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Background. Tuberculosis (TB) is the most deadly infectious disease globally and is highly prevalent in the developing world. 
For individuals infected with both Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV), the risk of active 
TB is 10% or more annually. Previously, we identified in a genome-wide association study (GWAS) a region on chromosome 5 as-
sociated with resistance to TB, which included epigenetic marks that could influence gene regulation. We hypothesized that HIV-
infected individuals exposed to Mtb who remain disease free carry epigenetic changes that strongly protect them from active TB.

Methods. We conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania and inte-
grated data from our GWAS.

Results. We identified 3 regions of interest that included markers that were differentially methylated between TB cases and con-
trols with latent TB infection: chromosome 1 (RNF220, P = 4 × 10–5), chromosome 2 (between COPS8 and COL6A3, P = 2.7 × 10–5), 
and chromosome 5 (CEP72, P = 1.3 × 10–5). These methylation results co-localized with associated single-nucleotide polymorphisms 
(SNPs), methylation QTLs, and methylation × SNP interaction effects. These markers were in regions with regulatory markers for 
cells involved in TB immunity and/or lung.

Conclusions. Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individ-
uals that can act in conjunction with genetic variants.

Keywords.  methylation; epigenetics; infectious disease; genetics; genomics; lung function; immunology.

Tuberculosis (TB), caused by infection with Mycobacterium 
tuberculosis (Mtb), results in approximately 1.2 million deaths 
per year [1], though most of the approximately 2 billion people 
infected with Mtb do not progress to disease. Although the 
risk of developing TB is low in most infected people, it is the 
most common cause of death in human immunodeficiency 
virus (HIV)–infected people living in TB-endemic countries 
[1, 2]. As many as 10% of coinfected people develop TB each 

year, illustrating how immunocompromise contributes to risk. 
People with HIV infection who do not develop TB, despite Mtb 
infection, offer a major opportunity to understand resistance to 
TB despite being immunocompromised, and possibly a key to 
how any Mtb infection leads to TB.

Several studies indicate that susceptibility (or resistance) to 
TB is partially due to genomic factors [3]. Genome-wide as-
sociation studies (GWAS) have identified associating loci, but 
most show small effect sizes in HIV-uninfected subjects. In 
contrast, our GWAS [4], conducted in HIV-infected subjects, 
found a significant association with a region of chromosome 
5, containing IL12B. Annotation of this region showed that 
the associated single-nucleotide polymorphisms (SNPs) res-
ided in a histone mark, indicating that epigenetic marks may 
influence regulation of a nearby gene that we hypothesized 
to be IL12B. Because differences in genomic features, such as 
histone and other epigenetic marks, can impact gene expres-
sion patterns, thereby linking genetic and environmental risk 
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factors, and since epigenetic marks can be inherited, they have 
been hypothesized to explain some of the “missing heritability” 
for complex diseases [5, 6]. Evidence for this model exists in 
cancer and autoimmune diseases, demonstrating an association 
between epigenetic marks and disease [7, 8]. We hypothesized 
that similar regulatory factors, including methylation marks, 
associate with TB susceptibility/resistance.

Protection from TB is affected not only by genetic factors, 
but by environmental factors from smoking to undernutrition 
[1], and one means of assessing the role of factors that are sen-
sitive to the environment is to examine epigenetic variation in 
people who are exposed to Mtb but avoid disease. This is an 
indirect measure of environmental factors, but evidence for 
association can represent both environmental exposures, af-
fecting epigenetic states, and the role of genes that respond to 
such exposures. To address this, we chose to study one class of 
epigenetic features, DNA methylation, which is impacted both 
directly or indirectly via DNA-level variation as well as physi-
ologic state [9]. We used a methylome-wide analysis (MWAS) 
approach, examining association with methylation status and 
with nearby SNPs. We also investigated differential methylation 
near loci identified by GWAS of TB risk (Figure  1). Our un-
derlying model was that both genetic and epigenetic factors are 
associated with TB risk and that the 2 can modify each other. 
To understand functional implications of identified loci, we an-
notated them using available databases. By integrating results 
across data types [10], we constructed a more complete assess-
ment of genomic features, both epigenetic and genetic, and 
their interactions, and associations with TB pathogenesis.

METHODS

We first conducted an MWAS in the Ugandan and Tanzanian 
cohorts independently (Figure 1). Because the Ugandan cohort 

was larger, we considered it the discovery cohort and the 
Tanzanian cohort as the replication set, although we repeated 
analyses in the opposite direction. Markers that were differen-
tially methylated at P < 5 × 10–5 in the discovery cohort and 
P < .1 in the replication cohort were considered for subsequent 
analyses. These thresholds were set to assign reasonable prob-
ability of association in the absence of a clearly recognized 
threshold. We required evidence for association in 2 cohorts 
and concordance between data types, for example, GWAS and 
methylation QTL (meQTL) evidence. Second, we examined 
SNPs from our GWAS within 200 kb of the methylation signal, 
and identified whether any were significantly (P < .05) associ-
ated with TB. Third, we conducted an meQTL analysis, exam-
ining SNPs within 200 kb of the associated methylation marker 
to test for association with methylation of the associated CpG 
site. Fourth, we examined interaction between methylation 
status and SNPs in association with TB. Synthesis of the results 
of the second through fourth steps addressed whether genetic 
variation at least partially influences TB susceptibility through 
effects on methylation, or if differential methylation and genetic 
variation acted independently. Last, all loci significant in the 
first step were annotated for function. In parallel, we examined 
the association between methylation level and TB in regions 
significantly associated with TB in our GWAS (Table 1) [4].

Study Participants

This study includes the same subjects as in our previous GWAS 
[4]. In brief, subjects were from a household contact study in 
Kampala, Uganda, enrolled during 2002–2009 [11], or from 
a clinical trial (ClinicalTrials.gov identifier NCT00052195) 
and observational study of TB in Dar es Salaam, Tanzania, 
enrolled during 2001–2005 [12]. All subjects were HIV in-
fected and aged >15 years, and none received antiretroviral 
therapy (ART) due to unavailability at the time of enrollment 

GWAS: Sobota et al 2016
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Figure 1. Analytical framework. Abbreviations: GWAS, genome-wide association study; meQTL, methylation QTL; MWAS, methylome-wide analysis; SNP, single-
nucleotide polymorphism; TB, tuberculosis. 
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(confirmed in subjects’ medical records). TB cases were de-
fined as individuals with clinical symptoms and who were 
Mtb culture confirmed. Controls all had latent Mtb infec-
tion (LTBI) based on a positive tuberculin skin test (TST); 
interferon-γ release assays were not performed at the time 
of ascertainment. All subjects provided written informed 
consent. These analyses utilized samples from those subjects 
who had DNA remaining from the GWAS.

Molecular Methods

DNA came from buffy coat samples in the Uganda cohort and 
either buffy coat or whole blood in the Tanzania cohort, and 
prepared as described previously [4], then bisulfite converted 
according to specifications for the Illumina Methylation EPIC 
850k chip. As blood carries marks of immune response and 
is generally the most available tissue, these studies should be 
reflective of many responses relevant to TB. GWAS data were 
available from our previous analysis [4].

Statistical Analysis
Quality Control and Principal Components Analysis
Quality control and principal components analysis of methyla-
tion data are described in the Supplementary Methods. We es-
timated cell proportions in the combined Uganda and Tanzania 
cohort for CD8, CD4, natural killer, B, monocyte, and neutro-
phil cells using the minfi package.

MWAS Analysis
Within each of the 2 cohorts, we tested for association be-
tween CpG β values (converted to M-values [log2(β/1 – β)]) and 
TB status using limma in R [13]. We adjusted for significant 
methylation-based Principal Components, aforementioned 
estimated cell proportions, age, and sex in a linear model that 
compares methylation values between TB and LTBI subjects.

Genetic Association Analysis
Genetic association analysis was performed using appropriate 
data from [4]. Association between SNPs within 200 kb of the 
associated methylation markers and TB was conducted using 
PLINK [14]. A  Bonferroni-corrected P value was derived 

based on the total number of SNPs tested across all 3 regions 
(Supplementary Methods).

Methylation QTL Analysis
We conducted a targeted cis-meQTL analysis around the rep-
licated CpG sites in the combined Uganda/Tanzania sample 
that had overlapping methylation and genotype data (N = 188: 
75 from Tanzania [32 with TB] and 113 from Uganda [66 with 
TB]). SNPs within 200 kb of the replicated CpG sites were exam-
ined within the GWAS dataset [4]. This analysis allowed deter-
mination of differential methylation associated with genetic 
variation at the MWAS loci. Using Matrix eQTL, we performed 
linear regression adjusting for sex, age, cohort, cell proportions 
(CD4, CD8, monocytes, neutrophils), and the first 2 genetic-
based PCs [4] to test association between nearby SNPs and CpG 
sites.

SNP-Methylation Interaction
We conducted a targeted interaction analysis around replicated 
CpG sites in the combined Uganda/Tanzania sample that had 
overlapping methylation and genotype data (described above). 
As in the meQTL analysis, SNPs within 200  kb of replicated 
CpG sites were determined from the GWAS [4]. Using glm in 
R, we ran logistic regression adjusting for sex, cohort, CD4 cell 
proportions, and the first 2 GWAS-based PCs [4] to determine 
if the difference in methylation levels between TB and LTBI 
samples is modified by nearby genotypes.

Functional Annotation

We examined whether loci are associated with related traits 
in the GWAS catalog (https://www.ebi.ac.uk/gwas/). We also 
examined whether meQTLs associated with differential gene 
expression (eg, eQTLs) in GTex (https://gtexportal.org/home/). 
HUGIn [15], and RegulomeDB [16] were used to examine chro-
matin state evidence predicting whether methylation markers 
fell into promoter or enhancer regions, whether associated 
methylation markers were in DNAase hypersensitivity regions 
or transcription factor binding sites, and to identify frequently 
interacting regions (FIREs).

Table 1. Study Population Characteristics

Characteristic TB LTBI Overall P Value Across TB Groups (TB vs LTBI)

Uganda cohort (n = 76) (n = 67) (n = 143)  

 Proportion male sex (No.) 0.50 (38) 0.36 (24) 0.43 (62) .12a

 Mean age, y (SD) 31.4 (9.3) 26.1 (12.5) 28.9 (11.2) .02b

Tanzania cohort (n = 32) (n = 46) (n = 78)  

 Proportion male sex (No.) 0.19 (6) 0.26 (12) 0.23 (18) .63a

 Mean age, y (SD) 35.0 (7.7) 36.0 (7.6) 35.6 (7.6) .30b

LTBI determined based on a positive tuberculin skin test; TB diagnosis based on isolation of Mycobacterium tuberculosis in culture and symptoms consistent with TB.

Abbreviations: LTBI, latent tuberculosis infection; SD, standard deviation; TB, tuberculosis. 
aPearson χ 2 test of independence. 
bWilcoxon–Mann–Whitney test.
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RESULTS

This analysis included 221 adult subjects with HIV infection 
(Table  1). The Uganda cohort included 143 subjects (76 with 
TB), and the Tanzania cohort included 78 subjects (32 with TB). 
The subjects who did not have TB were all LTBI based on TST 
positivity. In the Uganda cohort, there were more males among 
TB cases than controls, reflecting the preponderance of TB 
among males in the general population. Thus, sex was included 
as a covariate in all analyses.

Differentially Methylated Regions Associated With TB

We identified 3 differentially methylated regions, the first 2 on 
chromosomes 1 and 2, respectively, with P < 5 × 10–5 in the 
Uganda sample and P < .10 in the Tanzania cohort with the 
same direction of effect (Table 2), and a third region on chro-
mosome 5 that showed a significant (P = 2 × 10–5) differen-
tially methylated marker detected in the Tanzania cohort that 
was replicated in the Uganda cohort (P = .0398) with effect 
estimates in the same direction in both populations. Another 
chromosome 5 marker also showed association in the Uganda 
cohort (P = 2.08 × 10–5), but did not replicate in the Tanzania 
cohort. The 2 methylation markers on chromosome 5 were 
uncorrelated in both cohorts (r = 0.03 in Uganda, r = 0.18 in 
Tanzania). The marker on chromosome 1 fell in a methylation 
island in RNF220 (Figure  2A), the marker on chromosome 
2 fell in an “open sea” (CpG sites not associated with a CpG 
island [CGI]) flanked by COPS8 and COL6A3 (Figure 2B), and 
the markers on chromosome 5 were on the “south shore” and 
“north shore” (regions up to 2 kb from a CGI), respectively, of 
the CEP72 gene (Figure 2C).

Validation of Differentially Methylated Regions in GWAS

We then assessed whether SNPs from the GWAS associ-
ated with TB from the chromosomes 1, 2, and 5 differ-
entially methylated CpG sites, in the same subjects [4] 
(Supplementary Table 1). All 3 regions had an SNP associated 
with TB within 200 kb of the differentially methylated sites 
(P < .05 unadjusted for multiple testing): chromosome 1, 
rs175222 (P = .00016; Figure 3A), chromosome 2, rs7586225 
(within COL6A3, P = .0082; Figure 3B), and chromosome 5, 
rs12518227 (P = .018; Figure 3C). Associated SNPs in these 

regions were in regulatory regions, or in introns, and one on 
chromosome 5 is a missense variant (rs868649). One SNP, 
rs175222 on chromosome 1, maintained significance after 
Bonferroni correction.

meQTL Associations and SNP-Methylation Interaction

Next we examined both association between SNPs in these 
regions and methylation level of the CpG marker (meQTL 
analysis), and interaction between SNP genotype and meth-
ylation marker in its association with TB. Figure 3 illustrates 
their co-localization with the original methylation findings 
and marginal SNP associations with TB. Each region had a 
significant meQTL effect and SNP-methylation interaction 
effect. On chromosome 1 (Figure 3A), rs928685 was a signif-
icant meQTL (P = .014), and 3 SNPs significantly interacted 
with the methylation sites (rs270709, P = .0108; rs6664827, 
P = .0405; rs1890948, P = .0412), all within RNF220. 
On chromosome 2 (Figure  3B), there were 2 meQTLs—
rs2645771, within COL6A3 (P = .0019), and rs10165956 
(P = .0318)—and one methylation-SNP interaction at 
rs4530312 (P = .0457). In GTex, one meQTL (rs2645771) is 
an eQTL for COPS8 in cell-cultured fibroblasts (Table 3). On 
chromosome 5 (Figure 3C), there were 3 meQTLs: rs4956936 
(within AHRR, P = .0103), rs1697952 (P = .0316), and 
rs6864158 (within SLC9A3, P = .0392). All 3 of these were 
also eQTLs, for multiple genes in both blood and lung, in-
cluding SLC9A3 and CEP72 (Table 3). This region had one 
SNP that interacted with methylation status, rs12518227 
(within CEP72, P = .0405).

Functional Implications of Differentially Methylated Regions

The methylation site on chromosome 1 falls in a FIRE and is 
a bivalent enhancer in multiple cells involved in TB immu-
nity, including T cells, monocytes, and B cells; bivalent en-
hancers have been linked to increased gene expression [17]. 
The chromosome 2 region contains a histone modifier and is 
an enhancer in lung tissue; a FIRE crosses the COL6A3 gene. 
The differentially methylated region on chromosome 5 falls 
within an active transcription start site in T cells and lung 
tissue, and flanks the transcription start site in monocytes, 
B cells, and neutrophils. Tracks showing these regions and 
functions are in Figure 2.

Table 2. Significantly Associated Methylation Markers

Methylation Marker  
Name chr Position

Relation to  
Island UCSC_RefGene_Name

Uganda  
P Value

Tanzania  
P Value

Combined  
P Value

Methylation markers that are replicated in both cohorts  

 cg19382731 chr1 44883990 Island RNF220 4.62 × 10–5 .07 4.63 × 10–5

 cg16974832 chr2 238188707 OpenSea Flanking genes  
(COPS8 and COL6A3)

4.47 × 10–5 .04 2.69 × 10–5

Different methylation markers in same region by population attaining significance  

 cg18730862 chr5 611926 N_Shore CEP72 2.08 × 10–5 9.21 × 10–1 2.28 × 10–4

 cg03602880 chr5 612961 S_Shore CEP72 .0398 2.09 × 10–5 1.25 × 10–5

Abbreviations: chr, chromosome; UCSC, University of California, Santa Cruz Genome Browser.
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SNPs Significant in Original GWAS Are Also in Differentially 

Methylated Regions

We also examined loci that were genome-wide significant in 
our prior TB GWAS [4]; they contained significantly differen-
tially methylated sites. The MWAS did not identify these re-
gions as having significant methylation effects after multiple 

testing correction, but based on our original hypothesis that re-
gions associated with TB risk in GWAS might also act through 
epigenetic mechanisms proved interesting. In most cases, the 
same methylation mark was not significant in both Uganda and 
Tanzania. For the methylation marks nearest IL12B, the most 
significant finding from our GWAS [4], differential methylation 
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was associated with TB in both Uganda (cg15353886, P = .0015) 
and Tanzania (cg11092268, P = .0089). Two other methylation 
markers were replicated in the 2 samples from these regions, 
chromosome 5 (cg09049927, P = .00089 in combined data) and 
chromosome 17 (cg24357302, P = .00071 in combined data). 
Both of these methylation markers fell in “open seas,” with the 
chromosome 5 marker falling near an microRNA, and the chro-
mosome 17 in an intron of ABCA8 (Supplementary Table 2).

DISCUSSION

Host factors play an important role in progression from LTBI 
to active TB disease, including genetic and transcriptomic fac-
tors [3, 18]. To our knowledge, only 2 small methylome-wide 
studies have been published [19, 20] in human cohorts, though 

in vitro studies have been conducted [21–23]. Our analysis of 
TB cohorts from Uganda and Tanzania revealed that 3 regions 
were differentially methylated in HIV-infected individuals who 
were protected from TB. These same regions contained nom-
inally significant SNPs associated with TB, SNPs associated 
with methylation level, and SNPs interacting with methylation 
level in association with TB. Functional annotation revealed 
that these loci have regulatory effects on cells involved in the 
TB immune response and roles in gene expression, providing 
mechanistic scenarios of the results. In addition, regions pre-
viously shown to have genome-wide significant associations 
between SNPs and TB demonstrated differential methylation. 
Although none of these analyses alone provide compelling evi-
dence for association, the concordance of the different analyses 
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does, indicating that epigenetic factors, together with genetic 
variation, can influence TB susceptibility.

The ability to resist active TB has significant genetic and en-
vironmental components, but how these features affect disease 
is unclear. Here, we examined the methylome to assess whether 
there are clear paths from exposure to disease, delineated by 
definable molecular mechanisms. Each locus we identified has 
been associated previously with either lung disease or regula-
tion of cell types or cytokine levels relevant to lung function 
and/or TB. At least one of these loci has also been shown to as-
sociate with monocyte levels in GWAS (Table 3). These results 
indicate that TB susceptibility can operate through both genetic 
factors and response to environment mediated by methylation 
and/or interaction with genetic variants. Our results indicate 
that genetics and environment act together to regulate genes 
and pathways that affect the likelihood of exposed individuals 
progressing to TB. For example, cellular and humoral immu-
nity are well-established components of the immune response 
to Mtb, but our results newly establish that epigenetic regula-
tion of T cells, B cells, and monocytes can influence protection 
from disease. This may define a path from SNP to regulation of 
gene expression to protection from TB as well as suggest new 
drug targets for prevention of TB.

While the methylation marker on chromosome 2 resides in an 
“open sea,” the SNPs associated with TB and methylation level, 
as well as SNP-methylation interaction, are within COL6A3. 
Collagen VI, a component of the extracellular matrix, plays a 
role in innate immune defense against bacteria and regulates 
autophagy [24, 25], thus indicating that COL6A3 influences 
protection from TB via immune responses to TB antigens. 
Collagen VI–related myopathies are also associated with de-
creased pulmonary function [26]. COL6A3 has been associated 
with lung cancer [27]. Thus, we hypothesize that COL6A3 may 
influence TB susceptibility through its effect on both immune 
response and lung function. That the methylation site we iden-
tified falls in an enhancer region for lung tissue reinforces this 
hypothesis. The mechanism of action may be diverse as the as-
sociated SNPs are both regulatory and result in coding changes. 
RNF220 is in the middle of the chromosome 1 region, and many 
associated SNPs are within the RNF220 coding region. RNF220 
enhances Wnt signaling [28], and thus may indicate a role for 
epigenetic modulation of Wnt signaling in the innate immune 
response to Mtb [29]. RNF220 SNPs have also been associated 
with chronic obstructive pulmonary disease and interleukin 6 
levels, the first relating to lung function and the second to TB 
and treatment response, as well as having SNPs previously asso-
ciated with TB [30–35].

The associated methylation sites and SNPs on chromosome 
5 cross multiple genes, but most results co-localize to SLC9A3. 
Another methylome-wide study found that SLC9A3 was associ-
ated with atopy and asthma [36], and SNPs in SLC9A3 were also 
associated with lung function in patients with cystic fibrosis [37, Ta
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38]. These data provide further support for our prior hypoth-
esis [39] that lung immune responses are associated with pro-
tection from TB as previously observed in asthma [40, 41]. The 
meQTLs we identified are associated with SLC9A3 and CEP72 
expression in lung, further supporting a role for these genes 
in lung function in TB. In further support, SLC9A3 is also a 
component of a biomarker that predicts progression to TB [42]. 
A recent GWAS showed lung function associated with CEP72 
[43], another gene in this region with methylation association, 
so it possible that either or both gene(s) in this region are in-
volved in TB susceptibility.

The results from our integrated analyses (MWAS, genetic as-
sociation, meQTL, and methylation-SNP interaction) are chal-
lenging to interpret, but lay out connections between genetic 
variation, its implications for methylation/gene regulation, and 
TB. Nominally significant SNP associations, meQTLs, and SNP-
methylation interaction findings together map to regions of 
interest, although different SNPs are associated. One explana-
tion is that linkage disequilibrium patterns vary across African 
populations and true functional variants are tagged differently 
[44]. Limited sample sizes, variable allele frequencies, and dis-
tributions of the methylation marker may be additional factors. 
A  second potential explanation for nonexact replication across 
cohorts may be exposure to different mycobacterial lineages and/
or environments, such as cooking method and smoking, that may 
affect cellular phenotype. This study does not distinguish between 
methylation differences induced by Mtb stimulation, examined 
by other studies [21, 23, 45, 46]. Alternatively, subjects may re-
sist development of TB via Mtb-induced methylation differently; 
future studies with larger sample sizes are needed to distinguish 
these hypotheses. Nonetheless, our results taken together indi-
cate that methylation and genetic variation are both important 
factors in TB susceptibility that can be studied together to infer 
mechanisms, and effects of different types of genomic markers 
are not necessarily independent of each other.

It is important that our study subjects were not on ART or 
anti-TB treatment at the time of recruitment, as ART may in-
fluence methylation profiles [47–49]. This is a strength of our 
study, although given the ubiquity of ART, future replication 
studies will only identify differentially methylated regions that 
are robust in patients on ART. Because ART was unavailable in 
these countries during the study, CD4 counts were not routinely 
measured; these missing data would have been informative for 
analysis. Another potential limitation of our study is the use of 
a broad array instead of bisulfite sequencing; we only examined 
select sites for epigenetic modification. HIV may have an impact 
on differential methylation, but since all subjects in this study 
were HIV infected, that potential confounder was controlled. 
This may result in findings not generalizable to HIV-uninfected 
individuals. Our MWAS results do not attain significance after 
very stringent multiple testing correction, but support from SNP 
associations bolsters confidence in these loci. Last, the source of 

DNA for this assay was buffy coat, which consists of a variety of 
cell types, including some of the major cells involved in the TB 
immune response, potentially enriching findings significant to 
those cell types compared to others. Nonetheless, these findings 
clearly indicate that future studies should explore the role of ep-
igenetic regulation of cellular and humoral immune responses 
with protection from TB along with other genomic data.

It is also important to understand how differential methyla-
tion affects RNA expression. However, in TB, this is not trivial. 
The most easily accessible tissue, peripheral blood mononu-
clear cells, may not be the most relevant tissue for TB. Some TB 
transcriptomic studies [50] stimulated monocyte-derived macro-
phages and examined the RNA expression change after Mtb stim-
ulation. While this better approximates the immune response, it is 
more difficult to measure than RNA expression in blood as usually 
studied [10]. The relevant cell of interest is alveolar macrophages, 
and studies are ongoing to determine whether gene expression in 
the lung differs from that in circulating blood.

In conclusion, this study is the first to identify methylation 
changes associated with protection from active TB in HIV-
infected patients. Our observation that differentially methyl-
ated sites are concordant with meQTLs and SNPs from GWAS 
indicates that multiple –omic levels can converge to identify loci 
of interest that can lead to treatment at several levels. Future 
studies will need to extend our findings and examine the impact 
of methylation on differential RNA expression and how they 
vary by patterns of genetic variation, especially in regulatory re-
gions, and how methylation profiles differ by specific cell type. 
However, it is clear that patterns of methylation and genetic var-
iation synergize to identify important associations in TB risk.
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Diseases online. Consisting of data provided by the authors to 
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