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Objective: Various techniques are available for radiotherapy of hepatocellular carcinoma,
including three-dimensional conformal radiotherapy, linac-based intensity-modulated radio-
therapy and helical tomotherapy. The purpose of this study was to determine the optimal
radiotherapy technique for hepatocellular carcinoma.
Methods: Between 2006 and 2007, 12 patients underwent helical tomotherapy for locally
advanced hepatocellular carcinoma. Helical tomotherapy computerized radiotherapy planning
was compared with the best computerized radiotherapy planning for three-dimensional con-
formal radiotherapy and linac-based intensity-modulated radiotherapy for the delivery of
60 Gy in 30 fractions. Tumor coverage was assessed by conformity index, radical dose hom-
ogeneity index and moderated dose homogeneity index. Computerized radiotherapy planning
was also compared according to the tumor location.
Results: Tumor coverage was shown to be significantly superior with helical tomotherapy as
assessed by conformity index and moderated dose homogeneity index (P ¼ 0.002 and 0.03,
respectively). Helical tomotherapy showed significantly lower irradiated liver volume at 40, 50
and 60 Gy (V40, V50 and V60, P ¼ 0.04, 0.03 and 0.01, respectively). On the contrary, the
dose–volume of three-dimensional conformal radiotherapy at V20 was significantly smaller
than those of linac-based intensity-modulated radiotherapy and helical tomotherapy in the
remaining liver (P ¼ 0.03). Linac-based intensity-modulated radiotherapy showed better
sparing of the stomach compared with helical tomotherapy in the case of separated lesions in
both lobes (12.3 vs. 24.6 Gy). Helical tomotherapy showed the high dose–volume exposure
to the left kidney due to helical delivery in the right lobe lesion.
Conclusions: Helical tomotherapy achieved the best tumor coverage of the remaining
normal liver. However, helical tomotherapy showed much exposure to the remaining liver at
the lower dose region and left kidney.
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INTRODUCTION

Radiotherapy (RT) of hepatocellular carcinoma (HCC) has

long been overlooked for fear that radiation might induce

fatal hepatic toxicity at doses lower than therapeutic doses

(1,2). However, recent developments in RT technology have

overcome this limitation by delivering focused, high-dose,

partial liver RT (3 – 8). In fact, the use of RT in treating

HCC is rapidly increasing, as evidenced by the increasing

number of publications in PubMed, from 11 in 1990 to 77

in 2008.

Various RT modes are available from three-dimensional

conformal RT (3D-CRT) to more sophisticated techniques

including intensity-modulated RT (IMRT) and image-guided

RT (IGRT). Of these techniques, 3D-CRT is most com-

monly used for HCC (9,10). Helical tomotherapy (HT) is a

sort of fusion technology that combines IMRT and IGRT
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(11,12). Because of its 3608 beam arrangement and helical

delivery of radiation, HT computerized RT planning

(CRTP) may provide equal or better tumor coverage and pro-

tection of healthy tissues compared with linac-based

step-and-shoot IMRT (L-IMRT) or 3D-CRT CRTP for

various tumors (13 – 15). HT also has wider applications,

ranging from total marrow irradiation to radiosurgery

(16,17); however, the application of HT in HCC has been

very limited (18,19).

The goal of RT for HCC is to maximize therapeutic

effects by escalating the radiation dose while simultaneously

sparing the adjacent normal organs. The liver is one of the

largest organs of the body; its asymmetric shape has been

divided by Couinaud (20) into eight independent segments.

Tumor location should be taken into account when perform-

ing local RT of HCC to minimize radiation complications

not only of the liver but also of adjacent organs.

At Yonsei University, HT has been used to treat HCC since

2006. Although HT is known to provide better dose coverage

for tumors in general, the effectiveness of HT for liver tumors

specifically is not known. Therefore, we evaluated dose con-

formity of 3D-CRT, L-IMRT and HT in patients with locally

advanced HCC. The purpose of this study was to determine

the optimal RT for locally advanced HCC.

PATIENTS AND METHODS

Between August 2006 and December 2007, 12 patients

underwent HT for locally advanced HCC. The ‘locally

advanced hepatocellular carcinoma’ was defined as the

disease not amenable to surgical resection or immediate

liver transplantation, and the disease should be locally

advanced as defined by BCLC (B) intermediate stage or

BCLC (C) advanced stage without extrahepatic spread

except regional lymph node involvement (21). A total of six

patients (50%) were treated with additional therapy before

receiving RT including: transcatheter arterial chemoemboli-

zation (TACE), transcatheter arterial chemoinfusion or

systemic chemotherapy, and local therapy such as radio-

frequency ablation and surgery. In these patients, RT was

chosen as a salvage modality aim. For locally advanced

HCC such as large tumor or portal vein thrombosis, concur-

rent chemoradiotherapy with intra-arterial chemoinfusion

was done as a definitive aim.

Their HT CRTP was compared with the best CRTPs for

3D-CRT and L-IMRT. HT CRTP was performed with

Tomotherapy Hi-Art Systemw (TomoTherapy, USA),

L-IMRT CRTP was performed with Corvusw (Nomos,

USA) and 3D-CRT CRTP was performed with the Pinnacle

planning system (Philips, USA). The L-IMRT and HT plan-

ning systems use different dose calculation algorithms;

Corvusw uses a finite-size pencil beam algorithm and calcu-

lations were based on the work of Nizin (22), whereas HT

uses a superposition convolution algorithm (23). We used

heterogeneity correction for both L-IMRT and HT CRTP.

For planning computed tomography (CT) scans, patients

were positioned supine with their arms above the head. The

BodyFIXw vacuum immobilization system (Medical

Intelligence Corp., Germany) was used to reduce the plan-

ning target volume (PTV) and minimize patient’s respiratory

motion. Planning CT was performed with a helical CT simu-

lator (Marconi, Picker PQ 5000, USA) with 5 mm slice

thickness. To verify craniocaudal motion, we also checked

diaphragm movement by fluoroscopic imaging during the

simulation. The clinical target volume was expanded accord-

ing to the degree of diaphragm movement to create the PTV,

which was prescribed as 60 Gy in 30 fractions. Target

volume receiving at least 95% of the prescribed dose should

reach values of 100%.

To determine which RT mode provides the best conformal

coverage (conformity), two parameters—conformity index

(CI) and homogeneity index—were analyzed. CI is defined

as the ratio of the treated volume (TV) to the PTV (24)

CI ¼ TV

PTV

Radical dose homogeneity index (rDHI) and moderate DHI

(mDHI) were defined as the ratio of Dmin (minimum dose

within target volume) to Dmax (maximum dose within target

volume), and the ratio of D95% (dose to 95% of target

volume) to D5% (dose to 5% of target volume should be

used), respectively (25)

rDHI ¼ Dmin

Dmax

mDHI ¼D�95%

D�5%

The mean dose, V20, V30, V40, V50 and V60 were com-

pared for the remaining normal liver and stomach. We

selected three patients with the different locations of the

liver lesion. CRTPs were also compared according to the

tumor location; three different tumor locations were ana-

lyzed, which correspond to Couinaud’s liver segment classi-

fication as follows: right lobe lesions, lesions in both lobes

and left lobe lesions; right lobe lesions at S5–8 and S5–6,

right lobe mass at S5–6, separated lesions at S4 and S5–6,

and left lobe lesion. For IMRT CRTP, a non-coplanar tech-

nique was also allowed.

RESULTS

COVERAGE OF TARGET VOLUME ALONG THE TUMOR CONTOURS

Patient characteristics including stage, tumor location,

volume of target tissue and adjacent normal organs (organs

at risk) are displayed in Table 1. The patients staged accord-

ing to the modified UICC staging classification. Three of

them showed portal vein thrombosis. The target volume cov-

erage and dosimetric data of 3D-CRT, L-IMRT and HT
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CRTP for 12 patients are shown in Table 2. The CI and

mDHI were significantly improved with HT CRTP compared

with the 3D-CRT and L-IMRT CRTPs (P ¼ 0.002 and 0.03,

respectively). rDHI of HT CRTP also improved, but did not

show statistically significant difference.

SPARING OF ADJACENT NORMAL ORGANS

The dosimetric data of 3D-CRT, L-IMRT and HT for the

remaining normal liver, stomach and small bowel are shown

in Table 3. The high-dose region, the volume fraction of the

Table 1. Patient characteristics

Case no. Age/sex Stage Child–Pugh class GTV (cc)

Organs at risk

Tumor locationRemaining liver (cc) Stomach (cc) Small bowel (cc)

1 48/M T3N0 A 483.4 1760.2 565.9 452.4 S4

2 62/F T4N1 B 228.2 1110.9 160.5 416.2 Lt. lobe with L/N metastasis

3 64/M T4N0 A 1280.4 942.7 248.9 972.1 S4, PVT

4 79/M T4N0 A 396.7 1696.6 206.6 754.9 Rt. lobe and S4 (separated lesions)

5 55/M T3N0 A 297.9 823.7 141.1 654.9 S4

6 53/M T4N0 A 307.1 894.9 232.6 451.8 Rt. lobe (S6), PVT

7 55/M T3N0 A 203.1 1331.8 209.0 884.3 S2 and S5 (separated lesions)

8 59/M T3N0 A 425.4 1042.3 429.9 150.2 Lt. lobe

9 56/M T4N0 A 372.2 1165.4 232.7 232.7 Rt. lobe (S5 and 6)

10 48/M T4N0 A 2079.9 917.0 138.0 856.8 Rt. lobe (S5–8), PVT

11 64/M T4N0 A 490.7 1775.2 359.5 302.1 Lt. lobe

12 52/M T3N0 A 177.9 1536.6 141.0 408.1 Rt. lobe (S5)

GTV, gross tumor volume; Lt., left; L/N, lymph node; PVT, portal vein thrombosis; Rt., right.

Table 2. The target volume coverage and dosimetric data of three-dimensional conformal radiotherapy, linac-based intensity-modulated radiotherapy and
helical tomotherapy

Case no.

CI rDHI mDHI

3D-CRT L-IMRT HT 3D-CRT L-IMRT HT 3D-CRT L-IMRT HT

1 2.32 1.05 1.03 0.79 0.80 0.84 0.90 0.91 0.93

2 2.15 1.12 1.04 0.83 0.84 0.87 0.90 0.91 0.94

3 1.65 1.05 1.04 0.45 0.39 0.69 0.91 0.86 0.89

4 1.83 1.24 1.08 0.81 0.82 0.83 0.92 0.90 0.91

5 1.59 1.12 1.04 0.82 0.83 0.85 0.90 0.91 0.94

6 1.72 1.18 1.07 0.82 0.83 0.83 0.94 0.91 0.92

7 5.86 1.12 1.06 0.76 0.82 0.84 0.84 0.90 0.93

8 2.05 1.11 1.04 0.81 0.82 0.84 0.88 0.90 0.93

9 1.61 1.38 1.19 0.67 0.82 0.83 0.93 0.94 0.98

10 2.11 1.99 1.10 0.77 0.81 0.82 0.90 0.93 0.95

11 1.34 1.19 1.11 0.80 0.82 0.83 0.95 0.97 0.98

12 1.41 1.25 1.12 0.77 0.78 0.80 0.89 0.92 0.93

Mean 2.14+1.16 1.23+0.25 1.07+0.05 0.75+0.11 0.78+0.12 0.82+0.05 0.91+0.03 0.91+0.03 0.93+0.02

P value 0.002 0.28 0.03

CI, conformity index; rDHI, radical dose homogeneity index; mDHI, moderate dose homogeneity index; 3D-CRT, three-dimensional conformal radiotherapy;
L-IMRT, linac-based intensity modulated radiotherapy; HT, helical tomotherapy.
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remaining liver receiving more than 40 Gy (V40) in HT

CRTP, was smaller compared with the other RT techniques.

For the low-dose region (V20), the volume fraction of the

remaining liver of 3D-CRT was significantly smaller than

those of L-IMRT and HT (P ¼ 0.03). Table 3 shows a sig-

nificant reduction in irradiated fractional volume of the

remaining normal liver at V40 (P ¼ 0.04), V50 (P ¼ 0.03)

and V60 (P ¼ 0.01) by HT CRTP. HT CRTP also reduced

the volume fraction of the stomach receiving more than

40 Gy (54.5 and 38.3% compared with 3D-CRT and

L-IMRT, respectively); however, this reduction was not sig-

nificant (Table 3). The V50 and V60 of the stomach were

also decreased with HT CRTP, but this was not significant.

The volume of high-dose area (V40, V50 and V60) of the

small bowel was also decreased with HT CRTP, but this was

not significant. The mean doses for the stomach, small

bowel and remaining normal liver using L-IMRT and HT

CRTP were higher than the mean doses using 3D-CRT

CRTP.

Radiation dosimetric displays for 3D-CRT, L-IMRT and

HT CRTP are shown in Fig. 1 according to the tumor

location. The V50 of the remaining normal liver was

decreased by L-IMRT and HT CRTP for the right lobe

lesion; however, 3D-CRT CRTP achieved better sparing of

the adjacent organs in the low-dose region (Fig. 2). The

mean doses for the remaining normal liver with 3D-CRT

and L-IMRT (14.2 and 15.7 Gy, respectively) were lower

compared with HT (19.3 Gy). For separated lesions in both

lobes, the mean doses for the remaining normal liver were

not significantly different among the RT techniques (25.8–

27.63 Gy). For the left lobe lesion, 3D-CRT and L-IMRT

CRTP achieved lower mean doses for the remaining normal

liver (14.9 and 15.9 Gy, respectively) compared with HT

(22.3 Gy). However, a dose reduction in the stomach V50

(3.4%) was observed with HT CRTP compared with

Table 3. Dosimetric data of 3D-CRT, L-IMRT and HT for the remaining
normal liver and stomach

Organs at risk 3D-CRT L-IMRT HT P value

Remaining liver

Mean dose (Gy) 20.9+6.8 22.6+11.4 24.9+7.6 0.01

V20 (%) 42.04+14.35 71.07+23.44 65.78+22.4 0.03

V30 (%) 30.11+11.09 50.01+18.02 39.61+17.95 0.07

V40 (%) 17.8+10.3 29.4+12.1 17.8+13.8 0.04

V50 (%) 11.1+6.7 15.3+7.5 7.6+6.1 0.03

V60 (%) 3.9+3.2 2.1+1.5 0.4+0.3 0.01

Stomach

Mean dose (Gy) 16.1+10.4 22.6+5.7 21.3+6.3 0.11

V40 (%) 10.1+17.3 7.5+11.3 4.6+11.0 0.62

V50 (%) 6.8+13.4 2.6+6.1 2.0+6.0 0.39

V60 (%) 2.7+6.0 0.4+1.1 0.5+1.6 0.24

Small bowel

Mean dose (Gy) 10.14+6.9 14.74+5.67 14.38+4.71 0.12

V40 (%) 6.49+8.83 5.4+8.33 4.59+1.32 0.67

V50 (%) 3.39+4.59 2.53+3.83 1.54+1.66 0.46

V60 (%) 0.47+0.81 0.22+0.59 0.06+0.17 0.23

Figure 1. Axial isodose distributions of three-dimensional conformal RT (3D-CRT), linac-based intensity-modulated RT (L-IMRT) and helical tomotherapy

(HT). (A) Isodose distributions of 3D-CRT, L-IMRT and HT for the right lobe lesion. (B) Isodose distributions of 3D-CRT, L-IMRT and HT for the left lobe

lesion. (C) Isodose distributions of 3D-CRT, L-IMRT and HT for separated lesions at both. Color coding for the isodose color washes ranges from 20 Gy

color washes (light blue) to 66 Gy color washes (yellow).
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3D-CRT and L-IMRT (5.9 and 5.8%, respectively) in the

high-dose region.

Dose–volume histograms (DVH) of the stomach are dis-

played for 3D-CRT, L-IMRT and HT in Fig. 2. For the sep-

arated lesion in both lobes, the mean stomach doses for

3D-CRT, L-IMRT and HT were 20.9, 12.3 and 24.6 Gy,

respectively. For the left lobe lesion, the mean stomach

doses for 3D-CRT, L-IMRT and HT were 41.6, 30.6 and

37.6 Gy, respectively. The V50 values for 3D-CRT, L-IMRT

and HT were 48.1, 16.9 and 21.0%, respectively. A

conformal treatment plan for L-IMRT was successfully gen-

erated with decreased mean stomach dose in cases of the

separated lesion in both lobes and left lobe lesion (12.3 and

30.6 Gy, respectively). The DVH of the right kidney and left

kidney are also displayed in Fig. 2. In the right lobe lesion

and separated lesions at both lobes, L-IMRT resulted in less

exposed to the right kidney and left kidney than 3D-CRT

and tomotherapy, respectively. HT plan showed the high

dose – volume exposure to the left kidney due to helical

delivery in the right lobe lesion.

Figure 2. Dose–volume histograms of the remaining liver, stomach, right kidney and left kidney according to the tumor location; (A) right lobe lesion, (B)

left lobe lesion and (C) separated lesions at both lobes.
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DISCUSSION

For patients with locally advanced HCC, several factors

should be considered while selecting appropriate RT tech-

nique. Although 3D-CRT has been the most commonly used

technique for HCC (9,10), analysis of dosimetric plans for

3D-CRT, L-IMRT and HT is needed to compare target cov-

erage and organ sparing. HT delivers its dose from 3608 and

may produce detrimental effects on non-tumor liver tissue.

Cheng et al. (26) compared dose – volume data between

3D-CRT and L-IMRT for patients with HCC. They found

that L-IMRT achieved a large dose reduction in the spinal

cord and spared the kidney and stomach. L-IMRT exerted

diverse dosimetric effects on the liver, significantly reducing

the normal tissue complication probability (P ¼ 0.009), but

significantly increasing the mean dose compared with

3D-CRT (P ¼ 0.009). Some studies have reported improved

sparing of adjacent normal organs when using HT in various

tumors, and HT offers increased dose conformity to the

tumor and reduces doses received by sensitive structures

(13,14). In the present study, we found that HT decreased

high-dose radiation to certain critical structures like the

stomach, whereas the mean hepatic dose was increased.

Proton therapy is a type of positively charged particle

therapy with a unique dose distribution which makes them

suitable for the treatment of deep tumors surrounded by

normal structures. Several authors reviewed clinical out-

comes of the HCC patients treated with proton beam therapy

(PBT) (27 – 29). Recently, Kawashima et al. (30) reported

Phase II study proton therapy for HCC. Thirty patients were

enrolled between May 1999 and February 2003. After a

median follow-up period of 31 months (16 – 54 months),

only one patient experienced recurrence of the primary

tumor, and the 2-year actuarial local progression-free rate

was 96%. The actuarial overall survival rate at 2 years was

66% (48–84%). Li et al. (31) conducted a comparative dose

distribution study of treatment planning between PBT,

3D-CRT and IMRT in the treatment of HCC, so as to assess

the potential advantages of PBT. DVH were compared

between PBT and 3D-CRT or IMRT planning at a total dose

of 66 and 86 Gy in Stage I patients (n ¼ 10, diameter �
5 cm), 60 and 72 Gy in Stage IIA patients (n ¼ 12,

diameter ¼ 5.1–10 cm). Compared with 3D-CRT and IMRT,

PBT significantly reduced the Dmean, V10, V20 and V30 in

all patients. PBT reduced the dose to the right kidney and

stomach significantly. No significant difference was observed

respect to the dose to spinal cord. Further study of dose dis-

tribution in the treatment of advanced HCC might be necess-

ary, because this study compared only Stage I and IIA

disease.

The liver is one of the largest organs of the body; its tri-

angular shape renders different adjacent organs such as the

duodenum, colon, small bowels and kidney vulnerable

depending on the liver segment involved (20). Park et al.

reported that the incidence of acute morbidity was signifi-

cantly affected depending on the lobe that was irradiated.

Among the 47 patients who underwent 3D-CRT on the right

lobe only, 26 patients (55.3%) developed acute morbidity,

including nausea and vomiting. In contrast, 11 of 12 patients

(91.7%) irradiated on the left lobe developed acute morbidity

(8). In our previous study of HCC patients who were treated

with 3D-CRT combined with transarterial chemoemboliza-

tion (TACE), seven patients (14%) developed a gastroduode-

nal side effect, six patients (12%) developed

radiation-induced liver disease and one patient (2%) devel-

oped subacute colitis after irradiation of a tumor in segment

5 of the liver (9).

Depending on the tumor location, non-coplanar L-IMRT

may improve stomach sparing in patients with left lobe lesions

and separated lesions in both lobes. However, non-coplanar

L-IMRT generally takes more time because automatic field

sequencing is not possible and extra time is required for couch

moving. In addition, HT effects may vary depending on the

tumor location. Patients with a large centrally located tumor

may have more normal liver tissue surrounding the target,

which inevitably results in more liver volume receiving radi-

ation and an increased mean hepatic dose. With delivery by

HT, improved dose conformity to the tumor targets is achieved

with the price of increased mean hepatic dose.

In the case of HCC patients with left lobe lesions, we can

protect the right lobe with a directional beam blocking tech-

nique as shown in Fig. 3. Directional blocking allows a

beam to pass through a given structure only after passing

through the PTV, such that the structure receives the exit

dose but not the entrance dose (32). HT CRTP with direc-

tional beam blocking for the right lobe produced a mean

dose for the remaining liver (16.2 Gy) that was similar to

that produced by 3D-CRT and L-IMRT (14.9 and 15.9 Gy,

respectively) and improved the remaining liver dose com-

pared with conventional HT (22.3 Gy).

Finally, the liver moves with respiration, so tumor move-

ment due to respiration should be considered when applying

RT. A limitation of the present study is the interplay effect

between the multileaf collimator and tumor motion in HT. A

recent study using motion phantoms measured the interplay

of parameters between HT deliver and target motion and

concluded that HT delivery was not affected by tumor

motion (33). In our previous study, the interfractional shift

pattern was assessed according to the tumor location (34).

We suggested that a more sophisticated approach is required

in the free-breathing mode when the left lobe of the liver is

irradiated to avoid stomach toxicity. It may also important to

reduce motion or gating during HT to reduce the target

margins. Therefore, we use the BodyFIXw vacuum immo-

bilization (Medical Intelligence Corp., Germany) to decrease

the PTV and minimize patient’s respiratory motion.

Because complete necrosis is seldom observed with mono-

therapy such as 3D-CRT, multimodality therapy may be

useful in patients with locally advanced HCC (7,9). We pre-

viously reported that concurrent chemoradiation therapy fol-

lowed by hepatic arterial infusion chemotherapy for

advanced HCC with portal vein thrombosis substantially
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improved the response rate and median survival time (35).

McIntosh et al. (18) assessed the initial clinical experience

with HT plus capecitabine in patients with large HCC

lesions and found acceptable toxicity with promising local

control. Therefore, prospective trials are needed to evaluate

concurrent chemoradiation therapy with radiation dose esca-

lation by HT for locally advanced HCC.

CONCLUSIONS

Compared with L-IMRT and 3D-CRT, HT provided the best

tumor coverage of the remaining liver. However, HT showed

much exposure to the remaining liver at the lower dose

region and left kidney. For patients with separated lesions in

both lobes, L-IMRT offered better sparing of the stomach.
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