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Abstract

Stereotypical reasoning assumes that the situation at hand is one of a kind and that it enjoys the
properties generally associated with that kind of situation. It is one of the most basic forms of
nonmonotonic reasoning. A formal model for stereotypical reasoning is proposed and the logical
properties of this form of reasoning are studied. Stereotypical reasoning is shown to be cumulative
under weak assumptions.1

Keywords: prototypical reasoning, stereotypical reasoning, nonmonotonic consequence relations

1 Introduction

Common sense reasoning in AI requires drawing inferences in a bolder, more adven-
turous way, than mathematical reasoning. Many different formalisms that implement
some form of bold reasoning have been proposed, implemented, used to build artificial
systems. Almost no work has been done comparing those formalisms with the way
natural intelligence deals with those tasks. Minsky [5, 6] represents probably one of
the only efforts to model reasoning performed by natural intelligence.

During the last decades, philosophers, linguists, sociologists have revolutionized the
way we understand the human mind. Putnam [7] has criticized the classical philo-
sophical assumptions about meaning, and claimed that stereotypes are a necessary
component of the meaning of terms. Rosch [8, 9, 10] has put in evidence the essential
function of categorization in achieving intelligence and the intricate ways in which we
use it. Categorization is the process in which we relate a specific object or situation
to the kind we shall think it a member of. She showed that many of our categories
have prototypes, i.e., best examples. Lakoff [3] resumes and expands much of this line
of research.

The purpose of this work is to begin the study of inferencing in a mind that uses
categories as described above. A model of the simplest kind of inferencing using
stereotypes will be given and the formal properties of the inferencing process will be
studied. The formal properties of inferencing that are of interest have been singled
out by [1, 2, 4].
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50 Stereotypical Reasoning: Logical Properties

2 Stereotypical reasoning

In this work, stereotypical reasoning is used to denote what is probably the simplest
form of natural nonmonotonic reasoning. The present use of the word stereotype
is very closely related to Putnam’s stereotypes. He claimed that stereotypes are a
necessary part of the meaning of words denoting a natural kind. Here, stereotypes
are assumed not only for natural kinds but for any state of information. This could
be understood as the assumption that stereotypes are part of the meaning of any
sentence, but the philosophical aspects of this assumption are not discussed in this
paper. The point of this paper is the study of how stereotypes are used in the
inferencing process, and the formal properties of the inferencing resulting from the
use of stereotypes. The use of stereotypes has not been discussed by Putnam.

What is called here stereotypical reasoning is very closely related to the use of what
Rosch calls prototypical categories. Prototypical alludes, though, to a richer struc-
ture than stereotypical and this is the reason the latter term has been preferred. In
ordinary parlance stereotypes are considered to be typically wildly inaccurate and an
impediment to intelligent thinking. This reputation should not hide the fact that the
use of stereotypes is a fundamental tool, probably the central tool, in achieving intel-
ligence. Hence, the importance of its study. Nevertheless, the negative connotation
attached to the word stereotype should remind us we are studying a limited form of
reasoning, certainly not capable of exhibiting all forms of intelligence.

Here is an example of what I will call stereotypical reasoning. The choice of the tiger
stereotype follows Putnam. If Benjamin tells you that during his trip in India, hiking
in the jungle, he saw a tiger, you will assume he saw a large, frightening animal, yellow
with black stripes. Note that not all tigers are such. Some tigers are small, dead, or
albino. You have been using the stereotype that says that tigers are big, dangerous
and yellow with black stripes. The use of this stereotype may be a mistake: the end of
the story may reveal this was an albino tiger, but, typically, the use of the stereotype
is precisely what enables efficient communication, since Benjamin knows you have
this stereotype (as he has) he assumes you will draw the corresponding conclusions
and he intends you to draw those conclusions.

This simple example already suggests a number of questions, most of them will not
be touched upon in this paper. What is the nature, or the structure of the stereotype
tiger? Is it just a conjunction (or some other composition) of properties? In this work,
we shall assume that yes, a stereotype is a set of possible states of affairs, but the
proper treatment of prototypical categories in general may need a more sophisticated
structure. Note, though, that we are not assuming (the classical view, attacked by
Lakoff and others) that categories are sets (of models), far from that. We are only
assuming that stereotypes are sets of models. In fact, the way stereotypes are used
makes them function very much like the graded or radial categories of Lakoff.

How are such stereotypes acquired? This is certainly both deeply rooted in our
physiology and a social process.

Why is this the right stereotype for tiger? Why is it any better than some other?
Here, an analysis of rationality and utility is certainly needed.

What made you apply the tiger stereotype to the little story above and not, for
example, the jungle stereotype that says that, in the jungle, everything is dark green,
or the India stereotype, whatever this is for you? In this paper this choice will be
modeled by some distance between the information at hand and the stereotype. We
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3. A FORMAL MODEL OF STEREOTYPICAL REASONING 51

shall not be able to explain why a specific distance is used. Such an explanation
would certainly be based on utility considerations.

3 A formal model of stereotypical reasoning

Informally, starting from information about the situation at hand, one chooses the
best stereotype to fit the information and uses both the original information and the
stereotypical information to draw conclusions.

Formally, we assume W is the set of all possible states of affairs (i.e., models or
situations). We assume a collection (not necessarily finite, but it may well be finite)
of stereotypes, Si. Notice we use lower indexes to identify the stereotypes. Each
stereotype is a subset of W , the set of situations in which the stereotype holds. For
example the tiger stereotype, Stiger could be the set of all models in which tigers are
frightening live animals, yellow with black stripes.

The user has some information, i.e., facts, about the situation at hand. This in-
formation is modeled by a subset F of W : the set of all situations compatible with
the information at hand. On the basis of F , the reasoner picks up one of the stereo-
types: SF , the stereotype most appropriate to F , in a way that will be discussed
later. Notice we use here an upper index to denote the stereotype that best fits some
information F . The reasoner will then conclude that the actual state of affairs is
one of the members of the intersection F ′ def= F ∩ SF . The nonmonotonicity of the
reasoning stems from this jump from F to the subset F ′. Clearly, we do expect the
set F ′ to be non-empty, assuming F is non-empty, since we want to avoid jumping
to contradictory conclusions. It will be the task of the function that defines the best
stereotype to pick a stereotype that has a non-empty intersection with the informa-
tion F at hand. In many cases the facts F are given by a formula α that is known to
be true. In this case F is the set of all models that satisfy α. We shall identify the
formula α and the set of its models and write Sα for the stereotype most appropriate
for the sets of models of α. A formula β is then nonmonotonically deduced from α iff
it is satisfied by all elements of F ′, that is iff any model m in the set Sα that satisfies
α satisfies β: α∼β iff ∀m ∈ Sα, m |= α implies m |= β.

Syntactically, this may be described as taking for C(X), the set of nonmonotonic
consequences of a set X of formulas, the set Cn(X, g(X)), of all formulas that logically
follow from the set X ∪ g(X), where g(X) is the set of formulas that hold in all models
of the stereotype that best fits X .

Our analysis of stereotypical reasoning will use the simplistic model just described,
since it is good enough for the purpose of this paper. If one thinks of first-order
languages and models, one may want to refine this model and associate a stereotype
with each one of the objects of the structure: e.g., if our story refers to two tigers about
which one has different information, one will perhaps use different stereotypes for each
of the tigers: a mother tiger stereotype and a pup tiger stereotype for example.

Before we analyze some consequences of this model, let us point out some of its basic
limitations. It is assumed that the conclusions from facts F are drawn by identifying
a unique stereotype most appropriate for F . One may ask whether this should be the
case. Instead of picking up a single stereotype, perhaps one should consider the set of
all most appropriate stereotypes and use them all, i.e. their intersection. Indeed the
results of next section would hold also in this more general model, but the uniqueness
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52 Stereotypical Reasoning: Logical Properties

assumption will be needed later. Intuitively it seems to me that we do pick up a unique
stereotype, sometimes made up of different stereotypes, but that this composition is
almost never the simple juxtaposition, i.e., conjunction of stereotypes. The main
reason probably is that such conjunctions are very often empty and we certainly
want to avoid drawing inconsistent conclusions from consistent facts. Consider, for
example, our tiger above. We did not use both the tiger and the jungle stereotypes
because they clash about the color of the tiger: yellow and black vs. dark green. It
may be the case that a very smart reasoner will use a tiger in the jungle stereotype,
that implies the tiger is barely visible, but this stereotype, though including, somehow,
both the tiger and the jungle stereotypes, cannot be reduced to their conjunction. To
avoid premature commitment to a theory of the formation of compound stereotypes,
this paper will just assume any set F of facts is associated with a unique stereotype.

4 First consequences of the model

As general as it is, the model presented above has some important consequences for
the formal properties of the process of nonmonotonic deduction it defines, i.e., of the
consequence relation ∼.

First, since what is defined by facts F is a set of models, F ′, the set of nonmonotonic
consequences of F , i.e., the set of formulas that hold in all elements of F ′ is a logical
theory, i.e., closed under logical consequence. In other terms, the relation ∼ satisfies
the rules of Right Weakening and And of [2]. Secondly, since F ′ is a subset of F , any
formula that is logically implied by F holds in all elements of F ′, or, the relation ∼
satisfies the Reflexivity of [2]. Lastly, since the information at hand is represented,
semantically, by a set of models, the relation ∼ satisfies Left Logical Equivalence.

5 Further assumptions

The main purpose of this work is to consider whether other, more sophisticated,
logical properties may be expected from stereotypical reasoning. It is clear that, in
the very general model described above, without further assumptions, nothing more
can be expected: given any relation ∼ satisfying Left Logical Equivalence, Reflexivity,
Right Weakening and And, one may define, for any formula α, the stereotype Sα to
be the set of all models that satisfy all the formulas β such that α ∼β. Since the
relation ∼ is reflexive, all models of Sα satisfy α and, for any α, Sα ⊆ Fα. Therefore
Fα ∩ Sα = Sα and the nonmonotonic consequence relation defined by the model is
exactly ∼.

Our goal is to find some additional, reasonable, assumptions about the set of stereo-
types or the way the best stereotype for a set F is chosen that will have interesting
consequences on the nonmonotonic logic defined. In fact, the set of stereotypes and
its structure does not seem to play an important role here and we shall concentrate
on the choice of the best stereotype.

Notice that the mapping from a set F to its best stereotype SF may be very wild.
We do not expect, for example, that F ′ ⊆ F should imply SF ′ ⊆ SF . It may well
be the case that robins is the best stereotype for birds, but the best stereotype for
antarctic birds is, for lack perhaps of knowledge of a better one, vertebrates.

It is extremely helpful to consider the process of associating to the set F the stereo-
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5. FURTHER ASSUMPTIONS 53

type SF as based on some notion of distance between information sets and stereotypes:
the best stereotype for F is the stereotype closest to F :

d(F, SF ) ≤ d(F, S), for every stereotype S. (5.1)

Notice that this notion of distance is a bit unusual, since it is defined only from
information sets to stereotypes. We shall never use the notion of the distance from
a stereotype to an information set. The assumption that our choice is based on
some notion of a distance does not limit the generality of our model, since one may
always find a suitable distance to fit any choice of best stereotype. The interest
of this assumption is that it suggests some natural additional assumptions on the
properties of this distance. Those assumptions will be related to logical properties of
the nonmonotonic deduction.

Let us suppose D is a partially ordered set (of distances) and that there is a function
d that associates an element of D d(F, S) with every set of models F (in fact every
set of models that could appear as an information set would be enough) and every
stereotype S. A first assumption, already described above, is that this distance always
enables us to pick a unique best stereotype.

• Assumption zero: for any given information set F there exists a unique stereotype
SF such that d(F, SF ) ≤ d(F, S) for any stereotype S.

A number of examples of models and choice functions will be described. They may
not be very intuitively appealing, but their purpose is to help the reader understand
our definitions and prove the consistency of the assumptions that shall be made below.
In all examples the set D of distances is taken to be the set of integers, eventually
with ∞ added.
Example 5.1
There is one stereotype only: S0 and S0 = W . The exact definition of the distance
is irrelevant. Assumption zero is satisfied trivially and, for any F , SF = S0 = W .
Clearly, for any F , F ′ = F ∩ SF = F , and therefore F ′ is non-empty if F is. The
non-monotonic logic defined happens to be monotonic and to be the classical one:
α ∼β iff α ` β.
Example 5.2
Assume the set W is finite. Every set S ⊆ W is a stereotype and

d(F, S) = | S − F | − | S ∩ F |,
where | A | indicates the cardinality of the set A. Since d(F, F ) = − | F |≤ d(F, S)
for any S, we see that, for any F , SF = F , and therefore assumption zero is satisfied,
F ′ = F and the logic defined is the classical one as in Example 5.1.
Example 5.3
Assume the set W is the set of natural numbers. Stereotypes are singletons of W .
Distances are defined in the following way: if n ∈ F , d(F, {n}) = n and if n 6∈ F ,
d(F, {n}) = ∞. Clearly SF is the singleton that contains the minimal element of F ,
min(F ) and assumption zero is satisfied. Note also that F ′ = min(F ) is non-empty if
F is non-empty. The model boils down to considering that world m is more probable
than world n iff m < n. The logic defined results in, given a set of possibilities F ,
jumping to the conclusion that the most probable one must obtain. This provides a
highly nonmonotonic consequence relation.
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54 Stereotypical Reasoning: Logical Properties

The next example presents a simple, but natural, family of models.

Example 5.4
Assume W is finite and the set of (non-empty) stereotypes Si, i = 0, . . . , k − 1 provides
a partition of W , i.e.,

⋃
i∈k Si = W and Si ∩ Sj = ∅, for any i 6= j. Given a set F ,

we associate with it the stereotype Sj which covers F best, i.e., for which the size of
the set S − F is minimal. In case this criterion does not define a unique stereotype,
choose the stereotype with smallest index. Formally we may define the distance by:
d(F, Si) =| Si − F | + i

k . The consequence relation defined is nonmonotonic.

After these examples, let us consider interesting properties of the distance d. Since
F and S are both sets of models (subsets of W ) we may, without loss of gener-
ality, assume that d(F, S) = e(F ∩ S, S − F, F − S). Three additional assumptions
concerning the way the function e depends on each of its three arguments are now
natural.

• Assumption one: the function e is anti-monotone in its first argument. I mean that
if A ⊆ A′, then e(A′, B, C) ≤ e(A, B, C). The relation ⊆ is the subset relation.
This assumption is very natural: d(F, S) measures the closeness of F and S: the
more they have in common, the closer they are. In most cases we expect that
the best stereotype for F should be consistent with F , i.e., have an non-empty
intersection with F . If this is the case, our assumption is only slightly stronger:
all other things being equal, the best stereotype for F has the largest intersection
with F . The set F ∩ SF represents the nonmonotonic consequences of F ; we
prefer weaker consequences, therefore we prefer to take the set F ∩ SF as large as
possible.

• Assumption two: the function e depends monotonically on its second argument.
Here I mean that if B ⊆ B′, then e(A, B, C) ≤ e(A, B′, C). The second argument,
B = S − F measures the set of models compatible with the stereotype but ex-
cluded by the information. Notice that the stereotype may be vague, i.e., contain
a large number of elements: for example the bird stereotype may include birds of
many colors, and the information at hand may exclude a lot of those elements:
for example we may know the bird we are discussing is yellow. The more such ele-
ments are excluded by the information at hand, the less suitable is the stereotype:
if too many such elements are excluded a more specific stereotype may be more
suitable. In our example, a yellow bird stereotype, if there is one such stereotype,
should be preferred.

• Assumption three: the function e does not depend on its third argument. It
seems easy to justify that the function e should depend monotonically on its third
argument, by an argument very similar to that used for justifying assumption two.
It is perhaps a little less obviously natural that e should not depend at all on its
third argument. But, notice that the set F − S is a measure of the strength of our
nonmonotonic inference: the larger it is the more nonmonotonic consequences we
get in addition to the monotonic ones. The argument just above is to the effect we
should not get too many such inferences, but we are certainly interested in getting
such nonmonotonic consequences, and should not try to minimize them. Our
assumption is that how much nonmonotonicity we get should not be a criterion
in choosing the best stereotype.
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Assumptions one to three may be summarized by the following: for any F , F ′ and
any stereotypes S, S′, if

F ′ ∩ S′ ⊆ F ∩ S and S − F ⊆ S′ − F ′ then d(F, S) ≤ d(F ′, S′). (5.2)

Proof.

d(F, S) = e(F ∩ S, S − F, F − S) ≤ e(F ′ ∩ S′, S′ − F ′, F ′ − S′) = d(F ′, S′)

One may notice that Equation 5.2 implies that d(F, S) = d(F ∩ S, S). Let us consider
the examples above again. In Example 5.1, we may define the distance d to be con-
stant, for example d(F, S) = 0. Equation 5.2 is obviously satisfied. In Example 5.2
also, Equation 5.2 is obviously satisfied. In Example 5.3, let us check that Equa-
tion 5.2 is satisfied. Since stereotypes are singletons, F ′ ∩ S′ ⊆ F ∩ S implies that
either F ′ ∩ S′ = ∅, or S′ = S = F ′ ∩ S′ = F ∩ S. In the first case d(F ′, S′) = ∞ and
the result holds. In the second case, if S = {n}, d(F, S) = n = d(F ′, S′). For Exam-
ple 5.4, if F ′ ∩ S′ ⊆ F ∩ S then, either F ′ ∩ S′ = ∅, or S′ = S. If S − F ⊆ S′ − F ′,
then either S − F = ∅ or S′ = S. If S′ = S = Si,

d(F, S) = | S − F | +
i

k
≤ | S′ − F ′ | +

i

k
= d(F ′, S′).

If S′ = Sj 6= S = Si, F ′ ∩ S′ = ∅ and S − F = ∅,

d(F, S) =
i

k
< 1 ≤ | S′ | ≤ | S′ | +

j

k
.

Equation 5.2 is satisfied.
In the sequel we shall assume, sometimes without recalling this explicitly, that the

distance d satisfies Equation 5.2.
Our main result is that stereotypical reasoning yielded by a distance that satisfies

the four assumptions above: i.e., uniqueness of the closest stereotype, antimonotonic-
ity of the distance d(F, S) in F ∩ S, monotonicity in S − F and independence from
F − S, is cumulative [2]. The main result is therefore the following.

Theorem 5.5
If F ∩ SF ⊆ F ′ ⊆ F , then SF ′

= SF .

Proof. Assume F ∩ SF ⊆ F ′ ⊆ F . We must show that, for any stereotype S, we
have d(F ′, SF ) ≤ d(F ′, S). First, since F ∩ SF ⊆ F ′, we have both F ∩ SF ⊆ F ′ ∩ SF

and SF − F ′ ⊆ SF − F , therefore, by Equation 5.2, we have d(F ′, SF ) ≤ d(F, SF ).
By Equation 5.1, for any stereotype S, d(F, SF ) ≤ d(F, S) and therefore, for any S,
d(F ′, SF ) ≤ d(F, S). Using, now, F ′ ⊆ F , we see that F ′ ∩ S ⊆ F ∩ S and S − F ⊆ S − F ′.
By Equation 5.2, then, d(F, S) ≤ d(F ′, S), and d(F ′, SF ) ≤ d(F ′, S), for any stereo-
type S.

Corollary 5.6
The nonmonotonic consequence relation ∼ defined by stereotypical reasoning yielded
by a distance that satisfies Equation 5.2 satisfies Cut and Cautious Monotonicity and
is therefore cumulative.
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Proof. Suppose α ∼β. Let F be the set of models of α and F ′ be the set of
models of α ∧ β. The assumption α ∼β means that all elements of F ∩ SF sat-
isfy β, i.e., F ∩ SF ⊆ F ′. But clearly F ′ ⊆ F . By Theorem 5.5, SF ′

= SF and
F ∩ SF = F ′ ∩ SF ′

and α ∼γ iff α ∧ β ∼γ.

Karl Schlechta [11] has found a cumulative consequence relation ∼ that cannot be
defined by any stereotypical reasoning system yielded by a distance that satisfies
Equation 5.2. The exact characterization of those cumulative relations that can be
defined by stereotypical systems that satisfy Equation 5.2 is open. In the next section,
we shall discuss another basic logical property of nonmonotonic system described
in [2], Or, i.e., preferentiality.

6 Preferentiality

Suppose each one of two information sets, F and F ′ enable us to conclude that some
formula α holds: all elements of F ∩ SF and all elements of F ′ ∩ SF ′

satisfy α. Does
this imply that the union F ∪ F ′ enables us to conclude α, i.e., do all elements of
(F ∪ F ′) ∩ SF∪F ′

satisfy α? The discussion of [2] explains why this seems to be a
natural property to expect. For example, assuming we would conclude that a bird
that lives in the country flies, and that we would also conclude that a bird that lives
in a city flies. Must we conclude that birds that live either in the country or in a city
fly? Stereotypical reasoning does not always satisfy this property for the following
reason. I guess that natural common-sense reasoning does not either, for the same
reason. Suppose β and γ describe very different situations, whose best stereotypes
are different. It may happen, nevertheless that the same property α will be shared
both by models of β ∩ Sβ and of γ ∩ Sγ . But the best stereotype for β ∨ γ may be
very general and some models of, say, β ∩ Sβ∨γ may not satisfy α. Intuitively, if the
reasons for concluding α from β are very different from those for concluding α from
γ, there is little hope we shall be able to conclude α from the disjunction β ∨ γ.

There is one interesting case, though, the case SF = SF ′
, in which the desired

conclusion follows if we strengthen one of the assumptions above. Since the function
e does not depend on its third argument, by Assumption three, we shall write it as a
function of two arguments. Let us assume:

• Assumption four: e(A ∪ A′, B) = min{e(A, B), e(A′, B)}.
Clearly, assumption one already implies e(A ∪ A′, B) ≤ min{e(A, B), e(A′, B)} and
assumption four implies assumption one.

Theorem 6.1
Let assumptions zero–four be satisfied. If SF = SF ′

, then SF∪F ′
= SF .

Proof. Notice that we do not claim that the nonmonotonic consequence relation
defined is preferential. Assume SF = SF ′

. We must show that, for any stereotype S,
we have d(F ∪ F ′, SF ) ≤ d(F ∪ F ′, S). Then,

d(F ∪ F ′, SF ) = e((F ∩ SF ) ∪ (F ′ ∩ SF ′), SF − (F ∪ F ′)) ≤

e(F ∩ SF , SF − F ) = d(F, SF ) ≤ d(F, S).
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7. CONCLUSION 57

Similarly d(F ∪ F ′, SF ) ≤ d(F ′, S) and

d(F ∪ F ′, SF ) ≤ min{d(F, S), d(F ′, S)} = d(F ∪ F ′, S).

The last equality stems from assumption four.

Consider our examples above. In Example 5.1, the function d is constant and therefore
satisfies condition four. The consequence relation, being classical, is in fact prefer-
ential. In Example 5.2, the function d proposed does not satisfy assumption four,
nevertheless the relation defined is preferential. In Example 5.3, the function d sat-
isfies assumption four. The consequence relation defined, being classical, is in fact
preferential. In Example 5.4, assumption four holds, and therefore the conclusions of
Theorem 6.1, but the consequence relation defined is not preferential.

7 Conclusion

A formal description of stereotypical reasoning has been provided. Under reasonable
assumptions about the way stereotypes are attached to information sets, this model
yields a cumulative system. The assumptions one–three concerning the distance be-
tween information sets and stereotypes may perhaps be tested experimentally. Pref-
erentiality has been discussed, and found unplausible in general, but a more limited
natural property has been put in evidence. Again, preferentiality should be tested
experimentally. The conditions proposed above that imply good logical behavior are
sufficient but not necessary. Other conditions may be more natural and also sufficient.
The structure of the set S of stereotypes, in particular, has been left completely arbi-
trary. A reasonable assumption may be that this set has a tree structure: i.e., that if
S and T are any two stereotypes such that the intersection S ∩ T is not empty, then
S ⊆ T or T ⊆ S.
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