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Animal migrations occur in many taxa and are considered an adaptive response to spatial or temporal variations
in resources. Human activities can influence the cost-benefit trade-offs of animal migrations, but evaluating the
determinants of migration trajectory and movement rate in declining populations facing relatively low levels of
human disturbance can provide new and valuable insights on the behavior of wildlife in natural environments.
Here, we used an adapted version of path selection functions and quantified the effects of habitat type, topography,
and weather, on 313 spring migrations by migratory caribou (Rangifer tarandus) in northern Québec, Canada,
from 2011 to 2018. Our results showed that during spring migration, caribou selected tundra and avoided water
bodies, forest, and higher elevation. Higher precipitation and deeper snow were linked to lower movement rates.
Weather variables had a stronger effect on the migration trajectories and movement rates of females than males.
Duration of caribou spring migration (mean of 48 days) and length (mean of 587 km) were similar in males
and females, but females started (22 April) and ended (10 June) spring migrations ca. 6 days earlier than males.
Caribou spring migration was influenced by habitat type, topography, and weather, but we also observed that
caribou migrations were not spatially constrained. Better knowledge on where and when animals move between
their winter and summer ranges can help inform management and land planning decisions. Our results could be
used to model future migration trajectories and speed of caribou under different climate change scenarios.
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Migration is a behavior observed in many animal taxa, from
small insects to large baleen whales (Dingle and Drake 2007;
Sinclair et al. 2011). Animals can migrate over different time
scales varying from daily (e.g., zooplankton) to seasonal mi-
grations (e.g., wildebeest, Connochaetes taurinus), and can
cover distances of up to thousands of kilometers, such as
in the Arctic tern (Sterna paradisaea—Egevang et al. 2010)
or humpback whale (Megaptera novaeangliae—Stevick
et al. 2011). Although migrations can induce high energetic
costs that potentially can reduce fitness (Lok et al. 2015),
animal migrations are considered an adaptive response to
spatial or temporal variations in resources and predation
risk (Gauthreaux 1982; McKinnon et al. 2010; Avgar et al.

2014). Migrations can provide benefits such as reduction
in predation risk and increased access to mates and high-
quality forage (Fryxell and Sinclair 1988; McKinnon et al.
2010; Bischof et al. 2012; Middleton et al. 2018). There is,
however, increasing evidence that human activities can influ-
ence the cost-benefit trade-offs of animal migrations, which
has resulted in a general decline in animal migration occur-
rences and migratory populations worldwide (Sanderson
et al. 2006; Wilcove and Wikelski 2008). Much research has
been done to investigate how human activities (e.g., habitat
modifications, creation of barriers such as highways and
fences) can impede animal movements and migrations, and,
ultimately, their demographic, ecological, and evolutionary
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impacts (Holdo et al. 2011; Bauer and Hoye 2014; Seidler
et al. 2015; Turbek et al. 2018). We have, however, a poorer
understanding of how climate related factors may affect ter-
restrial migratory populations. Studying migratory patterns
of animals living in pristine environments could provide val-
uable insights about their natural behaviors.

Northern Québec, Canada, is a vast area with relatively few
human disturbances (Sanderson et al. 2002). Migratory caribou
(Rangifer tarandus) inhabit this region, where they display one
of the longest terrestrial migrations in the animal kingdom (Joly
et al. 2019). Migratory caribou migrate during the spring to
reach calving grounds approximately 600 km away from win-
tering grounds, where females give birth to one calf mid-June,
then move back to their wintering grounds during the fall (Le
Corre et al. 2017). The onset of the spring migration usually
begins when snow still is abundant, and caribou often travel
> 40 km per day (Le Corre et al. 2017). Calving is believed to
be synchronized with the annual peak in resource availability
on calving grounds, and trophic mismatches caused by climate
change have been observed elsewhere (Post and Forchhammer
2008), but not in northern Québec (Le Corre et al. 2017). Fall
migrations generally are much more diffuse than spring migra-
tions and include long pauses (“stopovers”) during the rut or to
forage (Le Corre et al. 2017). Although human disturbances are
present on caribou wintering grounds, they are much scarcer
during caribou spring migration and on the summer grounds
(Plante et al. 2018).

A better understanding of the factors influencing caribou mi-
gration patterns in a region where human footprint is low would
provide valuable insights to inform management decisions and
recovery of this species. For instance, studying migratory tra-
jectories in natural environments could inform about the poten-
tial impacts of climate change, and help identify critical areas
for natural connectivity. Here, we tested the effect of habitat
type, topography, and weather, on the trajectory and movement
rate of caribou during spring migrations, using an adapted
form of path selection functions. We hypothesized that caribou
would minimize energetic costs of traveling during spring mi-
gration. Based on previous research on migratory caribou in
this region and elsewhere in North America, we predicted that
caribou would select for heathlands and tundra to migrate but
would avoid water bodies and higher elevation (Table 1). We
also predicted that caribou would reduce their movement rate
when faced with harsher environmental conditions such as
higher precipitation and deeper snow (Table 1).
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MATERIALS AND METHODS

Study area.—The study area encompassed ca. 300,000 km?
in northern Québec, Canada (Fig. 1). The caribou population
under study, the Riviere-aux-Feuilles migratory caribou pop-
ulation, has undergone a 68% decline, from ca. 628,000 to
199,000 individuals, between 2001 and 2016 (Couturier et al.
2004). The winter range of the Riviere-aux-Feuilles migratory
caribou herd is located in the southern portion of their annual
distribution and is dominated by black spruce (Picea mar-
iana) stands with tamarack (Larix laricina), interspersed with
low vegetation composed of shrubs and lichens (Latifovic and
Pouliot 2005). The calving and summer ranges are located in
the northern part of their annual distribution and mainly are
covered by arctic tundra dominated by shrubs (Salix sp. and
Betula sp.), grasses, herbaceous plants, and terrestrial lichens
(Latifovic and Pouliot 2005). Elevation ranges from sea level
to 1000 m. Mean annual temperature was —3.6°C and mean an-
nual precipitations were 1077 mm, most of which felt as snow
between October and March (Berteaux et al. 2018).

Animal capture.—Between 2011 and 2018, we captured
male and female migratory caribou using a net-gun fired
from a helicopter. We equipped them with GPS tracking col-
lars (Vectronics Aerospace using Iridium or Globalstar net-
works) programmed to take a location every 12 or 13 h. We
avoided collaring individuals moving together by spreading
captures over several thousands km?. All captured caribou were
part of the monitoring program of the Ministére des Foréts,
de la Faune et des Parcs du Québec (MFFP) and the Caribou
Ungava research program at Université Laval. Capture, hand-
ling, and monitoring of caribou followed ASM guidelines and
were approved by the Canadian Council on Animal Care and
the Animal Care Committees of Université Laval and MFFP
(permit # 2011039).

GPS data processing.—We removed five locations with dilu-
tion of precision > 10 to increase spatial accuracy and manually
investigated all animal movements faster than 5 km/h, which
led us to remove seven additional locations (< 0.02% of the data
set) that showed unusual movement trajectory and speed. Our
cleaned GPS data set (n = 26,712 locations) had an average fix
success rate of 97%. We assessed departure and arrival dates
of spring migrations by looking at abrupt changes in caribou
movement patterns. We characterized movements of caribou
using First-Passage Time (FPT—Fauchald and Tveraa 2003),
which summarizes the velocity and tortuosity of movement

Table 1.—Predicted effect of habitat and climate variables included in models assessing caribou trajectory and movement rate during spring

migrations in northern Québec, Canada (2011-2018).

Prediction Rationale Source
Trajectory
(+) Tundra Open and flat terrain facilitates movement. ‘White and Yousef (1978)
(—) Water bodies Lakes are avoided because they are energetically costly to cross Miller and Gunn (1986),
and increase risks of drowning. Leblond et al. (2016)
(-) Elevation Rolling terrain increases energy expenditures. White and Yousef (1978)

Movement rate
(—) Precipitation
(=) Snow depth

Harsh conditions impede movements.

Energetic costs of movements in snow increase with sinking depth.

Le Corre et al. (2017)
Fancy and White (1987)
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Fig. 1.—GPS locations (n = 26,712) of male (n = 48) and female (n = 143) caribou used to assess path selection during spring migrations (n = 313)

in 2011-2018 in northern Québec, Canada.

along a path. FPT corresponds to the time needed by an in-
dividual to cross a circle of a given radius centered on each
location of an animal path. Fast, directional long-distance
movements that generally characterize caribou migrations

result in lower FPT values. Based on work on the same car-
ibou herd by Le Corre et al. (2014), we used a 25-km radius to
compute FPT and applied the Lavielle segmentation process
(Lavielle 2005) on FPT profiles to detect departure and arrival
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dates of spring migrations. See Le Corre et al. (2014) for fur-
ther details.

Path selection functions.—To investigate the determinants of
spring migration trajectory and movement rate by caribou, we
undertook path selection functions (Zeller et al. 2012; Carvalho
et al. 2016). Path selection functions compare environmental
attributes along the path used by an animal to environmental at-
tributes that could have been encountered along other available
paths (Cushman and Lewis 2010; Zeller et al. 2016). Random
paths usually are generated by randomly shifting and rotating
used paths (Elliot et al. 2014; Carvalho et al. 2016). Here, how-
ever, we defined the random path by randomly reordering each
step (i.e., a step is the vector connecting two consecutive GPS
locations) composing the real observed path (Fig. 2; see also
Pullinger and Johnson 2010). This new approach allowed us
to compare the variables at observed locations along an animal
path to locations along random paths that the animal could have
taken between the same migration end points. Caribou paths
were composed of 90 = 22 (mean + SD) steps and we charac-
terized the real and random paths by extracting elevation, hab-
itat types, and weather variables, at each inflexion point (each
step). We extracted elevation from a digital elevation model
with a 100-m resolution. We extracted habitat types from a
vegetation map (Végétation du Nord Québécois 2018) provided
by the MFFP. Minimum mapping unit size was 16 ha for poly-
gons with vegetation and 3 ha for wetlands and water bodies.
We divided habitat types into seven categories: tundra, erect
shrub tundra, shrub tundra, heathlands, forest, water bodies,
and other. We characterized used and available paths with daily
variables of air temperature, precipitation (mainly snow; kg/
m?), snow depth (m), snow cover (%), and snowmelt (kg/m?).
We extracted all weather variables from a 32.5-km resolu-
tion raster obtained from the NCEP North American Regional
Reanalysis (https://psl.noaa.gov). We estimated the movement
rate (distance/time) of caribou for each step, for both real and
random paths.

End

Real =1,2,3,4,5

Start

Fig. 2.—Design of the path selection function. We determined the
available path (gray dotted line) by randomly reordering the vectors
(each step between two consecutive locations) that composed a real
migration path (black solid line). This approach allowed us to com-
pare random migration paths that started from and ended in the same
locations as the true migration paths. We characterized the path by
extracting environmental variables at each inflexion point (black and
gray dots). This illustration represents a simplified path; observed car-
ibou paths were composed of 90 + 22 (mean + SD) steps on average.
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Statistical analyses.—We first tested whether spring migra-
tion phenology differed between male and female caribou. We
ran four linear mixed models with the lme4 package (Bates
et al. 2015) in R 3.6.2 (R Core Team 2019) to determine the
effect of sex on spring migration departure date (1), arrival date
(2), duration (3), and length (4). We included year and caribou
ID as random intercepts. We used a Likelihood ratio test to de-
termine if the four linear mixed models with the effect of sex
were significantly different than their respective null models
with no dependent variable (random intercepts only).

To carry out the path selection function analysis, we ran con-
ditional logistic regression models to compare real migration
paths (coded 1) to random migration paths (coded 0). We also
included year and caribou ID as random intercepts. Because the
sampling unit was the migration path, we included caribou-year
identity as the conditional stratum. Positive coefficients meant
that an animal used such attributes more often than expected
based on their availability, i.e., at inflexion points along the as-
sociated random paths. Because inference from use-available
design in habitat selection studies can be influenced by the
availability sample (Northrup et al. 2013), we ran sensitivity
analyses. Based on the results of sensitivity analyses, we un-
dertook the final analyses with a ratio of 1 used path compared
to 100 random paths simultaneously, which was well above the
threshold where the coefficients for all covariates started to sta-
bilize (Supplementary Data SD1).

For the path selection function analysis, we carried out
model selection (Burnham and Anderson 2002) and evaluated
different candidate models using the Bayesian Information
Criterion (BIC; Table 2). Models were constructed hierarchi-
cally and were composed of elevation, weather variables, hab-
itat types (using shrub tundra as the reference category), and
their interaction with the movement rate of the animals. We
included interactions with movement rate to determine if ele-
vation, weather, and habitat type influenced the probability of
observing a high- or low-speed movement trajectory. We ran
conditional logistic regressions for each sex separately and
we validated the best-supported models using k-fold cross-
validation following Johnson et al. (2006). Multicollinearity
was low with all VIF < 1.5 (Graham 2003). We carried out
all data processing and statistical analyses in R 3.6.2 (R Core
Team 2019).

RESULTS

Between 2011 and 2018, we monitored 48 male and 143 fe-
male migratory caribou and analyzed 313 spring migrations
(males = 65, females = 248). Likelihood ratio tests revealed
no significant differences between male and female spring mi-
gration duration (mean = 48.3 days, x> = 0.22, P = 0.6) or mi-
gration length (mean = 587 km, %> = 0.23, P = 0.6). Departure
(x*>=18.3, P<0.001) and arrival (y>=22.3, P <0.001) dates of
spring migrations were earlier for females than males. Average
female spring migration departure and arrival were on Julian
dates 111.8 (22 April) and 161.3 (10 June), respectively, while
average spring migration departure and arrival were, respec-
tively, 5.7 and 6.6 days later for males.
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The best-supported path selection function model for  was influenced by (in decreasing order of importance) habitat
both females and males was the complete model (Table 2). types, weather, and elevation, whereas male path selection was
According to the ABIC values of each model (Table 2) and 3 influenced by habitat types, elevation, and weather. Movement
coefficients (Table 3), we observed that female path selection  rate was included in the best-supported models for both sexes,

Table 2.—Candidate models assessing habitat selection during spring migration of male (n = 48) and female (n = 143) caribou in northern
Québec, Canada, between 2011 and 2018. Models are listed with their fixed effects (covariates), log likelihood (LL), differences in Bayesian In-
formation Criterion (BIC) in relation to the best-supported model (ABIC), and model weight (w). All models were tested with Year and Caribou
ID as random intercepts. Interactions are represented by the symbol x and the covariate “Speed” is the movement rate (km/h) of a caribou between
two consecutive GPS locations.

Model Covariates included Male Female
LL ABIC w, LL ABIC w,
1 None —43,693 2,095 0 -198,928 8,472 0
2 Elevation —43,500 1,723 0 —198,906 8,443 0
3 Temperature + Precipitation + Snow depth + Snow cover + Snowmelt —-43,590 1,955 0 —-198,507 7,703 0
42 Erect shrub tundra + Heathlands + Forest + Water + Tundra + Other —43,001 790 0 —195,689 2,083 0
5 Model 2 + Model 3 —43.389 1,568 0 —198,491 7,687 0
6 Model 2 + Model 4 —42,805 413 0 -195,616 1,951 0
7 Model 3 + Model 4 —42,808 470 0 —-195,072 920 0
8 Model 2 + Model 3 + Model 4 —42,590 47 0 —-194,969 729 0
9 Speed x Model 2 —43,465 1,680 0 —198,900 8,460 0
10 Speed x Model 3 —43,557 1,968 0 —-198,303 7,383 0
11 Speed x Model 4 —42,964 808 0 —195,451 1,708 0
12 Speed x Model 5 -43,321 1,523 0 —-198,278 7,361 0
13 Speed x Model 6 —42,738 383 0 —195,368 1,572 0
14 Speed x Model 7 —42,732 476 0 —194,623 198 0
15 Speed x Model 8 -42,481 0 1 —194,509 0 1

“Reference category = shrub tundra.

Table 3.—Coefficients (3) and 95% confidence intervals (CIs) of the best-supported conditional logistic regression model assessing path se-
lection during spring migration for male (n = 48) and female (n = 143) caribou in northern Québec, Canada, between 2011 and 2018. Numbers in
bold represent covariates for which CIs do not overlap 0. Interactions are represented by the symbol x and the covariate “Speed” is the movement
rate (km/h) of a caribou between two consecutive GPS locations.

Covariates Male Female
B 95% CI B 95% CI

Lower Upper Lower Upper
Speed -5.125 -8.658 -1.592 5.244 3.280 7.209
Elevation -0.006 -0.007 —-0.006 -0.001 -0.002 -0.001
Air temperature —-0.065 -0.075 —-0.055 —-0.024 -0.029 -0.019
Precipitation 0.043 0.025 0.061 0.083 0.072 0.093
Snow depth -2.565 -3.597 -1.533 —-0.551 —-0.865 —-0.238
Snow cover 0.816 0.551 1.081 0.560 0.473 0.648
Snowmelt 0.037 —0.046 0.120 -0.125 -0.170 —-0.081
Erect shrub tundra 0.278 0.153 0.403 0.681 0.617 0.744
Heathlands -0.011 -0.169 0.146 0.122 0.032 0.212
Forest -1.275 -1.443 -1.108 —-0.796 —-0.892 —-0.701
Other -0.333 -0.527 —-0.140 0.445 0.338 0.553
Water -2.036 -2.241 -1.831 -1.519 -1.617 -1.422
Tundra 0.342 0.152 0.532 1.163 1.078 1.247
Speed x Elevation 0.003 0.002 0.004 —-0.001 —-0.001 0.000
Speed x Air temperature 0.016 0.003 0.028 -0.018 -0.025 -0.011
Speed x Precipitation -0.101 -0.131 -0.071 -0.139 -0.156 -0.121
Speed x Snow depth 0.104 -1.295 1.504 —-0.489 —-0.946 -0.033
Speed x Snow cover -0.137 —0.481 0.207 -0.199 -0.314 —-0.084
Speed x Snowmelt 0.031 -0.069 0.132 0.206 0.154 0.258
Speed x Erect shrub tundra 0.041 -0.134 0.216 -0.244 -0.330 —-0.158
Speed x Heathlands 0.253 0.050 0.457 0.315 0.204 0.425
Speed x Forest 0.508 0.307 0.709 0.354 0.239 0.468
Speed x Other 0.295 0.049 0.541 -0.106 -0.249 0.038
Speed x Water 0.857 0.635 1.080 0.560 0.451 0.668

Speed x Tundra 0.184 -0.076 0.443 -0.559 —-0.683 —-0.435
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but our results suggest that the interaction between movement Compared to associated random trajectories, female caribou
rate and the other covariates had stronger support for females selected lower elevation, with higher snow cover, lighter snow-
(Table 2, model 8, ABIC = 729; Table 3) than for males (Table melt, and thinner snow depth (Table 3; Fig. 3). The relative

2, model 8, ABIC =47, Table 3). probability of selection of high-speed steps by female caribou
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Fig. 3.—Results of the best-supported conditional logistic regression model describing spring migration path selection by female caribou in
northern Québec, Canada, from 2011 to 2018. Predictions for weather variables were obtained in erect shrub tundra. Low and high values corre-
spond to the 15th and 85th percentiles observed in the data set, respectively.
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was higher at lower air temperature and lower precipitation
(Fig. 3). Finally, female caribou selected tundra and erect shrub
tundra more strongly than shrub tundra (i.e., the reference cat-
egory) and females avoided forests and water bodies (Table 3),
but the relative probability of selection of (frozen) water bodies
increased with increasing movement rate of the animal (Fig. 3).
Male selection of spring migration trajectories was similar to
females but was not influenced by snowmelt. The interactions
between movement rate and weather variables also had less
support (Table 3). The selection of high-speed steps by male
caribou was more likely on water bodies and at lower precipi-
tation (Fig. 4). The best-supported models for both sexes were
robust, with K-fold cross-validation of 0.97 = 0.01 (mean + SD)
and 0.91 = 0.04 for females and males, respectively.

DI1SCUSSION

Using an adapted version of path selection functions, we in-
vestigated the effect of habitat types, topography, and weather
on spring migration trajectory and movement rate of caribou
in northern Québec, Canada. In accordance with our pre-
dictions, we found that caribou selected tundra and avoided
water bodies and higher elevation during spring migrations.
Harsher environmental conditions, namely deeper snow depth
and higher precipitations, were linked to slower migrations,
as predicted. We also showed that weather had a stronger ef-
fect on female migration trajectory and speed than for males.
Finally, our results showed that the duration (ca. 48 days)
and length (mean of 587 km) of the caribou spring migration
were similar for males and females, but that females started
(22 April) and ended (10 June) their spring migration about
6 days earlier than males.

In an environment characterized by very low human dis-
turbance, we showed that environmental conditions shaped
the migratory behaviors of caribou during spring. With their
wide hooves, caribou are well-adapted to snowy environ-
ments and during spring migration both males and females
selected areas with more snow cover. We found, however,
that caribou avoided deep snow during migration, prob-
ably due to the higher energetic costs of traveling in deeper
snow (Fancy and White 1987). We also showed that environ-
mental conditions seemed to affect females more strongly
than males. We hypothesize that female caribou may need
to adjust their migration timing more precisely than males
to match environmental cues. Indeed, while both males and
females have a protein-deficient diet during winter, female
energetic demands are higher than for males during the last
stage of gestation, which coincides with spring migration
(Chan-McLeod et al. 1994; Parker et al. 2005; Barboza and
Parker 2008). Snow-covered environments during spring
migrations prevent caribou from accessing fresh and newly
grown vegetation. Females therefore might seek to adjust
their spring migration speed and arrival on calving grounds
with vegetation green-up (Post and Forchhammer 2008). We
argue that snowmelt is a key environmental cue that occurs
before green-up and we showed that the relative probability
of selection of high-speed trajectory by females was higher
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Fig. 4.—Predictions of the best-supported conditional logistic regres-
sion model describing spring migration path selection by male caribou
in northern Québec, Canada, from 2011 to 2018. Predictions for weather
variables were obtained in erect shrub tundra. Low and high values corre-
spond to the 15th and 85th percentiles observed in the data set, respectively.
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with increasing snowmelt (Fig. 3f). We hypothesize that
females increase movement rates when snow is melting to
reach calving grounds quicker and avoid missing the vege-
tation green-up, or to benefit from it earlier (Laforge et al.
2021). Alternatively, females also could increase move-
ment rates when snow is melting to reach better snow con-
ditions and avoid walking in melting snow (Laforge et al.
2021), which is energetically costlier (Shepard et al. 2013).
Our results also showed that high-speed trajectory was un-
likely when precipitation (mainly snow) was higher (Fig.
3b). Many studies have investigated the effects of precipi-
tation on migration phenology in mammals and birds (Pettit
and O’Keefe 2017; Haest et al. 2019), but few have looked
at how precipitations influenced migration speed en route.
During caribou spring migrations, precipitation falls mostly
as snow, which may reduce visibility and limit individual’s
ability to navigate effectively and increase energetic costs of
traveling (Fancy and White 1987; Shepard et al. 2013).

Habitat types and elevation were not used randomly by
caribou during their migration. For instance, forested areas
were avoided by caribou, similarly to another caribou pop-
ulation in northwestern Alaska (Fullman et al. 2017), po-
tentially to facilitate travel and increase visibility to detect
predators from further away. Open habitat types that provide
increased visibility, such as tundra and erect shrub tundra,
were selected by males and females, whereas water bodies
were avoided. Although water bodies were avoided, the rel-
ative probability of selection of high-speed trajectory was
higher when caribou were found on a water body compared
to tundra or erect shrub tundra. Ultimately, we observed that
the relative probability of selection of high-speed trajectory
was at its highest when caribou were on a frozen water body
(positive slope reaching y = 1 in Figs. 3a and 4a). The use
of frozen water bodies therefore was a major determinant
of caribou spring migration movement rates. Knowing that
caribou rarely swam across water bodies and prefer to cir-
cumvent open water (Leblond et al. 2016), we expect spring
migration speed and trajectory to be influenced by earlier
lake ice melting caused by climate change (Dibike et al.
2012). Finally, our results showed that elevation was an-
other important determinant of movement trajectory. Indeed,
higher elevation was avoided by male and female caribou
during spring migration, which was also observed in other
caribou populations (Fullman et al. 2017) and in moose
(Leblond et al. 2010), potentially due to the higher energetic
costs of traveling (White and Yousef 1978).

Mapping the predictions from our best model
(Supplementary Data SD2) confirmed that spring migrations
of caribou in northern Québec were not heavily spatially
constrained. This relative permeability of the landscape also
was reflected in the raw GPS data on Fig. 1. Although car-
ibou movements during spring migrations did not seem to be
constrained, we observed that caribou sometimes used well-
defined corridors to migrate such as in 2011 and 2013 (Figs.
5a and 5c¢). In other years, however, migration corridors
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were diffuse or even absent (Fig. 5d). Moreover, the loca-
tion of spring migration corridors varied annually (Fig. 5).
Caribou could use different migration corridors over time
to access new resources or to adjust to the weather condi-
tions they encounter during travel. Vegetation grows slowly
in the Arctic, and past foraging as well as trampling by car-
ibou could force them to displace their migration corridors
to access better-quality or more abundant forage (Ferguson
et al. 2001; Joly et al. 2010). We also hypothesize that car-
ibou could use different migration corridors over time to
reduce their predictability and potentially reduce predation
risk. Indeed, searching for prey over vast landscapes such as
northern Québec might be more costly for predators.

We found that females left the wintering grounds and ar-
rived on calving grounds earlier than males. This result could
be explained by the constraint that pregnant females have to
reach calving sites in time for calving, an urge that males
do not have. Males therefore could follow females (or their
tracks) or make their own decisions about which routes to
take. Consequently, social interactions among caribou could
be involved and could drive the formation of spring migra-
tion corridors (Dalziel et al. 2016; Webber and Vander Wal
2018). Individual decisions made by some individuals in
the herd could drive the formation of migration corridors,
with other caribou following a leader (Noyce and Garshelis
2014). Although we had approximately 40 caribou collared
each year, which is a sample size regularly observed in other
large mammal movement studies, it represented ca. 0.01%
of the Riviere-aux-Feuilles caribou herd, which limited our
ability to evaluate the effect of social interactions on spring
migration behavior. More research would be required to de-
termine how individual caribou use this information across
years (e.g., using spatial memory) and whether it is shared
with other individuals (e.g., through social interactions).

We showed that habitat types, topography, and weather in-
fluenced spring migration trajectories in the relatively pris-
tine environment of northern Quebec. Better understanding
where and when animals move between their winter and
summer ranges in a mostly pristine environment is key to
inform decisions by managers. For instance, our results
could be used to model future migration trajectories and
speed of caribou under different climate change scenarios.
Our observation that caribou migrations were not spatially
constrained in their relatively pristine habitat differed en-
tirely from studies on other migratory mammals occurring
in more disturbed environments, where studies have shown
that animals often were confined to narrow corridors with
migratory bottlenecks (Sawyer et al. 2005; Seidler et al.
2015). Given the spatial variation in migration corridors
used by caribou over the years (Fig. 5), and the potential
benefits for caribou to dynamically change their migration
corridors, we recommend limiting human disturbances over
vast areas between winter and summer ranges of caribou.
This could be particularly challenging as this area is slated
to be developed in the future (Berteaux 2013).
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defined corridors (e.g., 2013), whereas other years their corridors were diffuse or absent (e.g., 2014).
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