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Abstract

The snow leopard, Panthera uncia, is an elusive high-altitude specialist that inhabits vast, 
inaccessible habitat across Asia. We conducted the first range-wide genetic assessment of snow 
leopards based on noninvasive scat surveys. Thirty-three microsatellites were genotyped and 
a total of 683  bp of mitochondrial DNA sequenced in 70 individuals. Snow leopards exhibited 
low genetic diversity at microsatellites (AN  =  5.8, HO  =  0.433, HE  =  0.568), virtually no mtDNA 
variation, and underwent a bottleneck in the Holocene (∼8000 years ago) coinciding with increased 
temperatures, precipitation, and upward treeline shift in the Tibetan Plateau. Multiple analyses 
supported 3 primary genetic clusters: (1) Northern (the Altai region), (2) Central (core Himalaya 
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and Tibetan Plateau), and (3) Western (Tian Shan, Pamir, trans-Himalaya regions). Accordingly, 
we recognize 3 subspecies, Panthera uncia irbis (Northern group), Panthera uncia uncia (Western 
group), and Panthera uncia uncioides (Central group) based upon genetic distinctness, low levels 
of admixture, unambiguous population assignment, and geographic separation. The patterns of 
variation were consistent with desert-basin “barrier effects” of the Gobi isolating the northern 
subspecies (Mongolia), and the trans-Himalaya dividing the central (Qinghai, Tibet, Bhutan, and 
Nepal) and western subspecies (India, Pakistan, Tajikistan, and Kyrgyzstan). Hierarchical Bayesian 
clustering analysis revealed additional subdivision into a minimum of 6 proposed management 
units: western Mongolia, southern Mongolia, Tian Shan, Pamir-Himalaya, Tibet-Himalaya, and 
Qinghai, with spatial autocorrelation suggesting potential connectivity by dispersing individuals 
up to ∼400 km. We provide a foundation for global conservation of snow leopard subspecies, and 
set the stage for in-depth landscape genetics and genomic studies.

Subject areas: Population structure and phylogeography; Conservation genetics and biodiversity
Keywords:  Asia, genetics, microsatellites, Panthera uncia, phylogeography, snow leopard, subspecies

The snow leopard (Panthera uncia), considered the world’s most 
elusive large felid, inhabits a vast area (∼1.6 million km2) across 
12 countries in Asia (Jackson et  al. 2008; McCarthy et  al. 2016) 
(Figure  1). It is a high-altitude specialist that primarily occupies 
mountains above 3000 m in elevation (Hemmer 1972). This region 
is characterized by low oxygen levels, temperature extremes, aridity, 
low productivity, and harsh climatic condition, yet harbors many 
distinctive taxa, including the Tibetan fox (Vulpes ferrilata, Harris 
2014), Chinese desert cat (Felis bieti, Riordan et  al. 2015), argali 
(Ovis ammon, Harris and Reading 2008), markhor (Capra falcon-
eri, Michel and Rosen 2015), urial (Ovis orientalis, Valdez 2008), 
and Tibetan antelope (Pantholops hodgsonii, IUCN SSC Antelope 
Specialist Group 2016). The endangered snow leopard is a flagship 
species for Asia, the largest carnivore in its high-altitude communi-
ties, and yet is under substantial threat throughout its range (Jackson 
et  al. 2010; Rosen and Zeller 2016). Research on distribution 
(Jackson et al. 2006, Janecka et al. 2008, 2011a; McCarthy et al. 
2008; Lovari et al. 2009; Karmacharya et al. 2011; Alexander et al. 
2016), ecology (Jackson and Ahlborn 1989; McCarthy et al. 2005; 
Anwar et al. 2011; Lovari et al. 2013; Johansson et al. 2016; Chetri 
et al. 2017), adaptation to high-altitude (Cho et al. 2013; Janecka 
et al. 2015), and conservation (Hussain 2000; Mishra et al. 2003; 
Jackson and Wangchuk 2004; Rosen et  al. 2012; Li et  al. 2014; 
Kachel et al. 2016) has provided many insights into snow leopard 
abundance, habitat use, behavior, movement patterns, and feeding 
ecology that are important for guiding conservation and manage-
ment actions needed to ensure its persistence.

Although snow leopards prefer high-altitude mountainous habi-
tat (e.g., Himalaya, Pamir, Alay, Kunlun, Tian Shan) (Hemmer 1972), 
they also occur in lower, isolated massifs (e.g., Tost and Noyon Uul 
in the southern Mongolia, Janecka et  al. 2011a; Johansson et  al. 
2016) and have been observed moving through flat or rolling ter-
rain (Schaller 1998; McCarthy et al. 2005; Johansson et al. 2016). 
However, limited information is available on the level of connectivity 
among snow leopard populations. Two recent studies modeled snow 
leopard habitat and connectivity primarily based on topography and 
climate (Riordan et al. 2015; Li et al. 2016b). Genetic analyses are 
needed to provide more direct information on permeability of the 
landscape, dispersal, and demographic fluctuations, and to identify 
barriers to movement (Avise 1994, 2000).

Taxonomic classification, phylogeography, and population struc-
ture serve as the basis for conservation, management, and research 

(Wilson and Brown 1953; Avise 1990; Schwartz et al. 2007). Both 
ecological and molecular data are needed to understand the species, 
prioritize populations for conservation, and develop recovery or 
management plans (O’Brien 1991; Avise 1994; Moritz 1994; Haig 
et al. 2006; Rodgers and Janecka 2013). The snow leopard remains 
the last large felid to be the subject of a comprehensive subspecies 
assessment, phylogeographic analysis, and population structure 
study. Previous range-wide phylogeography studies of felids have 
primarily relied on samples from captive animals, telemetry studies, 
hunter-harvested individuals, or museum specimens (Culver et  al. 
2000; Eizirik et al. 2001; Uphyrkina et al. 2001; Luo et al. 2004). 

Figure  1. Locations of 21 sampling localities for snow leopards (n  =  70) 
included in this study. Snow leopard DNA was obtained noninvasively across 
7 regions including western Mongolia (1. Tsagaan Shuvuut, n = 6; 2. Turgen, 
n = 5; 3. Jargalant, n = 4), southern Mongolia (4. Baga Bogd, n = 3; 5. Arts 
Bogd, n = 3; 6. Tost and Noyon, n = 8; 7. Western Beauties, n = 2; 8. Eastern 
Beauties, n  =  1), northern Qinghai (9. Tianjun, n  =  2; 10. Akesai, n  =  1; 11. 
Dulan, n  =  3), southern Qinghai (12. Zhiduo, n  =  2; 13. Nangqian, n  =  2), 
Tibet-Nepal-Bhutan (14. Jiduo, n = 1; 15. Shenza, n = 2), (16. Gasa, n = 4; 17. 
Kangchenjunga, n = 6), India-Pakistan (18. Ladakh, n = 4; 19. Baltistan, n = 4), 
Tajikistan-Kyrgyzstan (20. Murghab, n = 4; 21. Tian Shan, n = 4). Snow leopard 
range map was compiled by the International Snow Leopard Trust and the 
World Conservation Society in 2008 (version 2016-3).
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The gap in knowledge for snow leopards is a direct result of the 
following challenges: 1)  they inhabit remote, inaccessible regions 
that are often politically unstable, 2)  opportunities for radio/GPS 
telemetry are limited because they are difficult to observe and trap 
in the wild, and 3) most founders of the captive population have an 
unknown origin.

Noninvasive genetic sampling via collection of scat along wildlife 
trails and marking sites are an effective and efficient way to survey 
snow leopard populations and have become an important approach 
for studying snow leopards and numerous other felids (e.g., Janecka 
et al. 2008; Gilad et al. 2011; Rodgers and Janecka 2013; Rodgers 
et al. 2015; Wultsch et al. 2016a, 2016b). Our collaborative efforts 
to conduct noninvasive surveys of this species have yielded snow 
leopard DNA samples from all major parts of the range. Here, we 
present the results of the first, to our knowledge, range-wide snow 
leopard genetic study to establish a framework for understanding its 
taxonomy, population history, and phylogeography using noninva-
sively collected scat samples.

Materials and Methods

Sample Collection, DNA Extraction, and Genotyping
We collected snow leopard scat in 21 localities distributed through-
out the range (Figure 1; Supplementary Table S1) using noninvasive 
genetic surveys following Janecka et  al. (2008, 2011a). DNA was 
extracted with the Qiagen DNA Stool Kit (Qiagen, Inc., Valencia, 
CA). Snow leopard scats were identified by amplifying and align-
ing a 96  bp fragment of the mitochondrial cytochrome b gene 
with reference sequences following Janecka et  al. (2008), or via a 
species-specific PCR assay from Janecka et al. (2014). We initially 
identified individuals by genotyping 8 microsatellite loci in triplicate 
using fluorescently labeled primers (Janecka et al. 2011a; 2014). Sex 
was determined by amplification of the Y-linked AMELY marker 
(Murphy et  al. 1999) following methods in Janecka et  al. (2008). 
Only those scat samples with no detectable errors in the initial 
microsatellite panel were used in the phylogeographic study and gen-
otyped at 25 additional microsatellite loci (Supplementary Table S2).

Genetic Analysis
The majority of felid phylogeographic studies have relied on micro-
satellites developed for the domestic cat (Felis catus) linkage and 
radiation hybrid maps (Menotti-Raymond et  al. 1999, 2003). To 
improve PCR-based genotyping success in snow leopard scat we 
sequenced 49 microsatellites in 2 captive-bred snow leopard sam-
ples using Sanger sequencing, following the methods in Janecka et al. 
(2008). We designed new snow leopard-specific primers from repeat-
masked microsatellite motif flanking sequences (i.e., no SINES, 
LINES, or LTRs), which were positioned closer to the repeats so the 
amplicon size was between 100 and 150 bp. These new primers were 
designated by the prefix “PUN” and the respective locus number 
used by Menotti-Raymond et al. (1999, 2003). We selected a final 
set of 33 microsatellites based on amplification intensity, unambigu-
ous allele peaks, and chromosomal location, and genotyped these 
loci in 70 individuals (primers provided in Supplementary Table S2 
and PCR conditions in Supplemental Material). Three individuals 
were genotyped in replicate at all 33 loci, and the genotypes for 2 
microsatellite loci were replicated in all 70 individuals to ensure 
consistency. In addition, we sequenced 3 mtDNA segments in 70 
individuals including 96 bp of cytochrome b, 244 bp of the hyper 
variable region II, and 323 bp of the central conserved region and 
aligned the sequences with SEQUENCHER 5.5.5 (Gene Codes 

Corporation, Ann Arbor, MI). The only variable site was found in 
the central conserved region in one individual, therefore the mtDNA 
was not informative for population structure.

Genetic Diversity, Population Structure, and 
Coalescent Simulations
Standard estimates of genetic diversity were derived in GENALEX 
6.502 (Peakall and Smouse 2006)  including the number of alleles 
(AN), number of private alleles (AP), effective number of alleles (AE), 
observed heterozygosity (HO), expected heterozygosity (HE), and 
fixation index (FI, 1 − (HO/HE). Loci were tested for linkage dise-
quilibrium (LD) and deviations from Hardy–Weinberg equilibrium 
(HWE) with significant P-values adjusted for multiple comparisons.

Recent changes in the effective population (NE) size in snow leop-
ards were investigated using coalescent simulations implemented in 
MSVAR 1.3 (Beaumont 1999; Storz 2002; Girod et al. 2011) using 
32 polymorphic microsatellite loci (i.e., one monomorphic locus was 
removed). The model assumes a single stable ancestral population 
NE1 in the past that experienced a demographic alteration (bot-
tleneck or expansion) starting at time t and subsequently changed 
exponentially in size to the current population NE0. We simulated 
2 different demographic scenarios: 1)  larger prior distribution val-
ues for the contemporary population size NE0 than the ancestral 
NE1 (expansion) and 2) larger priors for NE1 than NE0 (bottleneck). 
We tested various prior distributions for each scenario to assess the 
independency of the posterior estimates for the parameters NE0, 
NE1, and t. In lieu of a snow leopard-specific microsatellite mutation 
rate we choose an average mammalian mutation rate (Brinkmann 
1998; Rooney 1999) of 1  ×  10−4 sub/site/year allowing rate vari-
ation between 10−3 and 10−5. We ran four coalescent simulations 
for each population with 2.5 × 109 iterations of the Markov chain 
Monte Carlo (MCMC) algorithm, discarding the first 20% as burn-
in. Convergence of the chains from each population simulated with 
4 different priors, respectively, were assessed with Gelman–Rubin’s 
diagnostic (Brooks 1998) implemented in the R package boa (Smith 
2007). Gelman–Rubin’s convergence tests of the MCMC algorithm 
for the independent runs and each variable resulted in values below 
the threshold of 1.1 (Gelman et al. 2004).

We assessed population structure using several methods. First, 
we estimated the pairwise fixation index (FST, Weir and Cockerham 
1984) to examine gene flow among predefined population groups 
(NQ, northern Qinghai, this included Aksei in northern Gansu; SQ, 
southern Qinghai; HIM, Tibet-Nepal-Bhutan; IP, India-Pakistan; 
TK, Tajikistan-Kyrgyzstan; WM, western Mongolia; SM, south-
ern Mongolia) (Figure  2a). FST values and their significance were 
estimated using the analysis of molecular variance (AMOVA) 
framework in GENALEX. FST values were also calculated using 
ARLEQUIN 3.5 (Excoffier et  al. 2007), but no substantial differ-
ence was found so we present the results from GENALEX. We also 
performed population assignment tests with frequency methods to 
evaluate the level of differentiation in GENALEX. These tests yield 
probabilities that an individual came from each population, based 
on its genotype and allele frequencies. If assignment probability was 
highest for a population in which that individual was not observed, 
it was considered genetically misassigned. There is a direct corre-
lation between the misassignment rate and dispersal (Rannala and 
Mountain 1997; Paetkau et al. 2004; Janecka et al. 2011b). In addi-
tion, to assess genetic similarity among individual snow leopards 
without making assumptions regarding HWE and LD, we conducted 
a principal component analysis (PCA) in adegenet 1.4.2 (Jombart 
2008) using R 3.2.4.
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We also used individual-based Bayesian clustering approaches 
that explored the number of genetic clusters (K) within our samples 
(Pritchard et al. 2000; Guillot et al. 2005). The first approach used 
STRUCTURE 2.2.4 to identify genetic clusters and estimate ancestry 
for each individual (Pritchard et  al. 2000). This method estimates 
the likelihoods of different numbers of genetic clusters as well as 
cluster membership (Q) for each individual. The analysis was done 
using the following model: admixture, alpha inferred from the data 
(initial value 1.0), correlated allele frequencies, sampling locations as 
prior (LOCPRIOR), and 2 × 106 MCMC iterations after a burn-in of 
2 × 105 replicates. We varied the number of potential genetic clusters 
from 1 to 10. The most likely value of K was determined using 10 
independent runs for each value of K. We analyzed our results by 
applying the posterior probability (Pritchard et al. 2000) and the ΔK 
method (Evanno et al. 2005), as implemented by pophelper (Francis 
2017) in R 3.2.4. The Q for each individual was averaged across 
all ten STRUCTURE runs. To examine hierarchical genetic struc-
ture, we conducted additional Bayesian analysis within identified 
genetic clusters until no further genetic subdivision was detected, or 

inference was impossible due to low sample sizes (Balkenhol et al. 
2014; Wultsch et al. 2016a). We also used a second Bayesian cluster-
ing approach that incorporates a spatially explicit model to generate 
priors as implemented in GENELAND 4.0.6 (Guillot et al. 2005). 
We applied the spatial model with uncorrelated allele frequencies 
and simulated the number of K from 1 to 10 using 10 independent 
runs. Each run consisted of 1 × 106 MCMC iterations with a thin-
ning of 100. The level of spatial uncertainty was set to 50 m.

We also explored whether a smaller number of microsatellites 
typically used in noninvasive genetic surveys of snow leopards (i.e., 
6–8 loci) would be sufficient to assign individuals to the major 
genetic groups identified in this study. We therefore created a reduced 
matrix with only six loci (PUN82, PUN100, PUN124, PUN225, 
PUN229, and PUN327) and included 26 additional samples from 
Ladakh, India. Probability of identity for unrelated (PID-unr) and 
related (PID-sib) individuals was estimated in GENALEX. We used the 
STRUCTURE test for migrants with K = 3 to assign these 26 samples 
to 1 of the 3 clusters. The following parameters were used: admix-
ture, alpha inferred from the data (initial value 1.0), correlated allele 

Figure 2. Range-wide genetic structure analysis of snow leopards (n = 70) using genotype data from 33 microsatellites. (a) Three subspecies (Panthera uncia 
uncia, Panthera uncia uncioides, and Panthera uncia irbis) identified across different regions of the snow leopard range (NQ, northern Qinghai; SQ, southern 
Qinghai; HIM, Himalayas–Bhutan, Nepal, Tibet; IP, India and Pakistan; TK, Tajikistan and Kyrgyzstan; WM, western Mongolia; SM, southern Mongolia). (b) PCA 
of snow leopards. Scatterplot of principal components 1 and 2 with points representing individual genotypes sampled across different geographic regions and 
95% inertia ellipses. (c–i). Bayesian clustering analysis in STRUCTURE 2.3.4 (Pritchard et al. 2000) was conducted for snow leopards range-wide (c and d, n = 70) 
and at first (e. n = 40; f. n = 46) and second (g. n = 24; h. n = 16; i. n = 30) hierarchical levels. The second level analysis of Central, Western, and Northern groups, 
respectively, was used to delineate 6 MUs.
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frequencies, sampling locations for reference samples as spatial prior 
(LOCPRIOR), population information used to test for migrants, and 
8 × 105 MCMC iterations after a burn-in of 4 × 105 replicates.

We examined isolation-by-distance (IBD) patterns by correlating 
genetic and geographic distances via the Mantel test using ecodist 
1.2.9 (Goslee and Urban 2007) in R 3.2.4. We also conducted spatial 
autocorrelation analysis in GENALEX to assess the spatial extent of 
genetic structure by examining genetic similarity between pairs of 
snow leopard individuals at several spatial distance classes (25, 50, 
100, 250, 500, 750, 1000, 1500, 2000, 2500, and 3000 km). The 
spatial autocorrelation coefficient (r) was evaluated at each distance 
class against the null hypothesis of no genetic structure (r = 0) via 
permutation (10 000 simulations) and bootstrapping (1000 repeats).

Results

We obtained scat samples from 21 localities in 7 geographic regions 
(northern Qinghai [this region included Aksei in northern Gansu], 
southern Qinghai, Tibet-Nepal-Bhutan, India-Pakistan, Tajikistan-
Kyrgyzstan, western Mongolia, and southern Mongolia) (Figures 1 
and 2a; Supplementary Table S1). A total of 70 representative indi-
viduals were genotyped at 33 microsatellite loci. Measures of genetic 
diversity were consistently low across the entire snow leopard range 
(AN of 2.6–3.3; HO of 0.399–0.508; HE of 0.434–0.485; Table  1; 
Supplementary Table S3). Southern Mongolia and southern Qinghai 
had the lowest measures of diversity and the highest frequency of 
private alleles. When all samples were pooled, 16 loci were out of 
HWE, in contrast to only 3 loci within each of the 7 locations, indic-
ative of the Wahlund effect. The coalescent simulations supported a 
demographic contraction scenario with the time estimate for the last 
bottleneck of t = 7782 years ago (ya) (range of 4574–11 893; highest 
probability density, HPD, of 1084–107 484; Supplementary Table S4 
and Supplementary Figure S1) with an ancestral effective population 
size NE1 = 8235 (range of 7287–9852; HPD of 1951–47 374) and cur-
rent effective population size NE0 = 1279 (range of 1091–1504; HPD 
of 249–4902). We performed the analysis for all samples pooled and 
for the 3 main genetic clusters individually (Supplementary Figure 
S2). There was only a single variable site in the 683 bp concatenated 
mtDNA alignment, with 69 individuals having one haplotype, and 
the second haplotype observed in only a single individual.

Among these 7 geographic regions, the greatest genetic similar-
ity based on the pairwise FST was between northern Qinghai and 
southern Qinghai (FST = 0.039, P = 0.174), between India-Pakistan 

and Tajikistan-Kyrgyzstan (FST  =  0.007, P  =  0.412), and between 
western Mongolia and southern Mongolia (FST = 0.057, P < 0.000; 
Table 2). The most divergent FST values (>0.25) indicated high levels 
of differentiation for southern Mongolia versus southern Qinghai 
(FST = 0.308, P < 0.000), western Mongolia versus southern Qinghai 
(FST = 0.287, P < 0.000), and Tibet-Bhutan-Nepal versus southern 
Mongolia (FST = 0.258, P < 0.000). The 2 Mongolian regions were 
the most differentiated with respect to the other regions.

The PCA revealed 3 major groups consistent with the geo-
graphic distribution of sampled localities (Figure 2b). Specifically, 
the snow leopards from the Tibetan Plateau (northern Qinghai, 
southern Qinghai, and Tibet) and the principal portion of the 
Himalaya (Bhutan and Nepal) clustered together into a “Central 
group,” the snow leopards from Western Himalaya (India), 
Karakorum, Pamir, Alay, and Tian Shan (Tajikistan, Kyrgyzstan) 
formed a “Western group,” and those from Altai (western 
Mongolia) and Southern Gobi (southern Mongolia) formed a 
“Northern group” (Figure  2b). Population assignment tests also 
supported strong genetic differentiation of the 3 groups. There 
was an 8.5% misassignment rate when samples were divided into 
7 populations. When samples were divided into the Northern, 
Central, and Western populations there was no misassignment 
(Supplementary Tables S5 and S6).

Bayesian clustering in STRUCTURE tested for the presence of K 
of 1–10 genetic clusters using the admixture model with correlated 
allele frequencies and sampling locations as priors (Supplementary 
Figures S3 and S4). The Evanno et al. (2005) ad hoc method sup-
ported division into 2 groups (K = 2) with the first cluster comprised 
exclusively of samples from Mongolia (i.e., the Northern group) 
and the second cluster composed of the individuals from all remain-
ing sites (Figure  2c). The majority of individuals were assigned 
(Q > 90%) to 1 of these 2 clusters. Snow leopards in Tajikistan and 
Kyrgyzstan showed evidence of genetic admixture with Mongolia. At 
K = 3, the Central, Western, and Northern groups supported by PCA 
analysis and the assignment tests were recovered (Figure 2d). The spa-
tially explicit Bayesian model implemented in GENELAND detected 
the same 3 clusters, although with more admixture (Figure  3). 
When a reduced matrix was created with only 6 microsatellite loci  
(PID-unr = 0.000033, PID-sib = 0.0097), a number commonly used for 
individual identification in noninvasive surveys, the STRUCTURE 
test to detect migrants assigned 96% of 26 additional samples from 
Ladakh (India) to the appropriate genetic cluster (i.e., the Western 
group) in which they were sampled (Supplementary Table S7).

Table 1. Genetic diversity estimated in 70 snow leopards genotyped at 33 microsatellites

Geographic region n A AP AE HO HE FI

Snow leopard 70 5.8 n. a. 2.8 0.433 0.568 0.246
 Central group 24 4.2 28 2.5 0.446 0.521 0.138
  Northern Qinghai 6 3.1 10 2.3 0.457 0.484 0.053
  Southern Qinghai 5 2.6 1 2.1 0.450 0.434 −0.019
  Tibet/Nepal/Bhutan 13 3.3 12 2.2 0.441 0.452 0.012
 Western group 16 4.0 19 2.6 0.461 0.522 0.126
  India/Pakistan 8 3.2 10 2.3 0.508 0.473 −0.082
  Tajikistan/Kyrgyzstan 8 3.3 6 2.4 0.415 0.485 0.174
 Northern group 30 3.9 22 2.3 0.408 0.481 0.152
  Western Mongolia 15 3.1 5 2.2 0.416 0.442 0.058
  Southern Mongolia 15 3.3 14 2.1 0.399 0.450 0.110

n, samples size; AN, number of alleles; AP, private alleles; AE, effective number of alleles (1/(∑p2); HO, observed heterozygosity; HE, expected heterozygosity; FI, 
fixation index (1 − HO/HE).
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Bayesian clustering analysis in STRUCTURE was performed at 2 
additional hierarchical levels to further explore differentiation within 
the Central, Western, and Northern groups. The first level analyzed 
the Central and Western groups together (samples from northern 
Qinghai, southern Qinghai, Tibet, Bhutan, Nepal, India, Pakistan, 
Tajikistan, and Kyrgyzstan; Figure  2e) and in a separate analysis 
the Western and Northern groups were analyzed together (samples 
from India, Pakistan, Tajikistan, Kyrgyzstan, western Mongolia, and 
southern Mongolia; Figure 2f). Both analyses resulted in K = 2, with 
the clusters corresponding to those identified with the full data set 
for K = 3, and the PCA and population assignment analyses. There 
was no evidence for genetic admixture between Central and Western 
groups at this spatial scale (Figure 2e). In contrast, when Western 
and Northern groups were analyzed together, although the snow 
leopards sampled from Tajikistan and Kyrgyzstan clustered with 
India and Pakistan, they did exhibit low levels of admixture with 
Mongolia (Figure 2f). The second level of hierarchy included separate 
analyses of the Central (northern Qinghai, southern Qinghai, Tibet, 
and Himalaya; Figure 2g), Western (India, Pakistan, Tajikistan, and 
Kyrgyzstan; Figure 2h), and Northern (western Mongolia and south-
ern Mongolia; Figure 2i) groups. Together, these analyses revealed 
additional structure within these regions. In the Central group, 
northern and southern Qinghai clustered separately from Tibet, 
Bhutan, and Nepal with admixture in the central part of the Tibetan 
Plateau (Figure  2g). The Western group had 2 clusters, one com-
posed exclusively of Kyrgyzstan and the other of India, Pakistan, and 
Tajikistan (Figure 2h). Finally, in the Northern group, western and 

southern Mongolia formed 2 distinct clusters, with a few individuals 
showing mixed ancestry (Figure 2i). The genetic clusters observed 
in the hierarchical analysis largely corresponded to those recovered 
with the full dataset for K = 6 (Supplementary Figure S3), which had 
the highest posterior probability in the STRUCTURE analysis with 
70 samples (Supplementary Figure S4a).

The simple Mantel test showed weak IBD (r = 0.183, P = 0.020; 
Supplementary Figure S5). Spatial autocorrelation analysis detected 
IBD in the first four distance classes (25, 50, 100, and 250 km; 
Figure 4). The x-intercept of r was between 250 and 500 km, indi-
cating that snow leopard populations located within these distances 
are potentially connected by dispersing individuals.

Discussion

The snow leopard, first described by Schreber (1775), is a high-
altitude specialist that occupies mountains primarily between 1500 
and 4500 m, with confirmed sightings to 6000 m in the Himalaya 
(Hemmer 1972). Historically, several subspecies have been pro-
posed including the nominate Panthera uncia uncia (Stroganov 
1962), Panthera uncia uncioides in Nepal (Horsfield 1855), Panthera 
uncia schneideri in Sikkim (India, Zukowsky 1950), and Panthera 
uncia baikalensis-romanii in the Transbaikal (Russia, Medvedev 
2000) based on coat color differences. The lack of collection infor-
mation for many museum specimens and the difficulty of observ-
ing and trapping snow leopards in the wild have to date prevented 
comprehensive taxonomic assessments and therefore this species is 

Table 2. Pairwise AMOVA FST estimates between 7 geographic regions for snow leopards

Northern 
Qinghai

Southern 
Qinghai

Tibet/Nepal/Bhutan India/Pakistan Tajikistan/
Kyrgyzstan

Western 
Mongolia

Southern 
Mongolia

Northern Qinghai — 0.174 0.001 0.000 0.001 0.000 0.000
Southern Qinghai 0.039 — 0.000 0.000 0.000 0.000 0.000
Tibet/Nepal/Bhutan 0.121 0.177 — 0.000 0.000 0.000 0.000
India/Pakistan 0.138 0.211 0.166 — 0.412 0.000 0.000
Tajikistan/Kyrgyzstan 0.133 0.204 0.143 0.007 — 0.000 0.000
Western Mongolia 0.218 0.287 0.227 0.142 0.092 — 0.000
Southern Mongolia 0.220 0.308 0.258 0.161 0.122 0.057 —

FST (below diagonal) and associated P-values (above diagonal) were based on 33 microsatellites.

Figure 3. Range-wide genetic structure in snow leopards (n = 70) using Bayesian clustering analysis in GENELAND 4.0.3 (Guillot et al. 2005) of 33 microsatellites. 
Snow leopard scat samples were collected across localities within northern Qinghai (NQ), southern Qinghai (SQ), Himalaya (HIM; Bhutan, Nepal, Tibet), India 
and Pakistan (IP), Tajikistan and Kyrgyzstan (TK), western Mongolia (WM), and southern Mongolia (SM). Black dots represent sample locations based on latitude 
and longitude coordinates. Maps show posterior probabilities of genetic cluster memberships for the 3 significant clusters (a. cluster 1—central group, Panthera 
uncia uncioides; b. cluster 2—northern group, Panthera uncia irbis; c. Cluster 3—western group, Panthera uncia uncia).

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/108/6/597/3796316 by guest on 20 M

arch 2024



Journal of Heredity, 2017, Vol. 108, No. 6 603

considered monotypic. Here, we address the taxonomic question 
regarding subspecies designation of the snow leopard using genetic 
data from noninvasive scat samples. Subspecies are generally consid-
ered distinct populations that correspond to geographic boundaries 
and meet discreteness and significance criteria (Wilson and Brown 
1953; Haig et al. 2006). Based on the differentiation of nuclear loci 
that separated samples into 3 discrete and significant genetic clusters 
(Western, Central, and Northern groups) occurring in nonoverlap-
ping geographic regions we propose the snow leopard be classified 
into 3 subspecies; P. u. uncia (type locality restricted to Central Asia 
including Tian Shan, Alay, Pamir, Karakoram, and trans-Himalaya), 
P. u. uncioides with schneideri as a junior synonym (core Himalaya 
and the Tibetan Plateau), and P.  u.  irbis with baikalensis-romanii 
as a junior synonym (the Altai and Southern Gobi of Mongolia) 
(Figures 1a and 2b).

Although historically recommendations for subspecies delinea-
tions have also included mitochondrial divergence and monophyly 
(Moritz 1994), phylogeographic studies over the last decade indicate 
that this strict criterion may be unreasonable because of mitonu-
clear discordance (Toews and Brelsford 2012). First, mitogenomes 
are frequently paraphyletic, notably in Felidae, due to introgression 
from past hybridization events (Roca et al. 2005; Li et al. 2016a). 
Second, the mtDNA represents a single linked locus (i.e., no recom-
bination) with a smaller NE (i.e., haploid and only passed through 
females) therefore it is more sensitive to incomplete lineage sorting 
than nuclear loci (Avise 2000). Although our mtDNA data revealed 
no haplotype differences across the snow leopard range, the consist-
ent recovery using nuclear markers of 3 discrete allopatric genetic 
clusters with significant differentiation, each occurring in unique 
geographic regions, warrants subspecies delineation.

There are several possible reasons why we did not observe dif-
ferent mtDNA haplotypes in the 3 subspecies. First, more extensive 
mitogenome sequencing may be required to detect polymorphism. 
Second, the snow leopard mitogenome may have undergone a selec-
tive sweep. Mitochondria are responsible for oxidative respiration 
and therefore may be under selective pressures in hypoxic environ-
ments (da Fonseca 2008; Hassanin et al. 2009). In addition, previous 
studies have shown that the snow leopard lineage underwent mito-
chondrial replacement after hybridization with the African lion line-
age (Li et al. 2016a), and therefore may have been subject to adaptive 
introgression that resulted in low mtDNA variation (Toews and 
Brelsford 2012). Finally, mtDNA has a 4-fold smaller NE compared 
to nuclear DNA (Hudson and Turelli 2003), and therefore more 
ancestral polymorphism would have been lost during the bottleneck 

∼8000 ya detected with microsatellites. The lack of distinct mtDNA 
lineages is consistent with previous studies in the Tibetan region 
showing weaker Pleistocene refugia effects (Qu and Lei 2009; 
Yang et al. 2009; Zhan et al. 2011) compared to those observed in 
European and North American taxa (Taberlet et al. 1998; Petit et al. 
2003; Shafer et al. 2010). Sequencing of mitochondrial and nuclear 
genomes in the 3 subspecies would shed light on the mechanisms 
that contributed to the observed mitonuclear discordance.

Snow leopards face threats including low prey densities, retalia-
tory killing by farmers and herdsmen in response to livestock dep-
redation, illegal wildlife trade, climate change, and development of 
roads, rails, mining, and hydropower facilities (Jackson et al. 2010; 
McCarthy et al. 2016). Traditional pastoralism and agro-pastoralism 
dominate local economies within the snow leopard range often lead-
ing to human-wildlife conflict (Mishra et al. 2003, 2016). Successful 
community-based conservation initiatives have been implemented 
in several areas, including Mongolia, Nepal, and Pakistan (Jackson 
et al. 2010). Recently, there has been an effort to coordinate conser-
vation range-wide with a comprehensive Global Snow Leopard & 
Ecosystem Protection Program that seeks to secure populations in 
20 different landscapes by 2020 (Snow Leopard Secretariat 2013). 
Our phylogeographic assessment strongly highlights the importance 
of large-scale international efforts (Rosen and Zahler 2016). Snow 
leopard populations exhibit cross-boundary connectivity in several 
important parts of their range, such as between Pakistan and India 
on the western portion of the Himalaya, and between Nepal, Bhutan, 
and southern Tibet. It is critical that international corridors between 
these populations are maintained, and that synchronized conserva-
tion actions are realized so that no single area becomes isolated, or 
a population sink, contributing to decline in neighboring countries.

Presently, the International Union for Conservation of Nature 
(IUCN) considers the snow leopard a monotypic species and applies 
criteria for “Endangered (EN) Category 1 (C1)” status range-wide. 
These include <2500 mature individuals and an estimated 20% 
decline in 2 generations, corresponding to ∼16 years in snow leopards 
(IUCN Standards and Petitions Subcommittee 2016). Applying the 
results from our phylogeographic analysis, we generated a prelimi-
nary population size estimate for each subspecies using population 
size estimates in McCarthy et al (2016b) by summing those within 
the approximate range of each respective subspecies (Supplementary 
Table S8 and Supplementary Figure S6). The estimate for P. u. uncia 
was 2124–3356 individuals, for P. u. uncioides it was 1402–3083, 
and for P. u. irbis it was 741–1646. This suggests the latter 2 subspe-
cies may meet IUCN EN C1 criteria. These population estimates are 

Figure 4. Spatial autocorrelation in snow leopards (n = 70). Correlogram visualizing the autocorrelation coefficient (r) at various distance classes (km). Dashed 
lines represent upper (U) and lower (L) bounds under the null hypothesis of no spatial structure (r = 0; 10 000 permutations). 95% confidence intervals about r 
indicated by error bars (1000 bootstraps).
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preliminary and additional research is needed to both definitively 
assign populations to subspecies, and obtain abundance information 
in areas where quantitative data is not available, particularly on the 
Tibetan Plateau.

In order to determine if assignment of individuals to subspecies 
could be made with fewer microsatellites we created a reduced matrix 
of 6 loci and tested 26 additional samples from Ladakh, India. Even 
with this reduced matrix, we were able to correctly assign 96% of the 
individuals to P. u uncia, thus illustrating the utility of this reference 
data set and the substantial level of differentiation between the sub-
species. We have performed whole genome amplification of a subset 
of the samples yielding synthetically derived amplicons not subject to 
CITES restrictions (Janecka et al. 2006, 2007). We will make these 
available to other laboratories to ensure uniform allele designations, 
thus facilitating direct comparisons with our data set in future studies.

The low microsatellite diversity and lack of mtDNA variation 
within snow leopards is typical of felids or subspecies that have 
either been historically isolated, or have undergone recent popula-
tion bottlenecks, such as the Far Eastern leopard (Panthera pardus 
orientalis, Uphyrkina et  al. 2001), Sumatran tiger (Panthera tigris 
sumatrae, Luo et al. 2004), North American puma (Puma concolor 
cougar, Culver et  al. 2000), North American ocelot (Leopardus 
pardalis albescens, Janecka et  al. 2011b), and the Asiatic cheetah 
(Acinonyx jubatus venaticus, Charruau et  al. 2011). Although we 
sequenced a limited amount of mtDNA, Luo et al. (2004) detected 
4–6 haplotypes for the same segments in tigers despite analyzing 
fewer individuals. The microsatellite and mtDNA diversity in snow 
leopards is consistent with the low genome-wide polymorphism 
previously reported for a single snow leopard from Mongolia (Cho 
et al. 2013). We estimated the most recent bottleneck occurred dur-
ing the middle Holocene, potentially as a consequence of changing 
climatic and habitat conditions (Zhang et al. 2006; Yang et al. 2009). 
This finding is reinforced by the uniformly reduced variation across 
the snow leopard range. Alternatively, if anthropogenic factors were 
the primary cause of lower variation in extant snow leopards, the 
diversity would likely vary across populations.

The estimated time of the bottleneck in snow leopards coincides 
with the start of the Holocene Thermal Maximum (approximately 
6000–8000 years ago), a period of warming and increased precipita-
tion in the Tibetan Plateau and a synchronous treeline shift to higher 
elevations (Zhao et al. 2011). The correspondence of these events with 
the snow leopard bottleneck has important implications for under-
standing the potential impact of global climate change. Similar clima-
tological trends are occurring throughout the world, with particularly 
elevated warming trends in the Tibetan Plateau and the Himalaya (Liu 
and Chen 2000; Walther et al. 2002; Farrington and Li 2016). Recent 
studies examining the potential impact of climate change have pre-
dicted a substantial reduction in snow leopard habitat and increased 
fragmentation (Forrest et al. 2012; Li et al. 2016b). Our inferences on 
the demographic contraction in the Holocene lend support to models 
that indicate snow leopards are susceptible to global warming.

Major landscape features in Asia correlate with the observed phy-
logeographic patterns. In the north, the P. u.  irbis populations that 
occupy low-altitude mountains of the Gobi in southern Mongolia are 
separated from the Qilian Shan in northern Qinghai by the Alashan 
Plateau, with >400  km of unsuitable habitat. This potential move-
ment barrier corresponds to the greatest observed genetic differen-
tiation within the species, and is consistent with the recent habitat 
and connectivity models (Riordan et al. 2015; Li et al. 2016b). The 
admixture observed in Kyrgyzstan, on the other side of China, indi-
cates the presence of more recent introgression between the subspecies 

or unsampled populations with intermediate allele frequencies. The 
Dzungarian Basin (∼500 km wide) is likely an impenetrable barrier 
for snow leopards. However, there are isolated mountains to the west 
along the boundary of Kazakhstan and China, and to the east in 
Xinjiang between Tian Shan and the Gobi in southern Mongolia that 
may act as stepping stones between P. u. uncia and P. u. irbis (Li et al. 
2016b). However, both of these possible routes appear too far north 
and west to connect Qinghai/Gansu (P. u. uncioides) with the north-
ern subspecies. The barrier separating the Central P. u. uncioides and 
the Western P. u. uncia, between Nepal and India (Ladakh), is not as 
obvious because the trans-Himalaya form a nearly continuous chain. 
One possibility is that the combination of their height (i.e., many 
peaks >6000 m above sea level), linear distance (∼1000 km), and the 
presence of several major rivers in the region may limit connectivity. 
Another possibility is that in the past this area may have been covered 
by extensive uninhabitable glacial fields. These explanations are mutu-
ally compatible and both may contribute to the observed differentia-
tion in snow leopards between the Central and Western groups, which 
is consistent with the Li et al. (2016b) model of snow leopard habitat 
that indicates more fragmentation in this area than predicted by the 
Riordan et al. (2015) model.

The observed population genetic structure also provides a coherent 
and objective basis with which to define management units (MUs). In 
the north, western Mongolia (Altai MU) and southern Mongolia (Gobi 
MU) formed separate genetic clusters in the hierarchical analysis. In this 
area, snow leopards primarily occupy the Altai mountain range, which 
runs east into the Gobi Altai, with the mountains becoming lower and 
more isolated, often separated by >100 km of flat desert. Nonetheless, 
there was evidence for transient dispersal between each of these areas 
suggesting that the smaller massifs act as stepping stones for migration 
between larger habitat patches. Long distance movements have been 
observed among radio and GPS-collared snow leopards in Mongolia 
(McCarthy et al. 2005; Johansson et al. 2016). In the southern portion 
of Tibetan Plateau there was connectivity with the Himalaya, consist-
ent with snow leopard habitat models (Riordan et al. 2015; Li et al. 
2016b). Northern Qinghai/Gansu and southern Qinghai (Qinghai 
MU) were genetically divergent from Tibet, Bhutan, and Nepal (Tibet-
Himalaya MU) similar to phylogeographic patterns observed in other 
species (Qu and Lei 2009; Yang et  al. 2009; Qu et al. 2010; Zhan 
et al. 2011). Within Central Asia, the Tajikistan, Pakistan, and India 
(Pamir-Himalaya MU) region also appeared connected. The Pamirs in 
Tajikistan are separated from the Tian Shan in Kyrgyzstan (Tian Shan 
MU) by ∼600 km, some of which includes river valleys (e.g., Vakhsh, 
Kyzyl-Suu, and Naryn Rivers) which may explain the differentiation 
in this area. Our subspecies designations, and the delineation of the 
Qinghai MU and Tibet-Himalaya MU, also correspond with 4 physi-
ography and prey types zones described from a recent meta-analysis of 
feeding ecology studies (Lyngdoh et al. 2014). Snow leopard conserva-
tion efforts need to focus on maintaining natural connectivity within 
these MUs and to develop context-specific conservation programs. 
These efforts should take priority over attempts to establish corridors 
that would cross natural phylogeographic boundaries. Additional 
sampling is urgently needed to better understand population structure 
within the MUs and landscape factors that affect connectivity.

Conclusions

We conducted the first range-wide genetic analysis of wild snow 
leopard populations and delineate 3 subspecies. The criteria for 
IUCN’s Red List should be applied to each of these individually. The 
snow leopard underwent a bottleneck ∼8000 ya in the Holocene 
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coinciding with global warming that occurred during the epoch. 
Population structure within the subspecies indicates a minimum of 6 
MUs, 3 of which span multiple countries. Each of these may require 
different conservation initiatives. Our results serve as a foundation 
for understanding landscape connectivity of snow leopards and set 
the stage for more in-depth genomic studies.

Supplementary Material

Supplementary data are available at Journal of Heredity online.
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