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Abstract

Rapidly improving understanding of molecular oncology, emerging novel therapeutics, and increasingly available and 
affordable next-generation sequencing have created an opportunity for delivering genomically informed personalized cancer 
therapy. However, to implement genomically informed therapy requires that a clinician interpret the patient’s molecular 
profile, including molecular characterization of the tumor and the patient’s germline DNA. In this Commentary, we review 
existing data and tools for precision oncology and present a framework for reviewing the available biomedical literature on 
therapeutic implications of genomic alterations. Genomic alterations, including mutations, insertions/deletions, fusions, 
and copy number changes, need to be curated in terms of the likelihood that they alter the function of a “cancer gene” at the 
level of a specific variant in order to discriminate so-called “drivers” from “passengers.” Alterations that are targetable either 
directly or indirectly with approved or investigational therapies are potentially “actionable.” At this time, evidence linking 
predictive biomarkers to therapies is strong for only a few genomic markers in the context of specific cancer types. For these 
genomic alterations in other diseases and for other genomic alterations, the clinical data are either absent or insufficient to 
support routine clinical implementation of biomarker-based therapy. However, there is great interest in optimally matching 
patients to early-phase clinical trials. Thus, we need accessible, comprehensive, and frequently updated knowledge bases 
that describe genomic changes and their clinical implications, as well as continued education of clinicians and patients.

Over the past decade, technologies for genomic profiling have 
rapidly evolved, making it possible to perform point-of-care next 
generation sequencing (NGS) in clinical laboratories compliant 
with Clinical Laboratory Improvement Amendments (CLIA) reg-
ulations. For the practicing oncologist, the emerging problem is 

not identifying genomic alterations, but rather how to best uti-
lize the emerging information to select the optimum approved 
or investigational therapy. In spite of competing clinical pro-
ductivity pressures, there is now an expectation that practic-
ing oncologists will keep up-to-date on molecular therapeutics 
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and ongoing clinical trials. However, a recent questionnaire 
study demonstrated that even oncologists at a leading cancer 
center express low confidence in their knowledge of genomics 
(1). This highlights the urgent need for a framework for genomi-
cally informed therapy, readily accessible genomic information 
focused on clinical relevance of specific alterations, as well as 
active decision support.

For genomically informed personalized therapy to become 
routine, several informational challenges must be addressed 
(Figure 1). First, the confidence in the next-generation sequenc-
ing (NGS) and genomic alteration calling must be assessed 
and the genomic profile of the patient’s tumor must be deter-
mined, including mutations, copy number changes, and fusions. 
Second, clinical implications of the genomic profile must be 
determined. Third, relevant Food and Drug Administration 
(FDA)–approved drugs and clinical trials with relevant investiga-
tional agents must be identified. Fourth, the scientific evidence 
for each of these identified therapeutic agents in the context of 
the patient’s specific genomic alterations must be weighed. This 
information must be incorporated into clinical decision-making, 
also taking into consideration the patient’s clinical-pathologic 
characteristics, prior treatment, response to previous therapies, 
other treatment options, and personal preferences, including 
interest in clinical trial participation. In this Commentary, we 
review the major considerations for genomically informed can-
cer therapy and present a framework for clinical decision-mak-
ing and investigational agent selection.

Determining Whether an Alteration 
Is “Actionable” and Its Therapeutic 
Implications

At this time, there is strong clinical evidence for only a few 
genomic predictive biomarkers in selected diseases, such as 

HER2 amplification in breast and gastric cancers, EGFR muta-
tions, and ALK fusions in non–small cell lung cancer (NSCLC), 
BRAF V600 mutations in melanoma, and KRAS mutations in 
colon cancer. Oncologic drugs that have FDA pharmacogenomic 
labels are listed in Supplementary Table  1 (available online); 
these include markers predictive of drug response, as well ger-
mline variants that play a role in drug metabolism. Treatment 
selection is relatively straightforward when the tumor has an 
actionable alteration and a therapy targeting that alteration is 
FDA-approved for that tumor type (eg, p.V600E BRAF mutation in 
metastatic melanoma). In such cases, the therapy is considered 
to be “standard of care.” Even in that scenario, however, optimal 
therapy may differ based on other available therapy options, 
as seen with the evolution of melanoma treatment algorithms 
with the emergence of effective immunotherapeutic agents.

For these genomic alterations in other diseases and for 
other genomic alterations, the clinical data are either absent or 
insufficient to support routine clinical implementation of bio-
marker-driven therapy. In this scenario, there is great interest 
in optimally matching patients to clinical trials based on their 
genomic profile (2,3). These trials can be “genotype-selected” (ie, 
patients are required to a have a specific genomic alteration in 
their tumor to be eligible for a trial) or “genotype-relevant” (ie, 
trials that do not restrict enrollment based on a specific genomic 
alteration but that test agents that target a specific gene product 
or downstream signaling relevant to the molecular alteration in 
a patient’s tumor).
A genomic alteration can be considered “actionable” if it:

1)		  predicts therapy response (sensitivity or resistance),
2)		  affects the function of a cancer-related gene and can be tar-

geted directly or indirectly with approved or investigational 
therapies,

3)		  is a specific eligibility criterion for enrollment onto geno-
type-selected trials,

Confirm sequencing/variant calling quality;
iden	fy muta	ons, copy number 

changes, fusions 

Relevant targe	ng drugs (direct and indirect)

Determine func	onal consequences of altera	ons:  clinical data (prognosis and response)
preclinical data/func	onal genomics
computa	onal func	onal predic	ons
predic	on of driver vs passenger  

Assess evidence for using each drug 
in the context of altered gene/disease/molecular subtype

Retrieve clinical trials 
using genotype-
relevant drugs

Prioritize mutations/targets
Identify optimal treatment  

Func	onal altera	on in driver gene?

Level I evidence                                Level II or III evidence

Select op	mal approved therapy:
genomically matched

or other approved therapy

Figure 1.  Information challenges associated with personalized cancer therapy.
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4)		  has demonstrated the ability to establish diagnosis or influ-
ence prognosis,

5)		  is a germline alteration that predicts drug metabolism and/
or adverse effects,

6)		  is a germline alteration that predicts future risk of cancer 
or other diseases (usually considered more “actionable” if 
prevention or screening with early treatment is feasible).

The first three categories are the focus of genomically informed 
therapy. In this context, an “actionable” alteration can be directly 
targeted with a drug or alternately can be indirectly targeted by 
targeting an activated protein downstream or another oncogenic 
process dysregulated by the alteration. In Supplementary Table 2 
(available online), we list over 120 “potentially actionable” genes 
for genomically informed therapy. Genes were classified as poten-
tially actionable if: 1) there is at least preclinical evidence or strong 
scientific rationale suggesting an alteration in a gene may impact 
protein function, malignant behavior (or patient prognosis, and/
or therapeutic sensitivity/resistance), and this gene product can 
be targeted with an approved or investigational agent; or 2)  the 
gene is being used as an enrollment criterion for ongoing geno-
type-selected trials. Notably, our actionable gene list was based on 

genes altered in cancer based on biomedical literature, with lit-
erature support for their therapeutic implications. Approximately 
two-thirds of the genes in our list overlap with the Tumor 
Alterations Relevant for Genomics-Driven Therapy (TARGET) gene 
list recently published by Van Allen et al. (4). The differences in 
the lists are mainly attributable to: 1) our focus on therapeutically 
actionable alterations, and 2)  our inclusion of additional genes 
used for patient selection in clinical trials, as well as some altera-
tions with preclinical data linking gene alterations to therapeutic 
sensitivity. These lists are dynamic and will continue to evolve 
based on novel observations as well as the development of new 
therapeutics. In fact, the TARGET list was made publically avail-
able online to encourage community contributions.

For genetic alterations where a therapy targeting the altera-
tion has been FDA-approved for other tumor types, there is 
emerging interest in treating patients “off-label, off-protocol.” 
Genes that are targeted by FDA-approved drugs are listed in 
Table 1 and Supplementary Table 3 (available online). Several of 
these drugs are tyrosine kinase inhibitors with multiple targets; 
it is often not known whether amplification or mutational acti-
vation of a particular gene confers sensitivity to these agents. 
Therefore, although it may be appealing to use a drug off-label, it 

Table 1.  Molecular targets of FDA-approved drugs*†

Targets Name

ABL1‡ (BCR-ABL1) Bosutinib‡, Dasatinib‡, Imatinib‡, Nilotinib‡, Sorafenib, Vandetinib
ABL2 Dasatinib, Nilotinib
ALK‡ Crizotinib*, Ceritinib*
BRAF‡ Dabrafenib*, Vemurafenib*, Regorafenib, Sorafenib
CSF1R Sunitinib
DNMT Azacitidine, Decitabine
EGFR‡ Afatinib†, Erlotinib†, Lapatinib, Cetuximab, Gefitinib, Panitumumab

Vandetanib
EPHA2 Dasatinib
ERBB2‡ Lapatinib‡, Trastuzumab‡, Ado Trastuzumab, Emtansine‡, Pertuzumab‡, Afatinib
FGFR1 Pazopanib, Regorafenib, Sorafenib, Sunitinib
FGFR2 Pazopanib, Regorafenib, Sorafenib (mutant FGFR2)§, Sunitinib (mutant FGFR2)§
FGFR3 Pazopanib, Sorafenib, Sunitinib
FLT3 Cabozantinib, Pazopanib, Regorafenib, Sorafenib, Sunitinib, Vandetinib
FYN Dasatinib
JAK1/2/3, TYK2 Ruxolitinib
KIT Axitinib, Cabozantinib, Dasatinib, Imatinib, Nilotinib, Pozapanib, Regorafenib

Sorafenib, Sunitinib
LCK Dasatinib
MEK Trametinib
MET Cabozantinib, Crizotinib
MST1R Cabozantinib
MTOR Sirolimus, Everolimus, Temsirolimus
PDGFRA Axitinib, Dasatinib, Imatinib, Nilotinib, Pozapanib, Sorafenib, Sunitinib
PDGFRB Axitinib, Cabozantinib, Dasatinib, Imatinib, Nilotinib, Pozapanib, Ponatinib

Regorafenib, Sunitinib
RAF1 Regorafenib, Sorafenib
RET Cabozantinib, Pazopanib, Regorafenib, Sorafenib, Sunitinib, Vandetinib
SRC Bosutinib, Dasatinib
TEK Pazopanib
TIE2 Cabozantinib
VEGFR1/2 Axitinib, Vandetanib, Cabozantinib, Pazopanib, Regorafenib, Sorafenib

Sunitinib, Bevacizumab (VEGFA)
VEGFR3 Axitinib, Vandetanib, Cabozantinib, Pazopanib, Sorafenib, Sunitinib
YES1 Dasatinib

* Many of these drugs are approved for a biomarker-driven indication that is different than its pharmacological target or for a disease without a biomarker-driven 

indication. FDA = US Food and Drug Administration.

† Please see Supplementary Table 2 (available online) for details.

‡ Target is linked to a biomarker-driven drug indication.

§ Sunitinib and Sorafenib are less potent against wild-type FGFR2, but have increased potency against mutant FGFR2.
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is much preferable to treat such patients on a clinical trial where 
the response information can be formally captured and to ulti-
mately pave the way for registration for additional indications.

Many trials now use genotype rather than histology (tumor 
type) as a selection strategy for study enrollment, and this is 
a potential path to FDA approval. However, drug efficacy may 
differ between tumor types with the same genomic alteration. 
For example, although vemurafenib is effective against BRAF 
p.V600E-mutant melanoma, single-agent vemurafenib has lim-
ited efficacy against BRAF p.V600E-mutant colorectal cancer (5). 
Gene-drug sensitivity may be context dependent, influenced by 
underlying histology and/or other genomic alterations. This is 
best captured when treatments are given on a trial, with formal 
assessment of coalterations and other variables.

Genotype-selected trials can be designed in several ways. 
Single-disease trials can select for or stratify for a specific altera-
tion. Supplementary Table 4 (available online) lists the therapeu-
tic implications for some of the genomic alterations relevant for 
novel therapeutics. Notably, the frequency of these alterations dif-
fers widely by tumor type (Table 2). In some tumor types, the alter-
ation may be sufficiently rare to make it impossible to conduct a 
disease-specific trial, thus necessitating approaches such as “bas-
ket trials.” Basket trials treat a variety of tumor types selected for 
one or more genomic alterations proposed to confer sensitivity to 
a specific agent. These trials may analyze all patients with a spe-
cific alteration as one cohort (eg in NCI-MATCH [National Cancer 

Institute- Molecular Analysis for Therapy Choice Program]) or ana-
lyze each disease type separately. To increase recruitment to geno-
type-selected clinical trials, efforts are ongoing to develop systems 
that automatically curate genotype-specific trials using natural 
language processing and machine learning (6,7). This information 
can be used to alert a clinician seeing a specific patient regarding 
trials for which the patient may be eligible.

Finally, in “n-of-one trials,” each patient is prescribed an indi-
vidualized treatment regimen with the endpoint being objective 
response or increased time-to-failure compared with the last regi-
men. Studies to demonstrate that these approaches benefit patients 
are sorely needed. These could include innovative trial designs and 
at a minimum a registry to aggregate data across centers to deter-
mine whether the process or specific pairs of biomarkers and drugs 
are effective. The American Society of Clinical Oncology is embark-
ing on Targeted Agent and Profiling Utilization Registry (TAPUR), a 
large initiative that likely will address many of these issues.

Determining the Therapeutic Implications 
of a Specific Genomic Alteration

Determining Somatic vs Germline Status of 
Mutations

If matched normal germline DNA and tumor DNA are sequenced, 
mutations identified in both the tumor and normal would be 

Table 2.  Frequency (%) of selected somatic mutations and copy number changes in TCGA (April 2014)*

Gene AML Bladder Breast ccRCC Colorectal
Head

& neck Lung (Adeno) Lung (Squ) Ovarian Uterine

Selected somatic mutations

AKT 0 0 2.4 0.5 0.9 0.7 0.9 0.6 0 1.6
BRAF 0 0.8 0.6 0.2 9.4 1.4 9.6 4.5 0.6 2.8
BRCA1 0 3.1 3 1.2 2.7 2.9 3 5.1 12 4.8
BRCA2 0 8.5 4.3 1.9 4.5 3.6 4.8 6.2 10.8 9.7
EGFR 1 1.5 0.8 1.7 4.5 4.7 14.3 3.9 1.9 3.2
FGFR1 0 3.1 0 0.9 1.3 0.4 0.9 1.7 0 3.2
FGFR2 0 2.3 0.8 0.2 1.3 0.7 2.2 3.9 0 12.5
FGFR3 0 14.6 0.2 1.2 0.9 2.2 0.4 2.2 0.3 2
HRAS 0 4.6 0 0.2 0 3.9 0.4 2.8 0 0.4
IDH1 9.5 2.3 0.2 0.5 1.3 0.7 1.3 1.1 0 1.6
IDH2 10 0 0 0 3.1 0 0.9 0.6 0 1.6
KIT 4 2.3 1 0.7 2.7 1.1 2.2 3.9 1.9 6.9
KRAS 4 0 0.8 0.2 42 0.4 32.6 1.1 0.6 21.4
NF1 1 9.2 2.8 1.7 3.6 2.2 11.3 11.2 3.8 8.1
NF2 0 1.5 0.4 0.9 1.3 1.4 0.4 1.1 0.3 2.4
NRAS 7.5 2 0 0 8.9 0.4 0.4 0 0.6 3.6
PIK3CA 0 20 35.1 2.6 20.1 20.8 6.5 15.7 0.6 53.2
PIK3R1 0 1.5 2.6 0.5 4 1.4 0.9 1.1 0.3 33.1
PTCH1 0.5 5.4 1.2 1.9 4 3.2 4.8 2.8 1.9 7.7
PTEN 0 3.1 3.6 4 3.6 1.8 1.3 7.9 0.6 64.9
SMO 0 1.5 0.4 0.7 0.4 0 2.6 0.6 0 2
TSC1 0 8.5 0.6 0.4 2.2 0 1.7 3.4 0.6 4
TSC2 0 2.3 0.4 0.9 0.9 1.1 2.2 3.4 0.6 4.8

Copy number changes
ERBB2 0 6.3 12.9 NA 3.1 2.2 2.6 2.2 2.2 5.5
FGFR1 0.5 9.4 10.7 0.5 3.1 10 3.5 16.9 3.9 2.5
FGFR2 NA 0.8 1.7 0 NA 0.7 0.9 NA 2 0.8
FGFR3 NA 5.5 0.3 NA 0.4 0.7 1.3 0.6 3.5 2.2
MET 0.5 NA NA 0.5 0.4 0.7 3.5 1.1 1.6 0.3
PIK3CA NA 5.5 3.7 1.6 NA 21.1 2.6 38.2 18 6.1

* The cBIO data portal was used to download different disease data set (http://www.cbioportal.org/public-portal) (53). AML = acute myeloid leukemia; ccRCC = clear 

cell renal cell carcinoma; adeno = adenocarcinoma; squam = squamous cell carcinoma.

c
o
m
m
en

t
a
ry

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/107/7/djv098/913288 by guest on 20 April 2024

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv098/-/DC1
http://www.cbioportal.org/public-portal


F. Meric-Bernstam et al.  |  5 of 9

classified as germline, while those only in the tumor would be 
classified as somatic. In this scenario, somatic-only alterations 
can be reported. Sequencing of a tumor-normal pair allows 
for improved bioinformatics calling of somatic alterations. 
However, matched normal samples are not routinely obtained 
in clinical care. Therefore, some groups sequence tumor only 
(eg, Foundation One, Foundation Medicine) and have developed 
algorithms to predict the somatic status of alterations based on 
allelic frequency of somatic vs germline variants, factoring in 
tumor purity, copy number, and read depth (8).

Analysis of normal DNA creates an opportunity to also ana-
lyze germline alterations, which themselves may have clinical 
implications. Actionable germline alterations can also be discov-
ered incidentally upon somatic tumor analysis or upon planned 
germline analysis; there is ongoing discussion about how to best 
handle these findings generated in the CLIA or research envi-
ronment (9,10).

Assessing Clinical Implications of Genomic 
Alterations

Given the variability in quality control between sequencing 
facilties, the first step in genomically informed therapy is deter-
mining one’s confidence in the sequencing and the analysis per-
formed. There are substantial differences in variant calls based 
on software algorithms used for alignment and variant calling. 
For example, when 15 exomes were analyzed by five different 
alignment and variant calling algorithms, concordance between 
five SNV calls was 57.4%, and 0.5 to 5.1% of calls were unique 
to each pipeline (11). For each predicted variant, the overall 
coverage, as well as the number of supporting reads, average 
base quality, and number of strands observed for each allele 
needs to be assessed, if available. Sensitivity and specificity of 
variant calls are dependent upon the accuracy of the sequence 
alignments provided and coverage and allelic frequency of an 
alteration.

When assessing the clinical implications, the first step is to 
determine if the altered gene is involved in cancer prognosis 
or sensitivity or resistance to specific drugs. Because different 
genomic alterations in the same gene, and even different alter-
ations in the same nucleotide, can have different effects, it is 
important to determine the effects of the specific alteration (12). 
Thus, we need to determine whether a mutation in an oncogene 
is an activating mutation, ie, mutations or gene fusions known 
to increase the activity of a gene already known to be involved in 
tumor promotion (for example, through increasing protein func-
tion such as activating kinase activity). In contrast, for tumor 
suppressing genes we must identify inactivating or dominant 
negative mutations or deletions that promote tumor cell growth 
or survival.

Ideally, the prognostic or predictive value of a biomarker 
would be demonstrated prospectively in a randomized clinical 
trial, providing the strongest evidence for the utility of a bio-
marker (13). Indeed, for biomarker-driven therapy selection, it 
is important to follow evidence-based medicine. Standards for 
assessing the level of evidence supporting information about 
tumor markers have been published (14) and are used by large 
groups such as the National Comprehensive Cancer Network. 
Thus, these standards can also be used while assessing the 
prognostic value of a genomic marker. A somewhat similar grad-
ing scale has been used by the Pharmacogenomics Knowledge 
Base (PharmGKB), a resource that collects, curates, and dissemi-
nates information about the impact of human genetic variation 
on drug responses (15,16).

To facilitate implementation of genomically informed ther-
apy locally, we have adapted the basic principles in these grad-
ing schemes to create a three-tier scale for level of evidence for 
associations between genomic alterations and response (sensi-
tivity/resistance) to therapy (Table 3). Level I associations require 
very strong clinical data, with Level IA data being FDA-approved 
agents in the context of a specific alteration in the same disease.

Level II and III data can determine strength of evidence of 
actionability of specific gene alterations to assist in clinical trial 
selection. Level II requires clinical data, which may or may not be 
from the same disease (Level IIA and B, respectively). Level II data 
can be a prospective trial where the biomarker study is the sec-
ondary objective, or an adequately powered retrospective study 
or a case-control study demonstrating a statistically significant 
association of a genomic alteration (or other biomarker) with 
objective response or clinical benefit. When retrospective analy-
sis is performed to discover biomarkers associated with benefit, 
analysis should be statistically controlled for multiple testing, 
and validation studies should be performed in independent ret-
rospective cohort studies, or preferably in biomarker-stratified 
prospective studies. Notably, to determine whether a marker is 
predictive of therapy benefit can only be definitely determined 
when patients with both biomarker-positive and biomarker-
negative tumors are treated. If biomarker-selected trials are per-
formed, the prognostic power (as opposed to predictive power) 
of a given biomarker must also be taken into consideration.

In a patient where effective standard of care options have 
been exhausted, it is not unreasonable to use Level III data to 
select the best genomically matched investigational agents in 
ongoing clinical trials. Level III associations may be based on 
limited case reports or small cohort studies suggesting response 
or clinical benefit from an agent in the context of a specific 
genomic alteration, with scientific rationale. Strong scientific 
rationale based on preclinical experiments demonstrating an 
association between specific genomic alterations with thera-
peutic sensitivity, preferably demonstrated in more than one 
study, may also be considered as Level III evidence. Although 
general classifications can be made at the gene level, decisions 
for individual patients should consider the variant, as levels of 
evidence may vary between specific variants of the same gene.

Assessing Preclinical Data for Effect of 
Genomic Alterations on Cancer Biology and 
Therapy Selection

When clinical data are lacking, the next step is to look for pre-
clinical data to determine whether an alteration can affect pro-
tein function and/or tumor growth. Commonly, the mutated 
allele is expressed and its effects are compared in vitro to cells 
expressing the wild-type gene, small hairpin RNA (shRNA; 
to knock down expression) or a control vector. Transforming 
potential, cell proliferation, growth, and survival under selec-
tive pressure such as growth factor or nutrient deprivation is 
assessed. In vivo studies with transformed cells or genetically 
modified models increase the confidence that the alteration is 
indeed a driver.

Genomic alterations may affect sensitivity to specific drugs. 
One way to measure this is by determining the IC50 (inhibitory 
concentration 50; the concentration of an anticancer drug that 
inhibits the growth of cells by 50%, or GI50: growth inhibition 50 
compared with baseline) of the drug either in cells that spontane-
ously express the mutation of interest vs the wild-type gene, or 
by comparing cells that are induced to express a mutant or wild-
type gene. Genomic associations with therapeutic sensitivity 
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can also be assessed by comparing genotype and therapeutic 
sensitivity across large cancer cell line panels (17–19). Although 
concerns have been raised regarding reproducibility of drug sen-
sitivity data generated in large-scale pharmacogenomic screens 
(20), these approaches can help identify and confirm associations 
between genomic alterations and sensitivity to specific therapies.

The effect of specific alterations are easiest to determine 
when comparisons are done using isogenic models (cell lines 
that only differ in the gene of interest), with genes being 
knocked-in/knocked-out. New gene editing approaches such as 
CrispR/Cas and Talens facilitate the generation of knocked-in 
cell lines that complement the more time-consuming geneti-
cally modified animal models. One model being pursued as a 
high throughput approach to assess oncogenic variants is the 
introduction of a mutated or wild-type gene into cytokine-
dependent BaF/3 cells to assess genetic complementation and 
survival upon cytokine withdrawal (18,21).

Genetically engineered mouse models, cell line–derived xen-
ografts that vary in specific genomic alterations, and patient-
derived xenografts of defined genomic backgrounds are used to 
assess effect on in vivo tumorigenicity, metastatic potential, and 
in vivo sensitivity.

Copy number alterations may be more difficult to interpret, 
as regions containing multiple genes are often amplified or 
deleted. The biological effect of copy number gain/loss may be 
interrogated preclinically with overexpression or siRNA/shRNA 
knockdown of specific genes to understand functional impact. 
However, substantial work is needed to determine the clinical 
relevance of copy number changes and to identify appropriate 
thresholds for delineating clinically relevant amplifications.

Predicting Functional Impact of Specific 
Variants

In the absence of preclinical data, computational tools for pre-
dicting the functional impact of a specific variant may give 
some insights. Actionable mutations usually are nonsynony-
mous mutations (ie, change the encoded protein). Mutations 
that change nucleotides but not the encoded protein are syn-
onymous mutations and are unlikely to be functional. However, 
there is emerging data that these “silent” mutations may also 
contribute to cancer initiation or progression in selected sce-
narios (22). Further, somatic mutations in regulatory regions of 
the genome, such as the promoter region of telomerase, are also 
emerging as a tumorigenic mechanism (23,24).

Another important clue regarding the functional impact of 
a variant is the frequency at which it occurs in the same can-
cer type or other cancer types. This frequency can be found in 
databases such as Catalogue of Somatic Mutations in Cancer 
(COSMIC) (25), The Cancer Genome Atlas (TCGA) data portal 
(https://tcga-data.nci.nih.gov/tcga/), or the cBIOportal (http://
www.cbioportal.org/public-portal/). While recurrent mutations 
at the same site in a cancer gene tend to indicate that the target 
is an oncogene, recurrent mutations can also indicate a dom-
inant-negative effect for a tumor suppressor gene. Regardless, 
recurrent mutations are strong indications that a mutation is 
a driver event that warrants further evaluation. Thus, in the 
absence of functional data, frequency alone may be used to 
assess potential functional consequences of an alteration.

The functional impact of mutations can also be estimated 
using computational algorithms based on evolutionary conser-
vation of the mutated site across species, protein structure, and 
functional protein domains. Several computational tools have 
been developed to integrate these features into scores that pre-
dict the functional impact of missense mutations. Relevant tools 
include Variant Effect Predictor (VEP) (26), Annotate Variation 
(Annovar) (27), Scale-Invariant Feature Transform (SIFT) 
(28), Polymorphism Phenotyping (Polyphen) (29), Consensus 
Deleteriousness (Condel) (30), Mutation Assessor (31), and can-
cer type–specific annotators Cancer-specific High-throughput 
Annotation of Somatic Mutations (CHASM) (32) and Cancer-
specific Driver Missense Mutation Annotation (CanDrA) (33). The 
relative utility of these tools are reviewed in Bailey et  al. (34). 
However, the predictive utility of these computational tools has 
not been established.

Reporting Actionability of Genomic 
Alterations

A recent survey by the National Institutes of Health Clinical 
Sequencing Exploratory Research Program demonstrated 
great variability in annotation tools as well as variant report-
ing across centers (35). Although there is some debate about 
the merit of returning somatic variants of unknown func-
tional significance, given how rapidly our genomic knowledge 
is evolving, reporting all nonsynonymous somatic alterations 
is preferable. Presenting the alterations in tiers or categories, 
highlighting the alterations in actionable genes, may make 
genomic reports easier to interpret. Wagle et al. (36) proposed 
three categories: variants that predict sensitivity/resistance to 

Table 3.  Precision oncology decision support level of evidence classification: level of evidence for drug effectiveness in a specific tumor type 
harboring a specific biomarker*

Level 1
1A Drug is FDA-approved for the same tumor type harboring a specific biomarker.
1B An adequately powered, prospective study with biomarker selection/stratification, or a meta-analysis/overview demonstrates 

a biomarker, predicts tumor response to a drug or that the drug is clinically effective in a biomarker-selected cohort in the 
same tumor type.

Level 2
2A Large-scale study demonstrates a biomarker is associated with tumor response to the drug in the same tumor type. This 

could be a prospective trial where biomarker study is the secondary objective or an adequately powered retrospective 
cohort study or a case-control study.

2B Clinical data that the biomarker predicts tumor response to drug in a different tumor type.
Level 3
3A Single or few unusual responder(s), or case studies, show a biomarker is associated with response to drug, supported by 

scientific rationale.
3B Preclinical data (in vitro or in vivo models or functional genomics) demonstrates that a biomarker predicts response of cells 

to drug treatment.

* Available from http://www.personalizedcancertherapy.org (54). FDA = US Food and Drug Administration.
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an FDA-approved agent in the same disease (Tier 1) or experi-
mental therapies (Tier 2), with prognostic/diagnostic variants 
being the third category. MacConaill et  al. proposed another 
three-tier presentation (37). Tier 1 alterations have well-estab-
lished published evidence of clinical utility in the same tumor 
type in the context of predicting response to an FDA-approved 
drug, assessing prognosis, establishing diagnosis, or conferring 
inherited risk of cancer. Tier 2 alterations may have utility to 
select an investigational therapy, to provide limited evidence 
for prognosis, to be supportive of specific diagnosis, or to sug-
gest an association with response in a different type of can-
cer, or are similar to a variant associated with response. Tier 
3 alterations have uncertain clinical utility but may have a 
role because of association with response in preclinical data, 
alteration in biochemical pathway, or alteration in a highly 
conserved region of the protein.

Our Precision Oncology Decision Support (PODS) level of 
evidence (LOE) Classification (Table  3) is not a substitute for 
these classifications but rather provides a framework to criti-
cally assess the supporting evidence that a specific variant is 
actionable. Our level of evidence scheme differs from that 
recently proposed by Andre et al. (38), mainly as Level I evidence 
in our classification corresponds to a high enough level of evi-
dence to warrant a clinical practice change. Alterations with 
Level I evidence based on PODS LOE would correspond to Tier 
I alterations in both the McCanaill (37) and Wagle (36) classifica-
tions. Alterations with Level II or III evidence would be Tier 2 in 
Wagle (36) classification, and 2 or 3 in McCanaill (37) classifica-
tion. Reviewing what is known about each gene and its specific 
variants will allow for not only classification of LOE to assist in 
clinical trial selection, but can also assist in providing patients 
better information for informed consent, and can optimize tar-
get selection when multiple genomic alterations are concurrent.

Classifying Actionability of Specific 
Genomic Alterations

After the genomic alterations are identified, the functional 
significance of the alterations could be classified as: 1) activat-
ing, 2) inactivating, 3) likely benign, 4) unknown. Variants with 
Level I evidence for actionability in the same tumor type are 
actionable in standard of care. Variants/genes without Level 
I  evidence for actionability can be considered actionable or 
potentially actionable in the context of investigational ther-
apy, or alternately may not be actionable, or with “unknown” 
actionability. Actionability of a variant may be literature based 
or may be based on more limited preclinical data demonstrat-
ing variant function (such as with functional genomics). For 
selected alterations, the actionability may be inferred based on 
expected effect of a mutation on function of a mutation; for 
example, a mutation leading to early truncation of PTEN gene 
would be inferred to lead to loss function, even if the muta-
tion has not been previously described. A mutation in a critical 
domain (eg, mutation in the kinase domain of an oncogene) 
in the absence of other literature supportive of impact of pro-
tein function may be considered a “potentially actionable vari-
ant.” Examples for each category of variant classification are 
listed in Supplementary Table 5 (available online). Ideally only 
patients with mutations with known or suspected functional 
impact should be enrolled on genomically selected proof-
of-principle targeted therapy trials, as enrolling variants of 
unknown significance that are nonfunctional is likely to dilute 
the therapeutic effect observed.

Identifying Genomically Relevant 
Clinical Trials

Because of the rapid growth in biomedical literature, tracking 
associations between genomic alterations and genotype-rel-
evant drugs and clinical trials is difficult for treating oncolo-
gists and researchers alike. To address this need, health care 
institutions have embarked on genomic medicine units/clin-
ics and many centers have set up “Molecular Tumor Boards.” 
Commercial companies offer software tools, personalized 
testing services, and NGS accompanied by clinical reports 
that leverage the literature to describe published functional 
consequence of variants and link gene variations to drug 
response (34). Further, some institutions have created online 
resources for genomically informed treatment decisions, such 
as PersonalizedCancerTherapy.org (led by the UT MD Anderson 
Cancer Center), MyCancerGenome.org (led by Vanderbilt) 
(39,40), and the Drug Gene Interaction Database, dgidb.genome.
wustl.edu (led by Washington University) (41). These resources 
have several differences that make them complementary. 
PersonalizedCancerTherapy.org and MyCancerGenome.org both 
have content on therapeutic implications that have undergone 
expert review, while Drug Gene Interaction Database auto-
matically searches across several databases to find drug-gene 
interactions. PersonalizedCancerTherapy.org is organized in a 
gene-focused fashion, while MyCancerGenome.org is organized 
by disease. Thus the latter may be optimal to help review key 
drivers in selected diseases, while PersonalizedCancerTherapy.
org is a knowledge base of therapeutic implications of genomic 
alterations across tumor types and provides decision support 
for histology-agnostic genomically selected trials, both for rare 
alterations in common diseases, and for common alterations in 
rare diseases.

Additional Considerations for Personalized 
Cancer Therapy

Implications of Intratumoral and Intertumoral 
Heterogeneity

There has been increasing recognition that tumor heterogene-
ity may impact genomic testing. Intratumoral heterogeneity 
refers to different alterations in different regions of the same 
tumor; this may be an especially important consideration when 
larger tumors are assessed with sequencing of only a small por-
tion of the tumor. Intertumoral heterogeneity refers to differ-
ences between tumors, including differences between primary 
tumors and metastases, between metastases at different sites, 
and between different metastatic foci in the same organ. There 
is a growing concern that analysis of archived primary tumors 
may not reflect all changes in the metastases and analysis of 
a small biopsy or just a portion of tumor may not be reflective 
of the entire genomic complexity of that tumor. Although these 
are reasonable concerns, comparison of primary tumors with 
matched metastases have shown relatively high concordance 
in their mutational profiles (42), in many diseases including 
breast, colon, and lung cancers. Further, convergent evolution 
can lead to the activation of the same pathway by different 
mutations (43–45). At this time, the impact of tumor heteroge-
neity on therapeutic liabilities and patient outcomes is unclear. 
Heterogeneity may not only represent a challenge for biomarker 
assessment, but may suggest a greater propensity for the tumor 
to progress and to develop therapeutic resistance through mul-
tiple concurrent mechanisms.
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Implications of Genomic Evolution

It is increasingly understood that the mutational landscape of 
tumors can change upon treatment with targeted therapies with 
both gain and loss of actionable alterations. When alterations 
not detected in the original biopsy are present in a subsequent 
biopsy, whether these represent new mutations or selection for 
rare subclones already present in the primary tumor remains 
unclear. Longitudinal biopsies of solid tumors have led to the 
recognition of a lot alterations that are selected for: 1) epidermal 
growth factor receptor (EGFR) mutation p.T790M, MET, or human 
epidermal growth factor receptor 2 (HER2) amplification in non–
small cell lung cancer patients treated with EGFR inhibitors (46–
48), 2) acquired EGFR ectodomain mutation (p.S492R) and KRAS 
mutations, or amplification in colon cancer patients treated 
with cetuximab (49,50), 3) BRAF amplifications, BRAF splice iso-
forms, MITF amplifications, and NRAS MAP2K1, MAP2K2, and NF1 
mutations in melanoma patients treated with Raf or MEK inhibi-
tors (33,36,45), 4)  loss of HER2 amplification in HER2+ breast 
cancer patients treated with HER2-targeted therapy (51), and 
5)  acquired estrogen receptor 1 mutations in patients treated 
with adjuvant endocrine therapy (52). These studies emphasize 
that there’s a variety of acquired genomic alterations associated 
with therapeutic resistance to targeted therapies.

Whether approaches such as targeted exome sequencing to 
high-depth or multiple single-cell sequencing runs can capture 
the heterogeneity in a tumor and the subclones that contribute 
to therapy resistance is unknown. However, it is clear that repeat 
biopsies and molecular profiling will be of greater value as the 
number of treatment options increases, especially in patients 
with acquired resistance after initial response, or in patients 
with mixed response (ie, some responding and some progressing 
lesions). “Liquid biopsies” with assessment of circulating tumor 
cells or circulating free DNA (cfDNA) are also being explored as 
alternate strategies for serial assessment of genomic evolution 
as well as for monitoring the efficacy of therapies.

Tumor Cellularity and Mutant Allelic Frequency

Tumor cellularity can influence the success of NGS, and sub-
clonal mutations may be missed in lower cellularity samples 
even with high-depth sequencing. Thus, hematoxylin and eosin 
staining to confirm adequate tumor cellularity is critical, and 
tumor enrichment with macrodissection is another helpful step. 
In general, NGS requires a tumor nuclear cellularity of at least 
20%, and higher is preferred.

While determining the actionability of a genomic alteration, 
the allelic frequency of the mutations is another consideration. 
Oncogenic drivers that are subclonal (eg, <10% allelic frequency) 
may not be as good of targets as those that are in the majority of 
cancer cells. In contrast, “resistance markers” that are subclonal 
theoretically may confer resistance. Further work is needed to 
determine whether patients with subclonal resistance muta-
tions truly do not benefit from specific targeted therapies (eg, 
whether subclonal KRAS mutations confer resistance to EGFR-
targeted therapy) or whether the patients more transiently ben-
efit, with subsequent selection of the resistant clone.

Prioritizing Multiple Targets

As multiplex testing becomes more accessible, the likelihood of 
finding at least one genomic alteration in each patient increases. 
When more than one alteration is identified, we must prioritize 

alterations as potential therapeutic targets. Concurrent aberra-
tions could represent both sensitivity and resistance markers, 
with a dominant resistance marker, such as co-occurrence of 
EGFR and KRAS mutations with KRAS mutations signaling domi-
nant resistance. In other cases, a downstream lesion may bypass 
the effect of a sensitivity marker, for example PTEN mutations 
signaling resistance to HER2-targeted therapy. At this time, we 
have little data to help prioritize multiple targets. It is impor-
tant to identify additional alterations downstream and paral-
lel survival pathways that may confer therapeutic resistance. 
For example, for a patient with both an upstream and a down-
stream activating mutation, targeting downstream or with dual 
upstream/downstream blockade may be preferable. If more 
than one mutation or copy number alteration is actionable, the 
target with stronger evidence for actionability (“driverness” or 
therapeutic sensitization) should be pursued. In addition, higher 
allelic frequency of the mutations (ie, higher proportion of a par-
ticular mutation in DNA sequenced, usually expressed as % fre-
quency), or higher copy number of the amplifications may make 
the targets more appealing. Ultimately, prospective validation of 
guidelines for target and agent selection is needed.

The Future of Personalized Cancer Therapy

The rapid evolution of genomic profiling and emergence of 
molecularly targeted therapies has made genomically informed 
therapy a reality. Although we have focused this manuscript on 
somatic genomic alterations, alterations can also occur through 
epigenetic regulation and RNA editing. The gene can also be 
regulated through changes in RNA stability, alternate splicing, 
altered protein translation or stability, and post-translational 
modifications of the protein. Thus, integrated analysis of the 
molecular profile of tumors by assessing DNA, RNA, and pro-
tein may provide information content that is not available from 
analysis of DNA alone. Further, the tumor microenvironment 
and immune system need to be incorporated into personalized 
therapy. The clinical history of an individual patient, includ-
ing responsiveness/resistance to previous therapies, may also 
inform future treatment. Reimbursement of multiplex testing, 
the relevance of NGS platforms vs companion diagnostics for 
drug development, and the possible implementation of device 
approval for NGS platforms remain important issues. In addi-
tion, there is a great need to speed up discovery by supporting 
genomically selected trials through trial prioritization, greater 
trial awareness, information sharing, and interinstitutional col-
laborations. Approaches such as adaptive learning algorithms 
should be explored to more rapidly determine the impact of dif-
ferent genomic alterations on response to different investiga-
tional and standard-of-care therapies.
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