into a single compos-
ite DNA sequence, and 3) identify sequences that possess
microsatellites (both simple and compound) conforming to
user-specified parameters. The microsatellite search algorithm
is extremely efficient, and we have used it to identify repeats
with motifs from 2 to 25 bp in length. Each of the 3 analysis
modules can also be used independently to provide greater
flexibility or to work with FASTQ or FASTA files generated
from other sequencing platforms (Roche 454, Ion Torrent,
etc.). We demonstrate use of the program with data from
the brine fly Ephydra packardi (Diptera: Ephydridae) and pro-
vide empirical timing benchmarks to illustrate program per-
formance on a common desktop computer environment. We
further show that the Illumina platform is capable of identifying
large numbers of microsatellites, even when using unenriched
sample libraries and a very small percentage of the sequenc-
ing capacity from a single DNA sequencing run. All modules
from SSR_pipeline are implemented in the Python program-
ming language and can therefore be used from nearly any
computer operating system (Linux, Macintosh, and Windows).
Key words:  next-generation DNA sequencing, Python, simple
sequence repeat

Next-generation sequencing platforms have opened the
door to numerous technological and theoretical advances for
the study of natural populations. Reducing time and finan-
cial costs while simultaneously increasing the volume of
data generated by multiple orders of magnitude, sequence
data generated by these platforms have broad utility and
can be used to address numerous research topics (Ekblom
and Galindo 2011; Haig et al. 2011; Harrison and Kidner
2011; Funk et al. 2012). Despite the appeal of using high-
throughput DNA sequencing platforms to address research
questions in ecology and evolutionary biology, we suggest
that more conventional approaches, such as use of microsat-
ellite loci, are nonetheless likely to remain common into the
future. Microsatellite loci are broadly applicable to the fields
of molecular ecology, evolutionary biology, and conserva-
tion (Schlötterer and Pemberton 1998) and are often more
than adequate for addressing questions related to genetic
structure or population history (Selkoe and Toonen 2006).
They can also excel in situations where interindividual rela-
tionships need to be identified (Jones and Ardren 2003) or
for forensic investigations (Alacs et al. 2010). Furthermore,
we note that capillary electrophoresis-based instruments,
such as ABI 3100 or 3730 style machines, remain commonly
available worldwide and allow researchers to perform micro-
satellite genotyping of individuals using well-established and
relatively inexpensive protocols. The availability of these
instruments and protocols will likely ensure that microsatel-
lite loci will continue to be commonplace for the foreseeable
future.

Identification and development of microsatellites was
previously considered to be a time-consuming task (Glenn
and Schable 2005). However, because of the continued
demand for microsatellite loci, next-generation sequencing
platforms have become useful for circumventing many of
the laborious stages of the microsatellite marker develop-
ment process (Allentoft et al. 2009; Mikheyev et al. 2010;
Jennings et al. 2011; Castoe et al. 2012; Zalapa et al. 2012).
Given the large volumes of DNA sequence data that are
generated from high-throughput sequencing runs, computer
programs can be used to efficiently identify and characterize
microsatellite DNA using various computational approaches
(see Du et al. 2013 for a comparison of different programs).
In this article, we describe a new computational infrastruc-
ture that is designed to identify microsatellite sequences.
Our software differs from other programs in that it is opti-
mized for paired-end Illumina sequence reads in FASTQ
format, the de facto standard for high-throughput sequence
data (Cock et al. 2010). However, the program’s modular
design permits flexibility to deal with FASTQ formatted
sequences produced by other high-throughput sequencing
platforms (e.g., Roche 454, Ion Torrent, etc.). A summary
of the program’s design, implementation, and performance
is provided below.

Journal of Heredity 2013:104(6):881–885
doi:10.1093/jhered/est056
Advance Access publication September 19, 2013

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/104/6/881/798273 by guest on 09 April 2024

mailto:mpmiller@usgs.gov
http://datadryad.org/resource/doi:10.5061/dryad.n65k2
http://datadryad.org/resource/doi:10.5061/dryad.n65k2

Journal of Heredity ﻿

882

Program Description
SSR_pipeline is a small suite of command line programs based
on 3 separate analysis modules plus a fourth controller mod-
ule that can be used for analysis automation. The programs
accept FASTQ (and in some cases FASTA) files as input.
Given the large volume of data produced by the Illumina
platform (and all next-generation sequencing platforms in
general), the program can optionally accept input files as
compressed archives (gzip files) in order to reduce computer
storage requirements. The program is ideally designed for
analyses of paired-end sequences from low-coverage whole
genomic DNA libraries where the sequenced fragments
have been sized to facilitate a paired-end alignment step (see
Benchmarking and Code Performance for an example). Data
from reduced sequence representation approaches (e.g., RAD
sequencing; Miller et al. 2007) are also appropriate if paired-
end sequences are generated. Individual program modules
can also be applied outside of the SSR_pipeline framework, as
described in more detail below.

Module SSR_pipeline is designed to automate the opera-
tion of the other 3 modules contained in the program. It
is provided to allow users to go quickly and easily from raw
Illumina DNA sequence data to sets of candidate microsatel-
lite loci (Figure 1). Analyses will generally follow a 3-step pro-
cess that can be controlled and parameterized using a simple
configuration file (see Supplementary Material online). First,
module quality_sort is used to process raw FASTQ files that
are output from Illumina runs. After a sequencing run,
the Illumina CASSAVA software automatically performs

a quality assessment step for each sequence generated.
However, all sequence data (even those with failed quality
grades) are included in the output files, and good versus bad
sequences are identified only by a binary flag included in
each FASTQ sequence header. Thus, quality_sort reads each
sequence header to identify high-quality sequences and pre-
serves only the subset of paired-end reads where sequence
pairs have passed quality standards. This module may also be
used independently outside of the SSR_pipeline framework
for general paired-end Illumina data filtering purposes (e.g.,
before performing a complete genome assembly, etc.).

Next, module joinseqs analyzes the output from quality_sort
and aligns the 2 sequences from each paired-end read to pro-
duce a longer single DNA sequence. An additional extension
to this module (joinseqs_ext) contains a set of compiled func-
tions that provide substantial performance enhancements.
The algorithm used by joinseqs is essentially a Python-based
implementation of the FLASH sequence alignment protocol,
which possesses excellent performance and accuracy attrib-
utes (Magoč and Salzberg 2011). User-defined parameters
for the alignment procedure include the minimum accept-
able overlap length, the maximum proportion of mismatches
allowed within the best overlap, and the maximum sequence
overlap beyond which a penalized mismatch statistic is cal-
culated (Magoč and Salzberg 2011). Outside of SSR_pipeline,
joinseqs can be independently applied in any analysis workflow
desired and may be a particularly effective replacement for
the original FLASH program, especially if developers wish
to use the Python environment for their work.

Finally, module SSR_search is used to analyze the output
from joinseqs and identify the set of DNA sequences that
contain microsatellites. It is based on an extremely efficient
and flexible search algorithm that theoretically allows for
detection of any microsatellite motif size desired. In prac-
tice, we experienced memory limitations on 32-bit systems
when trying to detect motifs larger than 25 bp in size. These
limitations are reduced on 64-bit systems. Users may specify
search constraint parameters that determine repeat lengths,
the minimum number of desired repeats, and lengths of ter-
minal flanking regions. The latter parameter can be used to
help ensure that microsatellites are located between flank-
ing regions of sufficient length and provide space for primer
design. All sequences identified with SSR_search are annotated
with information that summarizes sequence motifs, repeat
length, and sequence positions of repeats. The program also
detects compound repeats when present. In addition to being
used in the context of SSR_pipeline, the SSR_search module
has broader utility in that it can independently be used to
analyze sequence data from any FASTA or FASTQ file, thus
extending its utility beyond just the Illumina sequencing plat-
form for which it was originally designed.

Many programs that identify microsatellite sequences also
automate the polymerase chain reaction (PCR) primer design
process (see summary in Du et al. 2013). Because of the large
number of microsatellites that can be identified with our
approach (see Benchmarking and Code Performance), we are
of the opinion that a quick “manual evaluation” step is more
useful than an automatic switch to generating PCR primers.

Figure 1.  Overview of workflow associated with using
SSR_pipeline to identify microsatellite DNA. The procedure
involves 1) quality filtering of paired-end reads, 2) alignment
of paired-end reads, and 3) searches for microsatellites that
conform to user-specified parameters. The figure provides an
overview of the complete analysis pipeline; however, individual
modules can be used independently from one another for more
customized analyses. See Program Description for more details.

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/104/6/881/798273 by guest on 09 April 2024

http://jhered.oxfordjournals.org/lookup/suppl/doi:10.1093/jhered/est056/-/DC1

Miller et al. • SSR_pipeline

883

In practice, after performing analyses of a high-throughput
sequencing data set, we find it easiest to spend 5–10 min visu-
ally inspecting the output from the SSR_search module. Because
of the way that the program annotates the sequence headers, it
is a simple process to quickly identify a few hundred sequences
that appear to be more conducive to PCR primer design and
that possess desirable features (i.e., longer simple repeats as
opposed to shorter repeats or compound repeats). Once that
small subset of sequences is identified, existing online resources
such as BatchPrimer3 (You et al. 2008) or PrimerQuest (http://
www.idtdna.com/Primerquest/Home/Index [last accessed
26 August 2013]) can be used for PCR primer design.

Benchmarking and Code Performance
We illustrate the performance of SSR_pipeline using data
from the brine fly Ephydra packardi (Diptera: Ephydridae). An
indexed genomic library was prepared using a TruSeq DNA
library preparation kit (Illumina). Genomic DNA was frag-
mented using a Bioruptor sonicator (Diagenode, Inc.), and
a 200-bp slice of gel was subsequently extracted from a 1%
agarose gel. Unlike other studies (e.g., Jennings et al. 2011),
no enrichment for microsatellite DNA was performed. The
E. packardi library was 1 of 21 separate equimolar libraries
included within a single lane of an Illumina HiSeq2000 flow
cell. Thus, the sequencing effort for E. packardi represented
~4.7% of the sequencing capacity of a single lane or ~0.59%
of the capacity of the full flow cell. The E. packardi sequence
data were generated using a paired-end HiSeq 2000 Illumina
run (100-bp reads) and resulted in 9  015  656 raw paired-end
reads once the sequencing run was completed (Short-Read
Archive # SRA099359).

Table 1 presents empirical benchmarks that illustrate typi-
cal performance and outcomes of analyses with SSR_pipe-
line. The analyses were performed on a Dell Optiplex 755
desktop workstation (3 GHz Intel Core 2 Duo CPU with 2
GB of RAM) running 32-bit Microsoft Windows XP with
Service Pack 3. Parameters for the paired-end alignment step
included a minimum 10-bp overlap, maximum mismatch
ratio of 0.25, and a maximum overlap that incurred a penal-
ized mismatch ratio of 70 bp. These general parameter values
work well for alignment of 100-bp paired-end reads (Magoč
and Salzberg 2011). Of the more than 9 million paired-end
reads introduced into the analysis, 91% were preserved after
evaluation with module quality_sort. Approximately 4.9 mil-
lion reads (60% of sequences that passed the quality assess-
ment step) were successfully aligned using module joinseqs.
This percentage is consistent with the ~200-bp fragments
selected during library construction.

Parameters for the microsatellite searches are listed in
Table 1 and included the additional imposition of 40-bp flank-
ing regions as a search constraint. Results of these searches
demonstrate that large numbers of candidate microsatellite
loci can be readily identified using SSR_pipeline and that the
analyses are easily capable of running in a matter of min-
utes on commonly available computer environments. Even
when using a small fraction of the full sequencing capacity of
the Illumina platform, we still identified >60  000 sequences
that contained microsatellites, with the majority of those
sequences containing di-, tri-, and tetranucleotide motifs
that are most commonly used for genotyping purposes. Of
these sequences, more than 10  000 contained microsatellites
at locations between 40-bp flanking regions. This subset of
sequences may be ideally targeted for formal microsatellite

Table 1  Benchmark data and numerical examples of outcomes from SSR_pipeline analyses of an Illumina DNA sequence data set
comprised of 9  015  656 paired-end reads from Ephydra packardi (Diptera: Ephydridae)

Number of
reads

Analysis time (min:s)

Compressed
(gzipped) input files

Uncompressed
input files

Initial number of read-pairs 9 015 656 n.a. n.a.
Read-pairs passing quality standards 8 209 173 32:01 09:08
Joined read-pairs (FLASH algorithm) 4 919 005 33:42 14:11
Microsatellite search
  2-mers: min. repeats = 7 16 278 (6944) 02:45 02:08
  3-mers: min. repeats = 6 4824 (1821) 02:47 02:06
  4-mers: min. repeats = 5 24 865 (4608) 02:52 02:16
  5-mers: min. repeats = 4 9231 (714) 02:52 02:18
  6-mers: min. repeats = 4 2766 (152) 02:57 02:20
  7-mers: min. repeats = 4 153 (26) 02:57 02:19
  8-mers: min. repeats = 4 3260 (608) 03:02 02:27
  9-mers: min. repeats = 4 168 (38) 03:06 02:24
  10-mers: min. repeats = 4 230 (28) 03:10 02:30
  25-mers: min. repeats = 2 216 (85) 05:17 03:07

Analyses were performed using an Intel Core 2 Duo (3 GHz) desktop computer running 32-bit Microsoft Windows XP. In the “Microsatellite search” sec-
tion, values listed under the “number of reads” column reflect the total number of sequences out of 4  919  005 that contained the specified microsatellite
type. Adjacent values in parentheses list the number of sequences where microsatellites were located between 40-bp flanking sequences to facilitate primer
design for downstream PCR-based analyses. We further present benchmark timings when input and output files from analyses were stored in compressed
versus native forms. n.a., not applicable.

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/104/6/881/798273 by guest on 09 April 2024

http://www.idtdna.com/Primerquest/Home/Index
http://www.idtdna.com/Primerquest/Home/Index

Journal of Heredity ﻿

884

locus development, as the presence of the 40-bp flanking
regions may help facilitate design of PCR primers for geno-
typing assays.

Data in Table 1 also highlight the tradeoff between pro-
gram execution speed and use of compressed (gzipped) ver-
sus uncompressed files. Program execution is slower when
analyzing compressed files because of the computational
overhead required to dynamically extract and uncompress
data. However, use of compressed files may be advantageous
if data storage space is limited. For example, the uncom-
pressed FASTQ data associated with the 9  015  656 paired-
end reads used in the first stage of the analysis requires 4.4
GB of storage space, and downstream uncompressed files
generated by SSR_pipeline would require space for an addi-
tional 7.5 GB of information. By contrast, the input files
would require 1.5 GB of storage if compressed, and SSR_
pipeline’s output would only generate an additional 2.6 GB of
compressed data after the analysis is completed.

Comparison with Other Programs
SSR_pipeline is unique in that it is optimized for use with a
particular sequencing platform (paired-end Illumina runs). To
our knowledge, no other program combines its capabilities
(sequence quality sorts, paired-end alignments, and micros-
atellite searches) into a single automated pipeline. However,
numerous programs exist that can facilitate identification of
microsatellite sequences. Given that module SSR_search can be
used independently of the full automated pipeline, we provide
a summary of the modules capabilities in comparison to other
programs that can perform similar analyses. The following
summary of SSR_search extends Table 1 of Du et al. (2013),
which provides an excellent overview of 9 different micros-
atellite detection programs: SSR_search is capable of finding
simple and compound microsatellites but will not identify
imperfect microsatellite sequences. It is written in the Python
programming language and can be used under most common
operating system (Windows, Linux, and Mac). The program is
run from a command line/console user interface and includes
features that allow it to batch-process arbitrary numbers of
file sets. Lengths of terminal flanking sequences can be speci-
fied as an analysis parameter to facilitate downstream primer
development, and basic summary statistics of the microsatel-
lite search procedure are recorded in text-based log files. The
program does not create formal databases that contain search
results nor does the program automate the process of inter-
facing with Primer3 (Rozen and Skaletsky 2000).

Implementation and Availability
SSR_pipeline is implemented in the Python programming
language (www.python.org), making it capable of running
on most common computing platforms (Linux, Macintosh,
and Windows). The program, its documentation, and sam-
ple data files can be downloaded from http://pubs.usgs.
gov/ds/778/ [last accessed 26 August 2013]. The Python

code from the joinseqs module is enhanced for performance
speed by a compiled extension module created using Cython
(Behnel et al. 2011; www.cython.org [last accessed 26 August
2013]). Instructions for compiling this extension module
with freely available tools (the Gnu Compiler Collection or
Microsoft Visual C++ Express) are provided in the docu-
mentation. The pure Python modules combined with a copy
of the self-compiled extension module will be the preferred
choice for most users. However, for users who are unable to
compile the extension module or are unable to install Python,
we have also made available sets of prepackaged execut-
able files created using PyInstaller (www.pyinstaller.org [last
accessed 26 August 2013]). These executables contain all
Python scripts, extension modules, and a minimal installa-
tion of any necessary Python runtime libraries in a single
file. The Windows executables were created using Python
2.7.3 under 32-bit Windows XP and can be used under any
later Windows version (we have tested with 32-bit Windows
XP and Vista and 64-bit Windows 7 without any issues).
32-bit Linux executables are available that were built under
CentOS 5.8 using Python 2.4 and glibc (Gnu C Library) ver-
sion 2.5. These should work with any 32-bit Linux as long as
it is using glibc version 2.5 or later. 64-bit Linux executables
were built under CentOS 6.2 using Python 2.6.6 and glibc
version 2.12. 64-bit OS X binaries were built under OSX
10.8.2 using Apple’s system Python (version 2.7.2) and are
compatible with OS X 10.6 and later.

Supplementary Material
Supplementary material can be found at http://www.jhered.
oxfordjournals.org/.

Funding
U.S. Geological Survey, Forest and Rangeland Ecosystem
Science Center; the U.S. Forest Service.

Acknowledgments
We thank R. Cronn and T. Jennings for helpful discussions in early phases
of software development. R. Cornman provided helpful comments on
an earlier manuscript draft. Any use of trade, product, or firm names is
for descriptive purposes only and does not imply endorsement by the US
Government.

References
Alacs EA, Georges A, FitzSimmons NN, Robertson J. 2010. DNA detective:
a review of molecular approaches to wildlife forensics. Forensic Sci Med
Pathol. 6:180–194.

Allentoft M, Schuster SC, Holdaway RN, Hale ML, McLay E, Oskam C,
Gilbert MTP, Spencer P, Willerslev E, Bunce M. 2009. Identification of
microsatellites from an extinct moa species using high-throughput (454)
sequence data. Biotechniques. 46:195–200.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. 2011.
Cython: the best of both worlds. Comput Sci Eng. 13:31–39.

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/104/6/881/798273 by guest on 09 April 2024

http://www.python.org
http://pubs.usgs.gov/ds/778/
http://pubs.usgs.gov/ds/778/
http://www.cython.org
http://www.pyinstaller.org
http://jhered.oxfordjournals.org/lookup/suppl/doi:10.1093/jhered/est056/-/DC1
http://jhered.oxfordjournals.org/lookup/suppl/doi:10.1093/jhered/est056/-/DC1

Miller et al. • SSR_pipeline

885

Castoe TA, Poole AW, de Koning AP, Jones KL, Tomback DF, Oyler-
McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, et al. 2012. Rapid
microsatellite identification from Illumina paired-end genomic sequencing
in two birds and a snake. PLoS One. 7:e30953.

Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. 2010. The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/
Illumina FASTQ variants. Nucleic Acids Res. 38:1767–1771.

Du L, Li Y, Zhang X, Yue B. 2013. MSDB: a user-friendly program for
reporting distribution and building databases of microsatellites from
genome sequences. J Hered. 104:154–157.

Ekblom R, Galindo J. 2011. Applications of next generation sequencing in
molecular ecology of non-model organisms. Heredity. 107:1–15.

Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. 2012. Harnessing
genomics for delineating conservation units. Trends Ecol Evol. 27:489–496.

Glenn TC, Schable NA. 2005. Isolating microsatellite DNA loci. Methods
Enzymol. 395:202–222.

Haig SM, Bronaugh W, Crowhurst R, D’Elia J, Eagles-Smith C, Epps C,
Knaus B, Miller MP, Moses M, Oyler-McCance S, et al. 2011. Applications
of genetics in avian conservation. Auk. 128:205–229.

Harrison N, Kidner CA. 2011. Next-generation sequencing and systematics:
what can a billion base pairs of DNA sequence data do for you? Taxon.
60:1552–1566.

Jennings TN, Knaus BJ, Mullins TD, Haig SM, Cronn RC. 2011. Multiplexed
microsatellite recovery using massively parallel sequencing. Mol Ecol Resour.
11:1060–1067.

Jones AG, Ardren WR. 2003. Methods of parentage analysis in natural pop-
ulations. Mol Ecol. 12:2511–2523.

Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads
to improve genome assemblies. Bioinformatics. 27:2957–2963.

Mikheyev AS, Vo T, Wee B, Singer MC, Parmesan C. 2010. Rapid micro-
satellite isolation from a butterfly by de novo transcriptome sequencing:
performance and a comparison with AFLP-derived distances. PLoS One.
5:e11212.

Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. 2007.
Rapid and cost-effective polymorphism identification and genotyping
using restriction site associated DNA (RAD) markers. Genome Res.
17:240–248.

Rozen S, Skaletsky HJ. 2000. Primer3 on the WWW for general users and
for biologist programmers. In: Krawetz S, Misener S, editors. Bioinformatics
methods and protocols: methods in molecular biology. Totowa (NJ):
Humana Press. p. 365–386.

Schlötterer C, Pemberton J. 1998. The use of microsatellites for genetic anal-
ysis of natural populations—a critical review. In: DeSalle R, Schierwater B,
editors. Molecular approaches to ecology and evolution. Basel (Switzerland):
Birkhäuser Verlag. p. 71–86.

Selkoe KA, Toonen RJ. 2006. Microsatellites for ecologists: a practical guide
to using and evaluating microsatellite markers. Ecol Lett. 9:615–629.

You FM, Huo N, Gu YQ, Luo M-C, Ma Y, Hane D, Lazo GR, Dvorak J,
Anderson OD. 2008. BatchPrimer3: a high throughput web application for
PCR and sequencing primer design. BMC Bioinformatics. 9:253.

Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B,
Harbut R, Simon P. 2012. Using next-generation sequencing approaches to
isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot.
99:193–208.

Received April 18, 2013; First decision May 16, 2013;
Accepted August 2, 2013

Corresponding Editor: Howard Ross

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/104/6/881/798273 by guest on 09 April 2024

