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BRAF mutation in colorectal cancer is associated with microsatellite instability (MSI) 
through its relationship with high-level CpG island methylator phenotype (CIMP) and 
MLH1 promoter methylation. MSI and BRAF mutation analyses are routinely used 
for familial cancer risk assessment. To clarify clinical outcome associations of com-
bined MSI/BRAF subgroups, we investigated survival in 1253 rectal and colon cancer 
patients within the Nurses’ Health Study and Health Professionals Follow-up Study 
with available data on clinical and other molecular features, including CIMP, LINE-1 
hypomethylation, and KRAS and PIK3CA mutations. Compared with the majority 
subtype of microsatellite stable (MSS)/BRAF–wild-type, MSS/BRAF-mutant, MSI-
high/BRAF-mutant, and MSI-high/BRAF–wild-type subtypes showed multivariable 
colorectal cancer-specific mortality hazard ratios of 1.60 (95% confidence interval  
[CI] =1.12 to 2.28; P = .009), 0.48 (95% CI = 0.27 to 0.87; P = .02), and 0.25 (95% CI = 0.12 
to 0.52; P < .001), respectively. No evidence existed for a differential prognostic role 
of BRAF mutation by MSI status (Pinteraction > .50). Combined BRAF/MSI status in  
colorectal cancer is a tumor molecular biomarker for prognosic risk stratification.

J Natl Cancer Inst;2013;105:1151–1156

High-level microsatellite instability (MSI-
high) is present in approximately 15% of 
colorectal cancers and is associated with 
superior survival (1–9). BRAF mutation, 
present in 10% to 20% of colorectal can-
cers, is associated with MSI-high through 
its relationship to high-level CpG island 
methylator phenotype (CIMP) (10–14) 
and is generally associated with inferior 
prognosis (15–28). Because the presence 
of BRAF mutation in MSI-high colorectal 
cancer decreases the likelihood of Lynch 
syndrome, MSI and BRAF analyses have 
an established clinical utility (29–31).  
Clinicians are therefore increasingly 
availed of MSI/BRAF status in colorec-
tal cancer (29–31); however, outcomes for 
combined MSI/BRAF subgroups have not 
been clearly defined. It remains uncertain 
whether the prognostic role of BRAF muta-
tion depends on MSI status (15–18).

Using the database of two US nation-
wide prospective cohort studies, the Nurses’ 
Health Study and the Health Professionals 
Follow-up Study (32–34), we tested the 
hypothesis that combined MSI/BRAF sta-
tus could serve as a prognostic molecular 
biomarker.

Rectal and colon cancer cases were 
identified through reporting by partici-
pants or next-of-kin and by searching the 
National Death Index for unreported 
lethal cases. The National Death Index was 
used to ascertain deaths (32–34). Cause of 
death was determined by study physicians. 
Informed consent was obtained from all 
study subjects. This study was approved 
by the Human Subjects Committees of 
Harvard School of Public Health and 
Brigham and Women’s Hospital.

DNA was extracted from formalin-fixed 
paraffin-embedded specimens, collected 

from hospitals across the United States 
where participants had undergone tumor 
resection or diagnostic biopsy (33). No 
statistically significant demographic dif-
ferences existed between case subjects 
with and without available tissue (33). 
Tumor molecular biomarkers (including 
MSI, CIMP, LINE-1 hypomethylation, 
and KRAS, BRAF, and PIK3CA mutations) 
were analyzed as previously described 
(35–41) (details provided in Supplementary 
Methods, available online).

All statistical analyses were performed 
using SAS (version 9.2; SAS Institute, 
Cary, NC). All statistical tests were two-
sided. Survival time was assessed using the 
Kaplan–Meier and log-rank methods. Cox 
proportional hazards models were used 
to estimate mortality hazard ratios (HRs), 
adjusting for potential confounders (details 
provided in Supplementary Methods).

Characteristics of 1253 colorectal 
cancer case subjects are summarized in 
Supplementary Table  1 (available online). 
During follow-up (median  =  8.2  years; 
interquartile range  =  3.5–13.1  years), 
there were 608 deaths, including 361 
colorectal cancer–specific deaths. We first 
analyzed BRAF mutation and MSI sta-
tus as independent variables in survival 
analyses (Supplementary Figures 1 and 2, 
Supplementary Table  2, available online). 
In multivariable analyses, BRAF mutation 
was associated with statistically significantly 
higher colorectal cancer–specific mortality 
(multivariable HR = 1.64, 95% confidence 
interval [CI] = 1.18 to 2.27; P = .003). MSI-
high was associated with statistically sig-
nificantly lower colorectal cancer–specific 
mortality (multivariable HR  =  0.28, 95% 
CI = 0.17 to 0.46; P < .001). MSI status was 
a confounder for BRAF mutation; when we 
simply adjusted for MSI status, the colorec-
tal cancer–specific hazard ratio for BRAF 
mutation was 2.05 (compared with univari-
ate HR estimate of 1.14).

Increased colorectal cancer–specific 
mortality appeared to be associated with 
BRAF mutation in both MSS (multivariable 
HR = 1.60, 95% CI = 1.12 to 2.28; P = .009) 
and MSI-high tumor strata (multivariable 
HR = 1.90, 95% CI = 0.79 to 4.57; P = .15) 
(Supplementary Table  3, available online). 
Lower colorectal cancer–specific mortality 
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was associated with MSI-high in both 
BRAF–wild-type (multivariable HR = 0.25, 
95% CI = 0.12 to 0.52; P < .001) and BRAF-
mutant strata (multivariable HR  =  0.30, 
95% CI = 0.16 to 0.58; P < .001).

For combined MSI/BRAF subgroups, 
5-year colorectal cancer–specific sur-
vival was 46% for MSS/BRAF-mutant, 
65% for MSS/BRAF–wild-type, 73% for 
MSI-high/BRAF-mutant, and 79% for 
MSI-high/BRAF–wild-type (log-rank 
P  <  .001) (Figure  1). In multivariable 

analyses (Table  1), compared with the 
majority subtype of MSS/BRAF–wild-type, 
MSS/BRAF-mutant, MSI-high/BRAF–
mutant and MSI-high/BRAF–wild-type 
subtypes showed colorectal cancer-
specific mortality hazard ratios of  
1.60 (95% CI  =  1.12 to 2.28; P  =  .009), 
0.48 (95% CI = 0.27 to 0.87; P = .02), and 
0.25 (95% CI  =  0.12 to 0.52; P < .001), 
respectively. We found no evidence of 
interaction between MSI and BRAF status 
in survival models (all Pinteraction > .50).

Tumor molecular classification has 
be come  crucial for clinical, translational, 
and epidemiologic research (42–49) because 
of uniqueness of each tumor and the con-
tinuum of colorectal biogeography influenc-
ing tumor characteristics (50–52). Despite 
their frequent coexistence as a result of their 
associations with high-level CIMP (CIMP-
high) (53–58), we found MSI-high and 
BRAF mutation in colorectal cancer to have 
divergent associations with patient survival. 
Our findings are compatible with previous 

Year  0 2 4 6 8 10 

MSI-high/BRAF–wild-type 92 85 76 68 56 43 

MSI-high/BRAF–mutant 101 87 82 65 49 31 

MSS/BRAF–wild-type 979 815 704 578 494 385 

MSS/BRAF–mutant 81 47 40 37 32 29 

Number at risk 

Log-rank P < .001 

Log-rank P < .001 
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Figure 1. Kaplan–Meier survival plots for colorectal cancer according to combined MSI/BRAF subgroup. A) Colorectal cancer–specific survival.  
B) Overall survival. Multi-group log-rank P values demonstrate statistically significant deviation of any one of the survival curves from the null 
hypothesis. MSI = microsatellite instability; MSS = microsatellite stable.
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studies that have found MSI-high to be asso-
ciated with favorable outcome (2–8,15,17) 
and BRAF mutation to be associated with 
poor survival (16–28) [except for (59)]. MSI 
status is an established prognostic biomarker 
and is associated with host–tumor immune 
response (60–65).

Concordant with several other stud-
ies (16–20,66,67) [except for (15)], MSS/ 
BRAF-mutant tumors were associated with 
the highest mortality. Patients with MSI-
high/BRAF–wild-type tumors experienced 
the lowest mortality, consistent with a num-
ber of previous reports (15–20,67). Although 
we found MSI-high/BRAF-mutant tumors 
to be associated with favorable prognosis 
(vs MSS/BRAF–wild-type), confirmation in 
other populations is required.

Although some studies (17–19,68) sug-
gest that the adverse prognostic association 
of BRAF mutation is limited to MSS tumors, 
other studies (15,16) and our analysis sug-
gest that BRAF mutation remains prognos-
tic among MSI-high cancers. We found no 
evidence for a differential prognostic role 
of BRAF mutation according to MSI status, 
consistent with a large population-based 
study (18). Taking into account existing lit-
erature, our data justify stratifying patients 
into poor (MSS/BRAF-mutant), intermedi-
ate (MSS/BRAF–wild-type), and favorable 
(MSI-high/BRAF–wild-type) prognostic 
groups (Supplementary Figure 4, available 
online).

Limitations of our study include its 
observational nature and lack of treatment 
data, and thus unknown bias, including dif-
ferential treatment assignment, might con-
found results. Nevertheless, our regression 
analyses were adjusted for disease stage, 
on which treatment decisions are largely 
based, and our findings are consistent with 
data from independent clinical trials of 
colon cancer patients (15,16).

Strengths of our study include use of a 
molecular pathological epidemiology (69–
79) database containing more than 1200 
colorectal cancer cases characterized for key 
tumor molecular features. MSI-high and 
BRAF-mutant tumors represent a minority 
of colorectal cancers. The size and com-
prehensiveness of this population-based, 
molecular pathological epidemiology data-
base enabled us to estimate an effect size for 
each tumor subtype while controlling for 
multiple potential confounders, including 
disease stage, age at diagnosis, body mass 

index, tumor differentiation, and tumor 
LINE-1 methylation level.

In conclusion, our data support a prog-
nostic role for combined MSI/BRAF testing 
in colorectal cancer. Future studies should 
examine the predictive role of MSI/BRAF 
classification for response to therapeutic 
and lifestyle interventions.
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