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Abstract

Rapid advancements in massively parallel sequencing methods have enabled the analysis of breast cancer genomes at an 
unprecedented resolution, which have revealed the remarkable heterogeneity of the disease. As a result, we now accept 
that despite originating in the breast, estrogen receptor (ER)–positive and ER-negative breast cancers are completely 
different diseases at the molecular level. It has become apparent that there are very few highly recurrently mutated genes 
such as TP53, PIK3CA, and GATA3, that no two breast cancers display an identical repertoire of somatic genetic alterations 
at base-pair resolution and that there might not be a single highly recurrently mutated gene that defines each of the 
“intrinsic” subtypes of breast cancer (ie, basal-like, HER2-enriched, luminal A, and luminal B). Breast cancer heterogeneity, 
however, extends beyond the diversity between tumors. There is burgeoning evidence to demonstrate that at least some 
primary breast cancers are composed of multiple, genetically diverse clones at diagnosis and that metastatic lesions may 
differ in their repertoire of somatic genetic alterations when compared with their respective primary tumors. Several 
biological phenomena may shape the reported intratumor genetic heterogeneity observed in breast cancers, including the 
different mutational processes and multiple types of genomic instability. Harnessing the emerging concepts of the diversity 
of breast cancer genomes and the phenomenon of intratumor genetic heterogeneity will be essential for the development 
of optimal methods for diagnosis, disease monitoring, and the matching of patients to the drugs that would benefit them 
the most.

Breast cancer is a heterogeneous disease, comprising numer-
ous entities that differ in their histologic, biological, and clini-
cal behavior (1,2). Long before the advent of molecular biology 
technologies, histopathologists had classified the disease into 
groups based on morphology and clinical presentation (2–4). 
Although different histologic types of breast cancer have been 
shown to be associated with distinct biological and clinical 

features (2,5–8), the use of histologic subtyping for clinical 
decision-making has been limited. Additional criteria such 
as tumor grade, tumor size, lymph node status and vascular 
involvement have been shown to be required for breast can-
cer prognostication and treatment decision making (1,2,5,9). 
The predictive and prognostic power of these parameters, 
however, remains limited, and the clinical course of breast 
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cancer patients varies tremendously even when tumors of the 
same histologic grade are considered. High-throughput tech-
nologies, including microarray-based gene expression profil-
ing (1,10–14) and massively parallel sequencing (MPS) (15–19), 
have not only helped define biologically relevant molecular 
subtypes of breast cancer but have also brought the remarka-
ble heterogeneity of this disease to the fore. We now stand at a 
turning point, where the understanding of genomic instability 
and the complex mutational processes that drive tumorigen-
esis and result in intertumor and intratumor genetic hetero-
geneity is reshaping how we perceive breast cancer and will 
likely have a profound impact on how breast cancer patients 
are treated.

Breast Cancer Classification: The Present

The World Health Organization classification of invasive breast 
cancer currently used in pathology laboratories worldwide is 
based on both histopathology and immunohistochemical anal-
yses (5). This classification recognizes the existence of “histo-
logic special types,” which account for up to 25% of all invasive 
breast carcinomas (2,5), while the remaining are classified as 
invasive carcinomas of no special type (IC-NST, formerly known 
as invasive ductal carcinoma not otherwise specified or inva-
sive ductal carcinoma of no special type) (5). It should be noted 
that IC-NST, as the name implies, is a diagnosis of exclusion 
(ie, tumors that cannot be classified as one of the special his-
tologic types). Histologic typing has not been included in clini-
cal management algorithms, primarily because of the modest 
interobserver agreement rates and the controversy about the 
true existence of some entities (eg, medullary carcinoma and 
apocrine carcinoma) (5). Histologic grading, a measure of the 
differentiation of human breast cancers based on the analy-
sis of tubule formation, nuclear pleomorphism, and mitotic 
index, has been shown to be of greater clinical importance 
than typing; in fact, histologic grading has proven to be an 
independent prognostic factor and is associated with the ben-
efit patients derive from chemotherapy (20). In a way akin to 

typing, histologic grading has also proven to suffer from varying 
degrees of interobserver agreement. In addition to grading and 
typing, assessment of estrogen receptor (ER) and progesterone 
receptor (PR) expression by immunohistochemistry and of HER2 
status by immunohistochemistry and in situ hybridization have 
proven to be useful predictive markers for the management 
of breast cancer patients. Importantly, however, these mark-
ers have been shown to have a high negative predictive value 
(ie, patients who have ER-negative cancers do not respond to 
endocrine therapy and patients with HER2-negative breast 
cancers do not respond to anti-HER2 therapies) but limited 
positive predictive value (ie, not all patients with ER-positive 
or HER2-positive breast cancers benefit from endocrine or anti-
HER2 therapy, respectively). Hence, the development of more 
robust and reproducible molecular tools to predict the outcome 
of breast cancer patients and their response to treatment has 
long been a subject of great interest in translational research 
endeavors.

Microarray-based gene expression profiling studies carried 
out in the late 1990s and 2000s provided a paradigm shift such 
that we now recognize breast cancer not as a single disease 
but as different diseases with distinct transcriptomic profiles, 
clinicopathologic features, responses to therapy, and out-
comes. Seminal class discovery studies have demonstrated 
that at the mRNA level, ER-positive and ER-negative breast 
cancers are fundamentally different diseases (Figure  1) and 
ER-positive tumors can be further subdivided into luminal 
A  and luminal B “intrinsic” subtypes that differ by the lev-
els of expression of proliferation-related genes and in clinical 
behavior (1,10–12,21). Within ER-negative tumors, in addi-
tion to the basal-like and HER2-enriched “intrinsic” subtypes 
initially described (10,11), further subtypes have emerged 
including claudin-low tumors, of which 60% to 70% are of tri-
ple-negative phenotype (ie, lacking ER, PR, and HER2 expres-
sion) and are potentially enriched for the so-called cancer 
stem cells (22) and the molecular apocrine subtype, character-
ized by the expression of androgen receptor, transcriptomic 
features consistent with activation of the androgen receptor 

Figure 1.  Estrogen receptor–positive and estrogen receptor–negative breast cancers: molecular profiling. Estrogen receptor (ER)–positive and ER-negative breast cancers 

differ at the molecular level as shown by the distribution of the “intrinsic” subtypes (10,11,22,23), the triple-negative breast cancer subtypes (26–28), the integrative 

clusters (IntClust) (14,30), first generation prognostic signatures (1), and biological processes as defined by microarray-based profiling (21). The size of each circle is pro-

portional to the percentage of breast cancers harboring the characteristics stratified according to ER status. ER = estrogen receptor; TNBC = triple-negative breast cancer.
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pathway, and poor clinical outcome (23–25). More recent inde-
pendent studies have demonstrated that triple-negative 
breast cancers (TNBCs) can be subclassified into six subtypes 
(basal-like I, basal-like II, mesenchymal, mesenchymal stem-
like, immunomodulatory, and luminal androgen receptor) (26) 
or four subtypes (luminal androgen receptor, mesenchymal, 
basal-like immune-suppressed, and basal-like immune-acti-
vated) (27). Together, these studies have resulted in an inde-
pendent validation of the existence of the luminal androgen 
receptor and mesenchymal TNBC subtypes; however, the opti-
mal subclassification of the remaining TNBCs remains to be 
fully elucidated. Importantly, these TNBC classification sys-
tems provide an interesting framework for the matching of 
subtypes of the disease with specific targeted therapies (27,28) 
and the six-subtype classification has been shown to be asso-
ciated with distinct responses to neoadjuvant chemotherapy 
(29). Finally, a landmark study by the Molecular Taxonomy 
of Breast Cancer International Consortium (METABRIC) ana-
lyzed approximately 2000 tumors and proposed a genomics-
driven classification of breast cancer based on an integrative 
analysis of gene expression and genome-wide copy number 
alterations (CNAs) (14) (Figure  1). Through bioinformatics 
methods, this study demonstrated that the most parsimoni-
ous number of molecular subtypes of breast cancer is likely 
to be 10 and that these subtypes have distinct clinical behav-
iors (14,30). In fact, gene copy number analyses of ER-positive 
and ER-negative breast cancers have shown that these tumors 
differ also in the pattern and type of gene CNAs: while the 
majority of ER-positive breast cancers (grade 1, 80%; grade 
3, 50%) harbor concurrent deletions of 16q and gains of 1q, 
these concurrent alterations appear to be remarkably rare in 
ER-negative tumors (31). On the other hand, TNBCs are char-
acterized by complex patterns of copy number gains and 
losses throughout the genome (32). Although the identifica-
tion of the METABRIC integrative clusters initially required 
gene expression and CNA information, the proponents of 
this classification system have developed a gene expression–
based approach to classify breast cancers into the 10 integra-
tive clusters (33). The analysis of 7544 breast cancers with 
the new classifier has revealed that the METABRIC classifica-
tion may be more informative in the contextualization of the 
genomic drivers identified by MPS studies of breast cancer 
(33) than the “intrinsic” subtypes (15). Microarray-based stud-
ies have undoubtedly demonstrated the diversity of breast 
cancers at the transcriptomic level; however, it is unclear as 
to how many of these subtypes would have clinical utility, and 
questions about the robustness of the methods for their iden-
tification have been asked (34–36).

Arguably, the most important contribution of microarray-
based technologies to molecular tests from a practical stand-
point was the development of prognostic signatures. Many 
commercially available gene expression–based platforms such 
as Oncotype DX (37), MammaPrint (12), Breast Cancer Index 
(BCI) (38), PAM50 ROR (11), and EndoPredict (39) have been 
implemented in the clinical setting to help physicians decide 
which patients have such a good outcome that they could forgo 
chemotherapy. These first generation gene signatures are com-
posed of different gene lists; however, all identify very similar 
sets of breast cancer patients as of good or poor prognosis on 
the basis of the expression levels of proliferation-associated 
genes (1,21,40,41). Furthermore, these signatures have the high-
est discriminatory power in ER-positive disease; their prog-
nostic value in ER-negative tumors is limited, given that more 

than 95% of ER-negative tumors have high expression levels of 
proliferation-related genes (1,21). It has been suggested that 
the prognosis of ER-negative breast cancers may be associ-
ated with the expression of immune-related genes (42). As a 
consequence, prognostic signatures linked to genes involved 
in immune, inflammatory, and/or chemokine pathways have 
been developed for hormone receptor–negative/TNBCs, includ-
ing the STAT1 cluster (43), the IFN cluster (44), the IR-7 (42,45), 
the Buck-14 (46), TN-45 (47), and a B-cell/IL-8 metagene ratio 
(48) (Figure 1). At present, however, the prognostic value offered 
by proliferation-based prognostic signatures has been shown 
to be complementary to the prognostic information provided 
by classical clinico pathologic parameters (49), and some have 
received great acceptance by the medical and research commu-
nities (1,50).

The Mutational Landscape of Breast 
Cancers

MPS methods have allowed for the characterization of breast 
cancer genomes at the base-pair level and shown that at this 
resolution each breast cancer is likely unique (15–19). Overall, 
breast cancers were found to have on average 1.02 to 1.66 
somatic mutations per Mb in coding regions (15-19,51), which 
translate into a mean of 56.9 (range 5–374) somatic mutations 
per cancer (52). The mutation frequencies found in breast can-
cers are similar to those of ovarian or renal clear cell carcino-
mas, but lower than those of bladder urothelial (8.03 somatic 
mutations/Mb) or lung squamous cell carcinoma (9.92 somatic 
mutations/Mb) (52). Depending on case selection, sample size, 
and analysis tools employed, different studies have revealed 
distinct sets of significantly mutated genes (SMGs) in breast 
cancer (Figure 2A). Importantly, however, PIK3CA, TP53, GATA3, 
MAP3K1, AKT1, and CBFB have been shown in multiple inde-
pendent studies (15,16,52,53) to be SMGs and likely constitute 
drivers of the disease (Figure 2A). Overall, the genes significantly 
affected by mutations included genes and pathways known to 
be aberrant in breast cancers, including TP53 or the PI3K path-
way (eg, PIK3CA, PTEN, AKT1). However, MPS studies have also 
revealed several SMGs of functional or cellular processes previ-
ously not considered to be major players in the biology of breast 
cancer, including the MAPK/JNK signaling (eg, MAP3K1, MAP2K4, 
NF1), transcription factors and regulators (eg, GATA3, RUNX1, 
CBFB), splicing factors (eg, SF3B1), and chromatin remodelers (eg, 
MLL3, ARID1A) (15,52,53).

Of particular interest is the fact that only TP53, PIK3CA, 
and GATA3 were found to be consistently mutated in more 
than 10% of unselected breast cancers, while the remaining 
genes were found to be mutated in less than 7.7% of cases, 
with a very long list of genes mutated in less than 1% of cases 
(Figure  2B) (15). Several studies have demonstrated the con-
tribution of numerous low-prevalence mutations (15-18,54); 
however, algorithms to identify SMGs and potential drivers of 
the disease rely on mutation frequency and spectrum (55–57). 
In fact, in Stephens et al., out of the 40 driver genes identified 
in breast cancer, somatic genetic alterations (ie, mutations or 
gene amplifications) affecting seven of these genes (ie, TP53, 
PIK3CA, GATA3, ERBB2, MYC, FGFR1, and CCND1) accounted 
for 58% of all driver genetic alterations; the remaining 42% 
of somatic alterations affected the remaining 33 driver genes 
(17). Some low-prevalence mutations, however, affect bona fide 
genes that do play a role in breast cancer development and/or 
progression and have been shown to be activating or confer 
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therapy resistance. For instance, activating mutations in the 
tyrosine kinase domain of ERBB2 (encoding HER2) have been 
found in approximately 1.5% of breast cancers and may affect 
response to anti-HER2 agents (58,59). Similarly, ESR1 (encoding 
ER) mutations in the ligand-binding domain potentially con-
fer resistance to endocrine therapy but are only found in 0.6% 
of luminal breast cancers (60–63). In fact, a recent saturation 
analysis demonstrated that at least 500 breast cancers need 
to be subjected to MPS for 90% of the genes mutated in 2% or 
more of breast cancers to be detected at 90% statistical power 
(53). This may explain our inability to identify infrequently 
mutated driver genes such as ERBB2 and ESR1 in studies 
involving unselected breast cancers, particularly because the 
repertoire of somatic genetic alterations in breast cancer var-
ies according to ER status and “intrinsic” subtypes (see below). 
One may therefore hypothesize that the analysis of specific 
subsets of breast cancers, for example stratified according to 
histologic type, may lead to the identification of additional 
SMGs and driver genes.

Although it is difficult to ascribe biological or clinical signifi-
cance to genes infrequently mutated in breast cancer, through 
the large-scale sequencing efforts of The Cancer Genome Atlas 
(TCGA), pooling together the major cancer types increases 
statistical power. Additional cancer genes have since been 
described across cancer types, and some of those previously 
implicated in other types of cancer have been found to be sig-
nificantly though infrequently mutated in breast cancer (52,53). 

Two pan-cancer studies have identified 127 and 219 SMGs 
across multiple cancer types and have implicated cellular pro-
cesses such as transcriptional regulation and genome integrity 
maintenance as somatically altered processes in breast cancers 
(52,53). It should be noted that in addition to the 32 SMGs iden-
tified when breast cancer was studied alone (53), an additional 
five genes (EP300, FGFR2, GNPTAB, ERBB3, ACVR1B) from the 219 
SMGs were found to be statistically significantly mutated in 
breast cancer when the major cancer types were jointly studied 
(53).

The MPS studies further supported the main observa-
tions made using microarray technologies, in that ER-positive 
and ER-negative breast cancers differ at the molecular level. 
ER-positive tumors harbor fewer mutations (1.35 nonsilent cod-
ing mutations/Mb), which preferentially affect PIK3CA (40.1%), 
MAP3K1 (11.0%), MAP2K4 (5.6%), GATA3 (13.8%), MLL3 (7.6%), 
CDH1 (8.5%), and AKT1 (3.1%); on the other hand, ER-negative 
disease has a higher rate of coding mutations (1.94 nonsi-
lent coding mutations/Mb), with TP53 (84.5%) being the single 
most recurrently mutated gene (15,52). The microarray-defined 
“intrinsic” subtypes have also been shown to differ in terms 
of their constellation of somatic genetic alterations; the mean 
mutation rates for luminal A, luminal B, HER2-enriched, and 
basal-like subtypes have been reported to be 0.99, 1.58, 2.35, 
and 2.01 mutations/Mb, respectively (15,52). Interestingly, even 
within the HER2-enriched subtype, ER-positive tumors were 
found to have a lower mutation rate than ER-negative tumors 

Figure 2.  Intertumor genetic heterogeneity in breast cancer. At the genomic level, breast cancers are remarkably heterogeneous and no two tumors display an identical 

constellation of somatic mutations. A) Venn diagram illustrates the significantly mutated genes in breast cancer identified in different sequencing studies (15,16,52,53). 

B) Mutational frequencies of the 100 most frequently mutated genes in all breast cancers (15,52), illustrating the small number of genes highly recurrently mutated and 

a long “tail” of genes with low mutational frequency. C) The mutational frequencies of the 20 most frequently mutated genes in breast cancers of luminal A, luminal B, 

HER2-enriched and basal-like “intrinsic” subtypes (15,52). TCGA = The Cancer Genome Atlas.
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(1.85 vs 2.81 mutations per Mb) (15,52). Whilst the most fre-
quently mutated gene in breast cancers of basal-like and HER2-
enriched subtypes is TP53 at 80% and 72%, respectively, this 
gene is reported to be mutated in 12% and 29% of luminal A and 
B tumors, respectively (15,52) (Figure 2C). In contrast, the most 
frequently mutated gene in luminal A and B breast cancers is 
PIK3CA, at 45% and 29%, respectively (15). Heterogeneity, again, 
exists within the HER2-enriched subtype, where only 63% of 
ER-positive HER2-enriched tumors harbor TP53 mutations, 
compared with 92% of ER-negative HER2-enriched cancers (15). 
It should be noted that mutually exclusive mutations have been 
found within the “intrinsic” subtypes, namely mutually exclu-
sive MAP3K1 and MAP2K4 mutations in the luminal tumors, 
suggesting that the same pathway can be affected in different 
cancers by genetic alterations in different components of the 
same pathways (15). Furthermore, “intrinsic” subtypes have 
also been shown to differ according to the patterns of mutations 
affecting specific genes. For instance, TP53 mutations affecting 
basal-like tumors are enriched for nonsense and frameshift, 
whereas in luminal A and luminal B cancers missense muta-
tions of TP53 are more frequent (15). Another example of this 
phenomenon is observed in the spectrum of GATA3 somatic 
mutations; in the TCGA study, hotspot deletions in intron 4 of 
GATA3 were found only in luminal A tumors, whereas seven of 
nine frame-shift mutations in exon 5 were found in luminal 
B breast cancers (15). Although no single hotspot mutation or 
highly recurrently mutated gene defines the individual “intrin-
sic” subtypes, unsupervised clustering of the mutational reper-
toire of breast cancers identified five major clusters, defined by 
TP53, PIK3CA, GATA3, MAP3K1, and CDH1 mutations (52), high-
lighting the extent of the diversity of somatic genetic altera-
tions in breast cancer.

Taken together, multiple lines of evidence have shown that 
breast cancers are remarkably diverse in terms of their reper-
toire of mutations, with few highly recurrently mutated genes, 
and that there is great variation between tumors, even within 
“intrinsic” subtypes that were initially perceived to be homoge-
neous at the molecular level.

Intratumor Genetic Heterogeneity

Heterogeneity in breast cancer is not restricted to the pheno-
typic and genetic variation between tumors described above. 
There are several lines of evidence to suggest that solid tumors 
not only display striking morphologic heterogeneity, but also 
genetic diversity. Intratumor histologic heterogeneity within 
breast cancers is a frequent phenomenon, and one subtype 
of TNBCs, metaplastic breast cancer, is even defined by the 
presence of histologic heterogeneity (64). In a proof-of-con-
cept study, our group demonstrated that in some cases his-
tologically distinct areas of metaplastic breast cancers, while 
clonal as shown by the presence of identical TP53 mutations, 
harbored distinct repertoires of CNAs (65). Cancers have been 
shown to be composed of mosaics of tumor cells that, in addi-
tion to the founder genetic events, harbor private alterations 
and follow a branched, Darwinian evolutionary trajectory 
(19,66–70). Intratumor genetic heterogeneity in the absence of 
overt phenotypic heterogeneity has also been demonstrated in 
breast cancer. Various degrees of intratumor genetic heteroge-
neity are evident in the majority of TNBCs, with approximately 
two-thirds of TNBCs being composed of genetically distinct 
clones at diagnosis (19) (Figure 3). Basal-like TNBCs tended to 
have greater intratumor heterogeneity than non–basal-like 

TNBCs, and, importantly, mutations in TP53, PIK3CA, and PTEN 
were usually present in high clonal frequencies, providing 
evidence that these are usually early driver mutations (19). It 
should be noted, however, that even mutations affecting these 
driver genes were also found in minor subclones in a minor-
ity of TNBCs, suggesting that some bona fide somatic driver 
mutations may be subclonal in TNBCs (19). Furthermore, the 
reconstruction of the evolutionary trajectory of 21 breast can-
cers suggested that while all tumors have a dominant sub-
clonal lineage according to the definition employed in that 
study (>50% of tumor cells) (70), several somatic mutations 
were found in only a fraction of cancer cells. Several studies 
have documented that the constellations of somatic mutations 
found between distinct areas within a primary breast cancer 
(spatial heterogeneity) and between the primary breast tumor 
and its metastasis (temporal heterogeneity) are similar but not 
identical, with substantial variations in the number and type 
of mutations (19,66–68). These findings support the notion that 
breast cancers, similar to other tumors (69), evolve over the 
course of the disease.

In a landmark study, Navin et  al. performed single-cell 
sequencing of 100 cells from a genetically heterogeneous 
breast cancer and showed that the tumor was composed of 
two largely homogeneous groups of aneuploid cells and more 
genetically diverse hypodiploid cells with distinct patterns of 
CNAs and ploidy (67). When the analysis was extended to single 
nucleotide variants (SNVs), however, it appears that in both an 
ER-positive breast cancer and a TNBC, although distinct clonal 
populations could be defined on the basis of their CNAs, no two 
single tumor cells harbored an identical repertoire of SNVs (71). 
Interestingly, in contrast to the evolutionary pattern of CNAs, 
rather than forming distinct subclonal populations, tumor cells 
displayed an evolutionary continuum with large numbers of 
subclonal and private SNVs (ie, found in only one tumor cell) 
(71). Whilst the ER-positive cancer was composed of a single 
dominant clone, based on CNAs, with numerous private or 
near-private SNVs, the TNBC had two CNA-defined clones with 
roughly equal frequency, one of which could be further sub-
divided into two subclones based on SNVs (71). The relatively 
higher degree of intratumor genetic heterogeneity observed 
in the TNBC may be associated with its higher mutation rate 
per cell division (71), in line with the previous observation that 
increased mutation rate is associated with increased genetic 
diversity in TNBCs (19).

Intratumor genetic heterogeneity needs to be contextual-
ized, given that only a minority of the mutations are essential 
for cancer development and progression, whereas the major-
ity have no significant biological impact or are deleterious 
(72,73). In some cases, intratumor genetic heterogeneity has 
been found to affect known driver genes such as TP53, PIK3CA, 
and PTEN (19). One potential explanation for the functional rel-
evance of the heterogeneity, in particular that of driver genetic 
alterations, is that rather than competition, these genetically 
distinct subclones interact cooperatively, as described using a 
mixed-lineage mammary tumor mouse model, where the Hras-
mutant basal cells are reported to depend on Wnt-expressing 
luminal cells (74). It has also been suggested that subclones of 
inferior selective advantage can play a role in tumor growth 
by inducing microenvironmental changes that promote the 
growth of all tumor cells in a non–cell-autonomous manner 
and the elimination of these subclones may result in tumor 
collapse (75). These observations demonstrate the coopera-
tion of genetically distinct subclones within a tumor and may 
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provide an explanation for the heterogeneity of driver genetic 
alterations.

Importantly, primary tumors and/or their metastases may 
also vary in their targetable driver genetic alterations and there 
are examples of invasive breast cancers containing neoplas-
tic cells with and without HER2 amplification (76,77), which 
may result in the selection of clones with specific resistance 
mechanisms to anti-HER2 therapy that were already present 
before the onset of therapy (78–80). The recent identification 
of somatic mutations in the ligand-binding domain of ESR1 at 
a much higher frequency in the metastases of breast cancer 
patients previously treated with aromatase inhibitors than in 

primary tumors provides further evidence for clonal evolution 
under selective pressure such as targeted anticancer treatment 
(60–63). In fact, evidence of ESR1 gene mutations in patients not 
treated with aromatase inhibitors or estrogen deprivation is 
available (81). Importantly though, a given mutation can change 
from a passenger to a driver mutation under changes of selec-
tive pressure (80). For instance, whilst the ERBB2 L755S muta-
tion did not promote tumor formation in a xenograft model 
and was not considered to constitute an activating mutation, 
it is close to the binding site for small-molecule kinase inhibi-
tors and has been shown to confer resistance to the dual HER2/
EGFR kinase inhibitor lapatinib (58).

Figure 3.  Intratumor genetic heterogeneity in breast cancer. There is evidence to suggest that breast cancers are composed of mosaics of tumor cells at diagnosis 

(19,66–68,81). Some tumors may only be composed of one or few tumor clones (A), while others may harbor one major clone with several minor subclones (B) or may 

be composed of numerous clones without a dominant clone (C). Under selective pressures, such as treatment, the fittest clones (ie, the resistant clones in the case 

of treatment-induced selective pressures) may be selected and thus become the so-called “lethal clone” driving tumor progression and finally being the cause of the 

patient’s death. D) It is plausible that the de novo emergence of clones resistant to therapy may be causally linked to the therapy offered to the patient, should these 

therapies directly or indirectly result in mutagenic events that may confer a survival advantage to a given cancer cell.
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Also of clinical importance is the development of treat-
ment-resistant lethal metastatic breast cancers. It has been 
suggested that the metastatic process likely constitutes a 
biological bottleneck (78), where the process of intravasa-
tion, survival in circulation, extravasation, and colonization 
of a distant site, coupled with pressures posed by the differ-
ent microenvironments, would result in the selection of the 
fittest clone(s). In a substantial proportion of patients, how-
ever, metastases develop after surgical excision of the primary 
breast cancer and subsequent adjuvant systemic therapy; in 
this context, the clonal selection would stem from the selec-
tive pressures caused by surgical debulking, systemic thera-
pies, and the metastatic process itself, which could result in 
clonal homogenization (82) (ie, a reduction in clonal diversity). 
In this model, the metastatic clone after multiple lines of ther-
apy would be primarily constituted by the “lethal clone(s)”, 
that is, the clone that is able to disseminate and colonize 
distant sites, and is responsible for therapy failure, resulting 
in the death of the patient. Consistent with this notion, the 
brain metastasis of one TNBC was shown to be less genetically 
heterogeneous than its primary tumor, suggesting that the 
selective pressures of chemotherapy and/or tumor microenvi-
ronment may have resulted in clonal homogenization (66). By 
contrast, the opposite has also been suggested, where distant 
metastases appeared to have higher clonal diversity than their 
primary tumors (83). In fact, despite the differences found 
between primary breast cancers and their matched metasta-
ses in individual patients (84), there is emerging evidence that 
the constellation of highly recurrent drivers of metastatic dis-
ease may be similar to that found in primary tumors (85), with 
a few exceptions, including ESR1 mutations in ER-positive 
breast cancer patients treated with estrogen deprivation and 
HER2 mutations in patients treated with anti-HER2 therapies. 
These observations may suggest that there is no common 
denominator in the form of a highly recurrently mutated gene 
or a highly recurrent mutation that drives metastatic behavior 
in breast cancer, that the metastatic process may be a conver-
gent phenotype, and that in different patients distinct genetic 
and epigenetic mechanisms may result in the acquisition of 
metastatic properties by cancer cells. Thus, further studies 
are required to define the effect of the metastatic process and 
other selective pressures such as cytotoxic and targeted thera-
pies on intratumor heterogeneity.

Mutational Processes Driving Inter- and Intratumor 
Genetic Heterogeneity

To understand the genomic instability that underlies inter- and 
intratumor genetic heterogeneity, several studies have sought 
to define patterns in the genomic alterations across common 
cancer types. Based on somatic mutations and CNAs, cancers 
can be classified into two main classes, namely M-class, pri-
marily characterized and driven by recurrent mutations (SNVs 
and insertions and deletions [indels]) and C-class, by recurrent 
CNAs (86). Consistent with the notion of chromosomal and 
microsatellite instability in colorectal cancers, where tumors 
with microsatellite instability have limited chromosomal insta-
bility and vice versa (87), tumors with high numbers of muta-
tions have been recently shown not to have many CNAs and 
those with many CNAs not to have many mutations (86). The 
vast majority of breast cancers (76%) belong to the C-class; 
M-class breast cancers are almost exclusively of luminal “intrin-
sic” subtype (92%), but only 66.5% of luminal breast cancers are 

in the M-class, with the remaining 33.5% in the C-class, sug-
gesting that luminal breast cancers can be driven by both muta-
tions and CNAs. By contrast, 99% of TNBCs are of C-class (86). 
Paradoxically, TNBCs, of which 83% have TP53 mutations (15), 
have mutation rates similar to those of melanoma (15,19,86) but 
also have a large number of CNAs, similar to high-grade serous 
ovarian cancer (15,86). In addition, luminal breast cancers with 
TP53 mutations overwhelmingly belong to the C-class (90%) 
and have relatively high mutation rates (1.73 mutations per Mb) 
compared with those without TP53 mutations (59% C-class; 1.08 
mutations per Mb) (15,52,86). These observations suggest that 
early TP53 mutations may confer a mutator phenotype (88) and 
lead to copy number genetic instability. Although the paucity of 
recurrent SNVs and indels in TNBCs and TP53-mutant luminal 
tumors could be interpreted as suggestive of CNAs being the 
main drivers in these cancers, it is plausible that these tumors 
may constitute convergent phenotypes and be driven by muta-
tions that either affect different components of the same path-
way or different components of distinct pathways/networks 
whose alterations would result in a similar biological outputs 
(80).

These observations suggest that in some subtypes of breast 
cancer CNAs likely contain important drivers of the disease. 
Although this is immediately apparent in HER2-positive breast 
cancers, which are defined by the presence of HER2 gene 
amplification, it is plausible that small subsets of ER-positive 
and TNBCs may be driven by amplification of specific genes 
(eg, FGFR1, ZNF703, and CCND1 in a subset of ER-positive breast 
cancers, FGFR2 in a subset of TNBCs, PPM1D in a subset of 
ER-positive and HER2-positive breast cancers) (Supplementary 
Table 1, available online) (14,15,30,79,89–91). One of the major 
challenges in translating the information stemming from gene 
copy number analyses of breast cancers lies in the fact that 
focal regions of high-level amplification often contain multiple 
genes, and defining whether an amplicon is driven by a sin-
gle driver, the exact identity of the driver gene, whether the 
driver varies according to breast cancer subtype, or if there 
is cooperation between multiple genes amplified in the same 
amplicon or in other regions of the genome has proven chal-
lenging. It should be noted, however, that in addition to HER2 
gene amplification, amplification of other genes is currently 
being tested in breast cancer patients as potential biomarkers 
for specific targeted therapies (eg, NCT01795768, NCT02053636, 
and NCT00979134).

Genetic alterations in breast cancers have been found to be 
generated via a number of mutational processes, endogenous 
mutagens, and biological phenomena (86,92–96) (Figure  4). 
Overexpression of APOBEC3B and the APOBEC family of cytidine 
deaminases has been reported to catalyze deamination induc-
ing C>T and C>G mutations at TpCpN in breast and other can-
cers (92–95). APOBEC activity has been found to contribute to, 
in particular, the large number of mutations in breast cancers 
with a localized hypermutator phenotype known as “kataegis” 
(Figure  4) (94,96). Of note, HER2-enriched breast cancers are 
particularly enriched for displaying the APOBEC mutation pat-
tern (95). The association of APOBEC-mediated mutagenesis 
with TP53 mutations suggests this may be a major endogenous 
mutagen in the presence of a checkpoint defect (92). In con-
trast, breast cancers with the fewest mutations were shown 
to be associated with the aging mutational signature (C>T 
at NpCpG) (96) (Figure 4), whereas tumors arising in BRCA1 or 
BRCA2 germline mutation carriers lack specific SNV signatures 
but are associated with deletions around 50 bp with overlapping 
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microhomology, as previously described (Figure  4) (51,94,96). 
Unlike other types of tumors such as lung cancers and mela-
noma, exogenous carcinogens do not appear to constitute major 
sources of mutagenesis in breast cancer (Figure 4), as robust evi-
dence for the presence of carcinogen-induced mutation signa-
tures has not been observed in this disease (96).

In terms of CNAs, whole-genome duplication and chro-
mothripsis appear to play a role in shaping the genomic 
landscapes of breast cancers (Figure 4). Although it has long 
been known that breast cancers are frequently aneuploid, 
a recent analysis demonstrated that 45% of breast cancers 
have undergone at least one iteration of whole-genome 
duplication and that whole-genome duplication is associ-
ated with an increased rate of other types of somatic CNAs 
(97). Less common in breast cancers is chromothripsis (ie, 
localized catastrophic shattering and restitching of chro-
mosomal segments), which has been found in 2% to 5% of 
all cancers and approximately 7% of breast cancers (97–99). 
Through whole-genome sequencing, chromothripsis has 
been reported to co-occur with kataegis (94), suggesting that 
multiple types of catastrophic events may contribute to the 
evolution of a tumor. Chromoplexy, however, defined as the 
formation of a chained pattern of rearrangements formed 
by interdependent rearrangements, has been observed in 
prostate cancer (100) but has yet to be documented in breast 
cancer (Figure 4).

Tackling Inter- and Intratumor Genetic 
Heterogeneity

While MPS studies have provided great insights into the genet-
ics of breast cancers, inter- and intratumor genetic heterogene-
ity pose important challenges. There is evidence to demonstrate 
that the repertoire of somatic alterations found in a single sam-
ple of a primary tumor may not be representative of the entire 
disease, as illustrated by MPS analysis of primary breast can-
cers and their metastases (66,68,81) or even representative of a 
single tumor, demonstrated by divergent CNAs from anatomi-
cally distinct areas of primary tumors (65,71,101). Additional 
in-depth multiregional profiling of primary tumors and their 
respective metastases and serial tumor sampling at crucial time 
points of the disease are required to ascertain the level of spa-
tial and temporal heterogeneity within cancers, although serial 
sampling may prove challenging in the clinical setting. Another 
clinical question that needs to be addressed is whether genomic 
profiling of single biopsies of the primary tumor would be suf-
ficiently representative for critical therapeutic decisions to be 
rendered (79,80).

Actionable mutations or aberrations (ie, driver aberrations 
that can be targeted with specific therapies), even at subclonal 
levels, are of particular clinical interest. The thresholds at which 
subclonal mutations should be considered actionable (that is, 
the cellular frequency at which an actionable mutation should 

Figure 4.  Mutational processes occurring in cancer. Breast cancer genomes are shaped through different mutational processes. A) Kataegis is a localized hypermuta-

tor phenotype associated with the overexpression of the APOBEC family of cytidine deaminases, which catalyze and induce C>T and C>G mutations at TpCpN. B) The 

mutational signature C>T at NpCpG has been associated with aging and is often observed in breast cancers with the lowest number of somatic mutations. C) Deletions 

of around 50 bp with overlapping microhomology are more frequently found in tumors arising in BRCA1 and BRCA2 mutation carriers. D) Different exogenous carcino-

gens cause specific mutational signatures. Tobacco use, for example, is highly associated with C>A base pair transversions, whereas ultraviolet light has been shown 

shown to predominantly cause C>T transitions. These mechanisms, however, do not appear to constitute major sources of mutagenesis in breast cancers. E) Whole-

genome doubling is associated with increased rates of somatic copy number alterations, and arm-length copy number losses preferentially occur after whole-genome 

doubling. F) Chromothripsis, a localized catastrophic event of shattering and restitching of chromosomal segments, is found in a small subset of breast cancers. G) 
Chromoplexy, the rearrangement of large chromosomal parts as complex chains, is often associated with large DNA deletions at their junction, also referred to as 

“deletion bridges”; this process has not been documented in breast cancer as yet.
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be considered a potential drug target) have yet to be fully 
defined (Figure 5A). Intuitively, the driver mutations would have 
to be present in a substantial proportion of tumor cells to be 
considered candidate drug targets; however, this does not mean 
that mutations found at low mutant allelic fraction are of no 
biological and/or clinical importance. In fact, while subclonal 
resistance-associated mutations may not be of immediate 
clinical interest at the outset, the clinically relevant thresholds 
for these mutations may have to be much lower than current 
thresholds for “actionable mutations”, given that enrichment of 
subclonal mutations after treatment may contribute to disease 
relapse (102,103). Furthermore, submodal mutations may still 
be driver events if their biological impact results in paracrine 
signals essential for the dominant clone (75). It is, therefore, 

not only important to employ sufficiently sensitive and specific 
techniques, but also to define which subclonal mutations and 
mutant allelic fractions should be considered clinically relevant 
at diagnosis.

While MPS has provided an unprecedented view of the sub-
clonal structure of tumors, its translation into benefit for cancer 
patients has yet to take place. In theory, the subclonal structure 
and heterogeneity within the primary tumor may be associated 
with response and relapse rates (78,79) (Figure  5B). Mutation 
rate, one of the factors that influences the extent of intratumor 
genetic heterogeneity, has been shown to be higher in aromatase 
inhibitor–resistant than in aromatase inhibitor–sensitive breast 
cancers (18). The quantification of intratumor genetic heteroge-
neity may provide clinically useful information; several indices 

Figure 5.  Tackling inter- and intratumor genetic heterogeneity. A) Actionable genetic alterations present even at the subclonal level in a given cancer are of particular 

clinical interest. A consensus about the thresholds at which subclonal genetic alterations should be considered actionable has yet to be reached. B) It has been hypoth-

esized that the subclonal structure and heterogeneity within tumors may be associated with response and relapse rates and thus may be associated with outcome. C) 
Genetic analysis of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) may overcome sampling biases and may serve as surrogate sources for the assessment 

of spatial and temporal intratumor genetic heterogeneity as well as minimal residual disease. The accurate detection of genetic alterations in CTCs and cfDNA, in 

particular in patients with early-stage breast cancer, remains challenging. D) Algorithms used for the identification of driver and passenger mutations often rely on the 

prevalence of a given genetic alteration across breast cancers; however, low-frequency genetic alterations may be bona fide drivers of the disease and their identifica-

tion needs to be performed on an individual basis. E) Convergent phenotypes have been observed in breast cancer, where a given signaling pathway is dysregulated 

by genetic alterations targeting different components of the pathway, and may be exploited therapeutically. Using this approach, many tumors previously thought to 

be unsuitable for targeted therapies may harbor mutations that are in fact clinically actionable. F) Some special histologic types of breast cancer are underpinned by 

highly recurrent genetic alterations such as adenoid cystic carcinomas and secretory carcinomas, which harbor the oncogenic MYB-NFIB and ETV6-NTRK3 fusion genes, 

respectively. Scale bars = 500µm.

c
o
m
m
en

t
a
ry

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/107/5/djv015/890303 by guest on 10 April 2024



10 of 13  |  JNCI J Natl Cancer Inst, 2015, Vol. 107, No. 5

have been employed, including the Shannon index (83,104) and 
the measure mutant-allele tumor heterogeneity (MATH) (105). 
There is no consensus, however, on which approach would be 
ideal for breast cancer prognostication and prediction of therapy 
response.

More recently, circulating blood biomarkers such as circulat-
ing tumor cells (CTCs) and cell-free plasma DNA (cfDNA) have 
gained attention as potential sources of tumor material for 
genetic analyses (ie, liquid biopsies) (106–109). Although CTCs 
have been shown to be prognostic for patients with breast can-
cer (108,110), their use as a source of biological material for MPS 
analyses of tumors has proven challenging but possible (111). 
For reviews on the use of CTCs for the molecular characteriza-
tion of cancers, the readers are referred to Alix-Panabieres and 
Pantel (106) and Bidard et  al. (108). cfDNA, however, has been 
more enthusiastically embraced as a surrogate of tumor genetic 
material, given that it can be obtained with simple DNA extrac-
tion from plasma. Circulating tumor DNA in plasma (ctDNA) is 
present at varying proportions in cfDNA, likely originates from 
all tumor masses (ie, primary tumors and metastases), and has 
been shown to be associated with disease burden (108,112,113). 
In addition, there is evidence that ctDNA may overcome sam-
pling bias and may serve as a less invasive surrogate biomarker 
for spatial and temporal intratumor genetic heterogeneity 
and for the monitoring of minimal residual disease (Figure 5C) 
(81,112–114). Most of the studies on the genetic characteriza-
tion of ctDNA have been performed in patients with metastatic 
breast cancer; its usefulness in early-stage disease has yet to 
be fully established; however, highly sensitive detection meth-
ods have demonstrated that approximately one in two patients 
with early-stage breast cancer have detectable levels of ctDNA 
(113). Although cfDNA detection of specific mutations previ-
ously identified through genetic analysis of the primary tumor 
or metastatic lesions can be robustly performed, de novo muta-
tion detection on the basis of whole-exome or targeted capture 
MPS has proven challenging, owing to the limited proportion of 
ctDNA in cfDNA in the majority of cases (81,114).

One question that is germane to the translation of MPS find-
ings into advancements in biology and therapy decision-mak-
ing is the differentiation of driver from passenger mutations 
(Figure  5D). The current tools used to identify candidate driver 
genes, such as MuSiC and MutSig, rely heavily on mutational 
frequency, while variably taking into account background muta-
tion rate, transcriptional regulation, DNA replication timing, and 
gene size (55,56). As a complementary approach, computational 
algorithms, such as cancer-specific high-throughput annotation 
of somatic mutations (CHASM), functional analysis through hid-
den Markov models (FATHMM), combined annotation dependent 
depletion (CADD), and Mutation Assessor, have been proposed to 
distinguish potentially pathogenic from nonpathogenic muta-
tions on an individual mutation basis (115–118). These algorithms 
are based on various evolutionary, structural, and sequence anno-
tations and in some cases cancer-specific frequency information, 
but their performance varies. When benchmarked against a set of 
mutations found in the COSMIC database, the various algorithms 
showed accuracy ranging from 61% to 89% (119). At present, there 
is no infallible algorithm to differentiate pathogenic from non-
pathogenic mutations, and combinations of algorithms have been 
shown to result in modest increases in the overall prediction per-
formance (119,120). Careful benchmarking of these algorithms to 
ensure their optimal use is warranted.

In terms of precision medicine, we may be able to exploit the 
fact that cancers exhibit convergent phenotypes, as mutations 

in different parts of the same activated pathway lead to the net 
effect of dysregulating the pathway (Figure  5E). In fact, it was 
found that 12% to 19% of luminal breast cancers likely have 
mutually exclusive mutations of MAP2K4 and MAP3K1 in the 
MAPK signaling pathway, and 4%-8% of breast cancers have 
mutually exclusive mutations in RUNX1 and its binding partner 
CBFB (15,16). Similarly, 33% of cases showed mutations in either 
AKT1 or PIK3CA, both in the PI3K pathway (16). The identifica-
tion of convergent phenotypes suggests that many tumors pre-
viously thought unsuitable for targeted therapies may harbor 
mutations that are in fact clinically actionable. In a different 
study, by whole-genome and whole-transcriptome sequenc-
ing, Craig et al. found that 10 of 14 metastatic, chemotherapy-
resistant TNBCs had at least one alteration in the RAS/RAF/MEK/
ERK or PI3K/AKT/mTOR pathways that may be actionable (121). 
These results suggest that even genes that are only mutated in 
a small proportion of breast cancer (1% to 3%) may affect com-
ponents of a potentially druggable pathway; however, whether 
these genetic alterations would constitute actual targetable 
drivers of TNBCs remains to be investigated.

As discussed above, the highly recurrent driver genetic altera-
tions found in breast cancers may have already been identified 
(53); however, it is plausible that bona fide driver genes may be 
found in the large list of genes mutated in less than 2% of breast 
cancers. Importantly, most of the studies have primarily analyzed 
IC-NSTs (ie, the common type of breast cancer) or a combina-
tion of IC-NSTs and a limited number of cases of special histo-
logic types. At the molecular level, each special subtype appears 
to be more homogeneous than IC-NSTs as a whole (2,122) and 
the study of these rare but phenotypically homogeneous forms 
of breast cancer has led to the identification of pathognomonic 
genetic aberrations that are distinctively characteristic of and 
underpin these special types (Figure 5F). Adenoid cystic carcino-
mas, for example, account for less than 0.1% of all invasive breast 
cancers, have been shown to harbor the t(6;9)(q22-23;p23-24) 
translocation involving the genes MYB and NFIB (123,124) and 
secretory carcinomas, which account for 0.15% of all invasive 
breast carcinomas, harbor the recurrent t(12;15)(p13;q25) trans-
location resulting in the ETV6-NTRK3 fusion gene in more than 
90% of cases (125). These two rare types of breast cancer driven 
by recurrent fusion genes share additional characteristics, par-
ticularly as they display a triple-negative phenotype but have a 
remarkably indolent clinical course. Based on these observations, 
further studies investigating the constellation of somatic genetic 
alterations found in special histologic types of breast cancer may 
result in the identification of novel drivers of the disease.

Conclusions

Genomic analyses of breast cancer have reshaped our under-
standing of the disease and resulted in novel classification sys-
tems, which herald a new era for therapeutic options for breast 
cancer patients. The initial class discovery analyses in combina-
tion with TCGA and other large MPS studies have further brought 
the remarkable diversity of breast cancer to the forefront of can-
cer research. Inter- and intratumor genetic heterogeneity pose 
formidable challenges for the implementation of precision medi-
cine for patients with breast cancer; however, we would contend 
that it is only by harnessing the complexities posed by this het-
erogeneity and its underlying biological causes that critical deci-
sions about the targeted agents and combinatorial therapies will 
be rendered on the basis of disease biology rather than empiri-
cism and anatomy. Germane to these endeavors is the realization 
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that not all information essential for the optimal matching of 
cancer patients with specific therapeutic agents may stem from 
the analysis of the genome. Additional integrative approaches 
employing multiple types of data, including more comprehen-
sive analysis of the transcriptome (eg, noncoding RNAs and splice 
variants), epigenetic regulators of the genome (ie, capitalizing on 
the results of the ENCODE project [126]) and modern quantita-
tive proteomics methods, coupled with a conceptual framework 
and bioinformatics and statistical methods that incorporate the 
intratumor genetic and phenotypic heterogeneity found in can-
cers, may result in fundamental discoveries and potentially their 
translation into benefit for cancer patients.
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