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 Background Certain somatic alterations in breast cancer can define prognosis and response to therapy. This study investi-
gated the frequencies, prognostic effects, and predictive effects of known cancer somatic mutations using a 
randomized, adjuvant, phase III clinical trial dataset.

 Methods The FinHER trial was a phase III, randomized adjuvant breast cancer trial involving 1010 women. Patients with 
human epidermal growth factor receptor 2 (HER2)–positive breast cancer were further randomized to 9 weeks 
of trastuzumab or no trastuzumab. Seven hundred five of 1010 tumors had sufficient DNA for genotyping of 70 
somatic hotspot mutations in 20 genes using mass spectrometry. Distant disease-free survival (DDFS), overall 
survival (OS), and interactions with trastuzumab were explored with Kaplan-Meier and Cox regression analyses. 
All statistical tests were two-sided.

 Results Median follow-up was 62 months. Of 705 tumors, 687 were successfully genotyped. PIK3CA mutations (exons 
1, 2, 4, 9, 13, 18, and 20) were present in 25.3% (174 of 687) and TP53 mutations in 10.2% (70 of 687). Few other 
mutations were found: three ERBB2 and single cases of KRAS, ALK, STK11/LKB1, and AKT2. PIK3CA mutations 
were associated with estrogen receptor positivity (P < .001) and the luminal-A phenotype (P = .04) but were not 
statistically significantly associated with prognosis (DDFS: hazard ratio [HR] = 0.88, 95% confidence [CI] = 0.58 
to 1.34, P = .56; OS: HR = 0.603, 95% CI = .32 to 1.13, P = .11), although a statistically significant nonproportional 
prognostic effect was observed for DDFS (P = .002). PIK3CA mutations were not statistically significantly associ-
ated with trastuzumab benefit (Pinteraction: DDFS P = .14; OS P = .24).

 Conclusions In this dataset, targeted genotyping revealed only two alterations at a frequency greater than 10%, with other 
mutations observed infrequently. PIK3CA mutations were associated with a better outcome, however this effect 
disappeared after 3 years. There were no statistically significant associations with trastuzumab benefit.

  J Natl Cancer Inst;2013;105:960–967 

Gene expression profiling divides breast cancer into distinct molec-
ular portraits according to the presence of the estrogen receptor 
(ER) and amplification/overexpression of the ERBB2/HER2/neu 
oncogene (1). Notably, HER2 amplification/overexpression 
(HER2-positive) predicts response to anti-HER2 therapy, sug-
gesting that somatic alterations in breast cancer are associated with 
prognosis and potentially amenable to targeted therapy (2). This 
has inspired efforts to better understand the spectrum of somatic 
“driver” mutations and, in particular, targetable mutated kinases.

An abundance of data suggests that genetic aberrations and 
activation of the phosphatidylinositol 3-kinase (PI3K) pathway are 
important in determining breast cancer prognosis and the efficacy 
of standard chemo- and endocrine therapies (3). Furthermore, 
mutations in the PIK3CA gene, which encodes the p110α catalytic 
subunit of the class IA PI3K, are frequent in breast cancer (4–7). 

These mutations have been shown to be oncogenic in mammary 
epithelial cells by driving constitutive, growth factor–independent 
PI3K pathway activation (8,9).

Despite being the focus of intense research interest, a clear 
association between PIK3CA mutations and a poorer prognosis 
has not been shown. To the contrary, PIK3CA mutations have 
been associated with statistically significantly better survival when 
compared with PIK3CA wild-type breast cancers in larger series 
obtained from single institutions (4,7–10). An association with 
resistance to endocrine therapy has also not been demonstrated 
(6,11,12). PIK3CA mutations have also been shown to be associated 
with trastuzumab resistance in preclinical models overexpressing 
HER2 (13–15). Clinical validation of this association could have 
important clinical utility given the emergence of a broadening array 
of anti-HER2 agents and the concept of dual anti-HER2 therapy 
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(16–18). Hence, given their frequency, oncogenic capabilities, and 
the potential to induce resistance to commonly prescribed breast 
cancer treatments, the clinical relevance of PIK3CA mutations 
deserves further clarification.

High levels of evidence on the clinical utility of prognostic and 
predictive biomarkers can be achieved from the use of archived 
tumor specimens from appropriate randomized clinical trial data-
sets (19). Therefore, the main purpose of this study was to clarify 
in a well-characterized, randomized clinical trial dataset the pre-
dictive relevance of PIK3CA mutations to trastuzumab efficacy and 
its prognostic abilities in both HER2-positive and HER2-negative 
disease. Given that PIK3CA genotyping can be performed with other 
somatic hotspot mutations, we also set out to determine prevalence 
and prognostic associations of other known cancer driver muta-
tions. Our objective was to identify other potentially targetable 
genetic alterations that contribute to resistance to standard therapy 
in breast cancer.

Methods
The Reporting Recommendations for Tumor Marker Prognostic 
Studies (REMARK) criteria were followed in this study (20).

Patients in the FinHER Study
This study is based on formalin-fixed, paraffin-embedded (FFPE) 
primary breast tumor tissue samples of Finnish women who were 
aged <66 years and diagnosed with either node-positive or node-
negative breast cancer and who participated in the FinHER trial 
(N = 1010) from 2000 to 2003, a multicenter adjuvant trial spon-
sored by the Finnish Breast Cancer Group (21,22). All women were 
randomly assigned to receive three cycles of docetaxel or vinorel-
bine, followed by (in both groups) three cycles of fluorouracil, epi-
rubicin, and cyclophosphamide. The 232 women whose tumors 
had an amplified HER2/neu gene were further randomly assigned 
to receive or to not receive nine weekly trastuzumab infusions. 
The primary end point of the FinHER study, distant disease-free 
survival (DDFS), has been previously reported to be superior for 
the docetaxel- and trastuzumab-containing arms. The final median 
follow-up was 62 months (21).

The determination of steroid hormone receptor status and 
HER2 expression by immunohistochemistry (IHC) was required 
locally and was performed according to the guidelines of each 
institution during the time of the study. Samples were considered 
hormone receptor positive if their level of ER and/or progester-
one receptor (PR) was ≥10%. All patients with ER- or PR-positive 
tumors received five years of endocrine therapy, which was tamox-
ifen when the study commenced, but aromatase inhibitors were 
permitted midway through the study. Ki67 IHC was assessed 
in locally by IHC using the Mib-1 monoclonal antibody (Dako, 
Glostrup, Denmark). When HER2 expression was scored as 2+ or 
3+ (on a scale of 0, 1+, 2+, or 3+), the number of copies of the 
HER2/neu gene was centrally determined by means of chromog-
enic in situ hybridization in one of two reference laboratories.

Mutation Testing
Study participants provided written informed consent to allow 
further research analyses to be carried out on their tumor tissue. 

The ethical committee of the Helsinki University Central Hospital 
also approved the current study. Of the 1010 samples, 935 (92.5%) 
could be retrieved. All samples were reevaluated by one refer-
ence pathologist to ensure tumor was present in the tissue sample. 
Of these samples, 705 (75.4%) were able to have adequate DNA 
extracted. DNA was extracted from FFPE tumor tissue using a salt 
precipitation method (23).

Because few data were available about the mutational land-
scape of breast cancer at the time of genotyping, we queried the 
COSMIC (Catalogue of Somatic Mutations in Cancer) database 
to identify a broad range of genes for hotspot somatic mutation 
profiling (24). We ultimately covered 94% of reported PIK3CA 
mutations (exons 1, 2, 4, 9, 13, 18, 20)  reported in COSMIC to 
be occurring in breast cancer in this study, 12% of TP53 muta-
tions (all cancer types), selected ERBB2, PTEN, AKT1/2 mutations, 
and known EGFR, BRAF, KRAS, MAP3K1, and CDK4 mutations, 
as well as a scattering of other “druggable” mutations. In total, 70 
mutations in 20 genes were evaluated (Supplementary Table  1, 
available online).

The samples were genotyped centrally using the Sequenom 
MassARRAY Assay Design 3.1 with the default parameters. 
Multiplex polymerase chain reaction was done in 5-µL volume con-
taining 5–10 ng of DNA. Samples were considered to be of suffi-
cient quality when genotyping could be performed for >75% of the 
mutations. A total of 687 samples (68.1% of the original FinHER 
cohort) were successfully genotyped (2.5% [18 of  705] samples 
were discarded for this reason). Sixteen samples were genotyped 
in duplicate and were found to have 100% concordance. Details 
about the assay and independent validation have been previously 
published: the Sequenom can detect low-frequency mutant alleles 
to maximize mutation detection in impure samples (≥5% for the 
PIK3CA hotspot mutations) with sensitivity and specificity of 90% 
and 99%, respectively, in FFPE-derived DNA, and 100% concord-
ance with other technologies (25,26). In this study, we further con-
firmed one sample of each positive PIK3CA mutation, as well as a 
wild-type sample, using Sanger sequencing (except for the rarer 
G241A, G3019C, and C473T); another 9 samples (both positive 
and wild type) were confirmed with the Qiagen Rotor-gene Kit. 
All of these were found to be 100% concordant with the Sequenom 
results. ERBB2 mutations were also confirmed using Sanger 
sequencing (primers TCCTGGAAGGCAGGTAGGATCCAG 
and AGTCTAGGTTTGCGGGAGTCATATCTC).

Statistical Analysis
In this study, a sample was considered to be wild type for a given 
gene if no mutation was found. Associations between mutations 
and clinicopathologic characteristics were investigated with χ2 tests 
for categorical variables. For the survival analyses, the primary end 
point was DDFS, which was defined as the time period from the 
date of random treatment assignment to the date of first cancer 
recurrence outside the ipsilateral locoregional region or to death, 
whenever death occurred before distant recurrence (21). Relapse-
free survival (RFS) was defined as the time from the date of random 
assignment to the date of the local, distant, or contralateral invasive 
cancer recurrence or death. Overall survival (OS) was defined as 
the time period from the date of random assignment to the date of 
death, whenever death occurred before distant recurrence.
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Cox proportional hazards regression models were used to test 
the prognostic value of PIK3CA mutation status (hazard ratios 
[HRs] and 95% confidence intervals [CIs]) and its possible interac-
tion with trastuzumab treatment (after adding a trastuzumab main 
effect and a product interaction term) using the Wald test. The Cox 
models used a separate baseline hazard for chemotherapy type (doc-
etaxel or vinorelbine). Departures from the proportional hazards 
assumption were assessed based on the Schoenfeld residuals (27).

All P values were two-sided and a P value of  less than .05 was con-
sidered statistically significant. The Kaplan-Meier survival curves were 
calculated (with group differences assessed using the log-rank test). 
Interaction effects were also displayed using forest plots. No adjust-
ment was planned for multiple testing of the prespecified hypotheses. 
For this study, breast cancer subtypes were classified using IHC as 
previously published (28): luminal (ER-positive and/or progesteron 
receptor [PgR]–positive, HER2-negative), HER2-positive/overex-
pressing by (chromogenic in situ hybridization), and triple negative: 
ER-negative/PgR-negative/HER2-negative. Luminal A and B phe-
notypes were defined using IHC staining of Ki67-positive cells using 
a cutoff of less than 14% and greater than 14%, respectively (28).

results
Patient Characteristics
The patient characteristics of the genotyped series (n  =  687) are 
compared with the original series and those who were not geno-
typed in Supplementary Table 2 (available online). There were more 
tumors that were ER-negative, of larger size and higher grade, and 
from younger patients genotyped compared with those not geno-
typed. There were no statistically significant differences in survival 
between groups (DDFS log-rank P = .19, RFS P = .34, OS P = .64).

Frequency and Associations Between Mutations
Despite genotyping this cohort for 70 known cancer somatic 
“driver” mutations in 20 genes, only PIK3CA and TP53 somatic 
mutations occurred at frequencies >10%.

PIK3CA mutations were successfully genotyped in 100% of sam-
ples that passed the quality control criteria. 176 PIK3CA mutations 
were found (Supplementary Table 3, available online). The vast major-
ity of these were located on the hotspots on the helical and kinase 
domains (exons 9 and 20, respectively—161 of 176 [91.5%]), with 
two samples having a double PIK3CA mutation present (A3140G + 
C473T; T1035A + G1633A). The overall frequency of tumor samples 
with a PIK3CA mutation was 25.3% (174 of 687). TP53 mutations, 
with coverage of approximately 12% of known mutations, were pre-
sent in 10.2% (70 of 687) of samples. Three ERBB2 kinase domain 
mutations (two *T2264C, C2313T) were present in 0.5% of sam-
ples genotyped (3 of 659 [28 of 687 samples could not be assigned]). 
Mutations that occurred only once were KRAS (G35A), AKT2 
(G49A), ALK (G3824A), and STK11/LKB1 (C1062G) (Figure 1).

Association With Clinicopathological Features 
and Breast Cancer Subtypes
PIK3CA mutations were statistically significantly associated with 
smaller tumor size (T1, P =  .03), histological grade 1 (P < .001), 
positive expression of the ER (P < .001), and the luminal-A pheno-
type (P = .04; Table 1). As expected, TP53 mutations were associ-
ated with ER negativity (P = .005), histological grade 3 (P = .007), 
larger tumor size (P = .009), and four or more positive lymph nodes 
(P = .003). All three ERBB2 mutant samples were ER-positive and 
HER2-negative (luminal). In the three main breast cancer subtypes 
defined using IHC, as expected, PIK3CA mutations were highly 
frequent in luminal and HER2-positive subtypes (P < .001) and 
TP53 mutations in the triple-negative group (P = .003; Table 2).

Associations With Prognosis
In the whole cohort that was genotyped, PIK3CA mutations were 
not statistically significantly associated with prognosis (DDFS: 
HR = 0.88 [95% CI = 0.58 to 1.34], P = .56; OS: HR = 0.603 [95% 
CI = 0.32 to 1.13], P = .11; Figure 2). However, we noted that there 
was a statistically significant nonproportional prognostic effect 
over time for DDFS (P = .002) and RFS (P = .007) but not for OS 
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Figure 1. Frequency and associations between mutations. Absolute numbers are shown of PIK3CA mutant, PIK3CA wild type, ERBB2 mutant, and 
TP53 mutant, as well as those tumors with coexisting mutations. PIK3CA exon 9 and 20 mutations (and other locations) are also shown.
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(P = .12). An exploratory subdivision of the time axis at three years 
shows a favorable prognostic effect before three years (DDFS: 
HR = 0.57 [95% CI = 0.31 to 1.03], P = .06; RFS: HR = 0.55 [95% 
CI = 0.31 to 0.98], P = .04, respectively, and statistically nonsignifi-
cant effect after 3 years: DDFS: HR = 1.69 [95% CI = 0.90 to 3.16], 
P = .10; RFS: HR = 1.58 [95% CI = 0.86 to 2.88], P = .14).

No statistically significant differences in patient outcome were 
observed when PIK3CA mutations were evaluated separately 

according to their location (Figure 3). Patients whose tumors con-
tained a PIK3CA mutation were also not found to have a statistically 
significantly different survival than those with wild type in any of the 
breast cancer subtypes (Supplementary Figure 1, available online).

TP53 mutations were not statistically significantly associated 
with prognosis in the whole genotyped cohort (DDFS log-rank 
P =  .36; RFS P =  .34; OS P =  .11). Of the three ERBB2 mutated 
tumors, one patient had a distant relapse and died of her disease.

Table 1. Patient and tumor characteristics by PIK3CA genotype*

Characteristic
Whole cohort  

(N = 687)

PIK3CA genotype TP53 genotype

WT  
(n = 511)

Any mt PIK3CA  
(n = 176) P

WT  
(n = 617)

Any mt TP53  
(n = 70) P

Age category
 ≤50 y 364 (53%) 274 (53.6%) 90 (51.1%) .57 330 (53.5%) 34 (48.6%) .44
 >50 y 323 (47%) 237 (46.4%) 86 (48.9%) 287 (46.5%) 36 (51.4%)
Tumor stage
 T1 275 (40%) 192 (37.8%) 83 (47.2%) .003 258 (42%) 17 (24.3%) .009
 T2 364 (53%) 274 (53.9%) 90 (51.1%) 319 (52%) 45 (64.3%)
 T3 45 (6.6%) 42 (8.3%) 3 (1.7%) 37 (6%) 8 (11.4%)
 Missing 3 (0.4%)
Nodal status
 Negative 81 (11.8%) 64 (12.5%) 17 (9.7%) .33 64 (10.4%) 17 (24.3%) .003
 1–3 410 (59.7%) 297 (58.1%) 113 (64.2%) 373 (60.5%) 37 (52.9%)
 >3 196 (28.5%) 150 (29.4%) 46 (26.1%) 180 (29.2%) 16 (22.9%)
Histological grade 
 I 80 (11.6%) 46 (9.3%) 34 (20.2%) <.001 73 (12.2%) 7 (8.8%) .007
 II 270 (39.3%) 187 (37.8%) 83 (49.4%) 254 (42.5%) 16 (24.2%)
 III 313 (96.5%) 262 (52.9%) 51 (30.4%) 270 (45.2%) 43 (54.2%)
 Missing 23 (3.5%)
ER IHC
 Positive 475 (69.1%) 335 (69.7%) 140 (79.5%) <.001 437 (70.8%) 32 (45.7%) .005
 Negative 212 (30.9%) 176 (26.3%)  36 (20.5%) 180 (29.2%) 38 (45.7%)
HER2 amplification
 Positive 157 (22.9%) 123 (24.1%) 34 (19.3%) .20 138 (22.4%) 19 (27.1%) .37
 Negative 530 (77.1%) 388 (68.8%) 142 (28.8%) 479 (77.6%) 51 (72.9%)
Histology
 Ductal 558 (81.2%) 422 (83.6%) 136 (78.6%) .14 501 (82.3%) 57 (82.6%) .94
 Lobular 120 (17.5%) 83 (16.4%) 37 (21.4%) 108 (17.7%) 12 (17.4%)
 Other 9 (1.3%)
Breast cancer subtype  

(defined by IHC)
Luminal (ER-positive/

HER2-negative)
410 (59.7%) 284 (55.6%) 126 (71.6%) <.001 380 (61.6%) 30 (42.9%) .003

 HER2-amplified 157 (22.9%) 123 (24.1%) 4 (19.3%) 138 (22.4%) 19 (27.1%)
Triple negative (ER-negative/

PgR-negative/HER2-negative)
120 (17.5%) 104 (20.4%) 16 (9.1%) 99 (16%) 21 (30%)

Luminal A/B 
 Ki67 IHC <14% 127 (30%) 80 (31.7%) 47 (42.7%) .04 121 (36.2%) 6 (21.4%) .12
 Ki67 IHC≥14% 235 (57.3%) 172 (68.3%) 63 (57.3%) 213 (63.8%) 22 (78.6%)
 NA 48 (11.7%)

* P values were calculated using a two-sided χ2 test. ER = estrogen receptor; IHC = immunohistochemistry; mt = mutation; NA = not applicable; WT = wild type.

Table 2. Frequency of mutations by breast cancer subtype*

Subtype PIK3CA mutations, No. TP53 mutations, No.

Luminal (ER-positive/HER2-negative) 126/410 (30.7%) P < .001 30/409 (7.3%)
HER2-positive 34/157 (21.7%) 19/157 (12.1%)
ER-negative/HER2-negative 16/120 (13.3%) 21/120 (17.5%) P < .001

* P values were calculated using a two-sided χ2 test. ER = estrogen receptor.
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Association Between PIK3CA Mutations and 
Trastuzumab Efficacy in HER2-Positive Breast Cancer
We subsequently evaluated the association between PIK3CA 
genotype and trastuzumab efficacy in the HER2-positive pop-
ulation, considering preclinical data suggesting that PIK3CA 
mutations contribute to trastuzumab resistance (13,15). We 
found that in our dataset, the magnitude of trastuzumab benefit 
(with cytotoxic chemotherapy) did not differ statistically signifi-
cantly according to PIK3CA genotype (Figure 4; Pinteraction: DDFS 
P  =  .14; RFS P  =  .17; OS P  =  .24). For the primary endpoint 
of DDFS and trastuzumab benefit, patients who were PIK3CA 
mutant had an HR of 0.19 (95% CI = 0.04 to 1.04; P =  .06) vs 
patients who were PIK3CA wild type (HR = 0.98 [95% CI = 0.47 
to 2.8], P = .97).

Discussion
The primary objective of this study was to investigate the clinical 
relevance of PIK3CA mutations with regard to prognosis and benefit 
from adjuvant trastuzumab. While confirming the dominance 
of PIK3CA and TP53 mutations in breast cancer with few other 

known mutations being present in breast cancer at a high rate, we 
showed that PIK3CA mutations, regardless of location, were not 
statistically significantly associated with prognosis in breast cancer 
over the entire follow-up period, although, interestingly, there 
was a statistically significant nonproportional prognostic effect for 
DDFS and RFS over time. Initially, a better outcome for the mutant 
genotype compared with wild type was seen, consistent with the 
mutant genotype’s association with favorable clinicopathological 
features; however, this effect disappeared after three years. Perhaps 
this pattern can be explained by the high-risk population studied 
or reflect a biological tendency for long-term relapse, as endocrine 
therapy resistance could conceivably develop through enhanced 
PI3K signaling. In general, however, the prognostic direction in 
the first three years supports the results from many of the larger 
cohort series reported in the literature, even though the prognostic 
association has yielded conflicting reports overall (4–7,29).

The unique advantage and strength of our study was that we 
could evaluate interactions between PIK3CA mutations and tras-
tuzumab benefit in the context of a randomized clinical trial in 
which patients with HER2-positive breast cancer received treat-
ment with or without trastuzumab. To our knowledge, this study 

Figure 2. Prognostic associations between patients who had a PIK3CA 
mutation (mt) vs wild type (WT) and clinical outcome. A–C) Kaplan-Meier 
plots of the cumulative proportion of patients surviving with the time in 
years. Various clinical end points are shown: distant disease-free survival 

(A), recurrence-free survival (B), and overall survival (C). Cox regression 
hazard ratios (HRs) and 95% confidence intervals (CIs) are shown, strati-
fied by chemotherapy type given. All statistical tests are two-sided. The 
number of patients at risk in each group is given below the graphs.
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Figure 3. Prognostic associations between PIK3CA genotype and clinical 
outcome according to mutation location on the gene (helical/exon 9 vs 
kinase/exon 20 domain). The number of patients at risk in each group 
is given below the graphs. A–C) Kaplan-Meier plots of the cumulative 
proportion of patients surviving with the time in years. Various clinical 

end points are shown: distant disease-free survival (A), recurrence-free  
survival (B), and overall survival (C). The two patients with dual  mutations 
were excluded and all treatment arms were pooled. P values correspond 
to log-rank tests; mt = mutant; WT = wild type. All statistical tests are 
two-sided.

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/105/13/960/956263 by guest on 09 April 2024



JNCI | Articles 965jnci.oxfordjournals.org

also represents the largest breast cancer cohort with clinical out-
come data to be genotyped for PIK3CA and multiple other known 
cancer somatic mutations. Furthermore, we covered greater than 
94% of known PIK3CA mutations, rather than limiting to hot-
spot areas. Preclinical data suggest that PIK3CA mutations could 
identify a subgroup of patients with HER2-positive disease resist-
ant to trastuzumab, but our data do not support this. In fact, the 
PIK3CA mutant compared with wild-type, HER2-positive tumors 
seemed to derive more benefit from adjuvant trastuzumab, sug-
gesting increased dependency on p110α, although the interaction 

test is not statistically significant (30). All the patients in this study 
also received chemotherapy with trastuzumab, which is stand-
ard practice, so we cannot discount the possibility that mutations 
could cause resistance to trastuzumab as a single agent. It has been 
proposed that scheduling of chemotherapy either before or after 
administration of trastuzumab could affect clinical outcomes, par-
ticularly through immune mechanisms (31). As the generation of 
antitumor immunity has been proposed as a dominant mechanism 
of action for the efficacy of trastuzumab, it is plausible that PIK3CA 
mutations could alter the immune microenvironment to be either 
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Figure 4. Interaction between PIK3CA genotype and trastuzumab efficacy. 
A) Kaplan-Meier plots comparing trastuzumab vs no trastuzumab treat-
ment arms for PIK3CA mutated (mt), HER2-positive cohorts. Cumulative 
proportions of patients surviving distant disease free are shown. B) 
Kaplan-Meier plots comparing trastuzumab vs no trastuzumab for 
PIK3CA wild-type (WT), HER2-positive cohorts. Cumulative proportions 
of patients surviving distant disease free are shown. C) Interaction for-
est plots indicate Cox regression hazard ratios (HRs) and 95% confidence 
intervals (CIs) stratified by chemotherapy type given for trastuzumab ben-
efit for distant disease-free survival (DDFS). according to PIK3CA geno-
type and by overall series. D) Kaplan-Meier plots comparing trastuzumab 
vs no trastuzumab treatment arms for PIK3CA mt, HER2-positive cohorts. 
Cumulative proportions of patients surviving relapse free are shown.  
E) Kaplan-Meier plots comparing trastuzumab vs no trastuzumab 

treatment arms for PIK3CA WT, HER2-positive cohorts. Cumulative pro-
portions of patients surviving relapse free are shown. F) Interaction 
forest plots indicate Cox regression HRs and 95% CIs stratified by 
chemotherapy type given for trastuzumab benefit for recurrence-free 
survival (RFS) according to PIK3CA genotype and by overall series. G) 
Kaplan-Meier plots comparing trastuzumab vs no trastuzumab treatment 
arms for PIK3CA mt, HER2-positive cohorts. Cumulative proportions of 
patients alive are shown. H) Kaplan-Meier plots comparing trastuzumab 
vs no trastuzumab treatment arms for PIK3CA WT, HER2-positive cohorts. 
Cumulative proportions of patients alive are shown. I) Interaction forest 
plots indicate Cox regression HRs and 95% CIs stratified by chemother-
apy type given for trastuzumab benefit for overall survival. according to 
PIK3CA genotype and by overall series. All statistical tests are two-sided. 
The number of patients at risk in each group is given below the graphs.
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or antitumor or protumor (31,33). PI3K signaling per se is known 
to affect immune signaling, although no data currently exist with 
regard to specific mutation-related events (34). Therefore, despite 
PIK3CA mutations being oncogenic activators of the PI3K path-
way, overall our data support the notion that PIK3CA mutant 
tumors when compared with the PIK3CA wild-type tumors are 
not resistant to standard adjuvant chemotherapy, trastuzumab, and 
endocrine therapy regimens.

A biological mechanism for these observations is currently 
unknown. We have speculated previously that PIK3CA mutations 
are not effective at completely activating the pathway and negative 
feedback mechanisms may serve to weaken the oncogenic signal 
(6). Full AKT activation has not been associated with the muta-
tion, and AKT-independent signaling has been proposed through 
PDK1-SGK3, with SGK3 also implicated with estrogen signaling 
(7,35–37). Estrogen has also been shown predominantly to repress 
transcription of many genes, which may also reduce the final sign-
aling output (38,39). High levels of pathway activation could be 
detrimental for tumor growth (ie, result in senescence), analogous 
to PTEN deficiency (40). Regardless, it seems that high levels of 
pathway activation are not associated with PIK3CA mutations per 
se. We hypothesize that PIK3CA mutations may be more important 
in breast cancer initiation and malignant transformation whereas 
other mutations may be required to drive the acquisition of 
aggressive biological features: it is notable that PIK3CA mutations 
often coexist with other lesions in the same pathway (30,41–43). 
It remains to be seen if primary and/or metastatic breast cancer 
patients with PIK3CA mutations will derive increased benefit from 
PI3K pathway–targeted drugs, which has been observed in vitro 
(44–46). Many clinical trials evaluating potential benefit from spe-
cific PI3K targeted drugs are currently ongoing.

This study, as well as others using massively parallel sequencing, 
have confirmed that breast cancers contain a large number of known 
cancer driver mutations that occur infrequently (42,43,47,48). 
In this cohort we have identified three ERBB2 as well as single 
KRAS, ALK, STK11/LKB1, and AKT2 mutations. These are known 
“driver” mutations, yet it is unknown how these influence outcomes 
or are amenable to targeted therapies in breast cancer. ERRB2 
kinase domain mutations have recently been shown to be important 
in breast cancer; hence, this mutation could represent a new target 
for non-HER2-amplified/overexpressing breast cancer (49–52).

To our knowledge, this is the only study thus far to address 
the relevance of PIK3CA genotype and trastuzumab benefit. We 
acknowledge several limitations of our study, specifically the low 
number of events in the HER2-positive subgroup, which does not 
exclude the possibility that an effect might be seen in a larger series; 
less than 100% coverage of all reported PIK3CA mutations in breast 
cancer; and sequencing from one tumor section, given emerging 
data on intratumoral heterogeneity (53). Next-generation sequenc-
ing technologies may give us a more complete picture of the clonal 
composition and molecular landscape of these tumors. However, it 
is becoming clear that elucidating the relationship between infre-
quent but known driver genetic aberrations, prognosis, and drug 
response will require the genotyping of tumors from many thou-
sands of breast cancer patients. This may also prove challenging 
for drug development. Nevertheless, our study provides important 
information from a large randomized clinical trial dataset about the 

prevalence and relationship between targetable and known somatic 
driver mutations, trastuzumab efficacy, and prognosis.
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