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Abstract

Synchronous early-stage endometrioid endometrial carcinomas (EECs) and endometrioid ovarian carcinomas (EOCs)

are associated with a favorable prognosis and have been suggested to represent independent primary tumors rather

than metastatic disease. We subjected sporadic synchronous EECs/EOCs from five patients to whole-exome massively
parallel sequencing, which revealed that the EEC and EOC of each case displayed strikingly similar repertoires of somatic
mutations and gene copy number alterations. Despite the presence of mutations restricted to the EEC or EOC in each case,
we observed that the mutational processes that shaped their respective genomes were consistent. High-depth targeted
massively parallel sequencing of sporadic synchronous EECs/EOCs from 17 additional patients confirmed that these lesions
are clonally related. In an additional Lynch Syndrome case, however, the EEC and EOC were found to constitute independent
cancers lacking somatic mutations in common. Taken together, sporadic synchronous EECs/EOCs are clonally related and

likely constitute dissemination from one site to the other.

The co-occurrence of adenocarcinoma in the uterus and ovary
is found in 5% of endometrial cancer patients and 10% of ovar-
ian cancer patients, and these lesions are largely of endome-
trioid histology (1,2). Whether these synchronous endometrial
and ovarian cancers are two independent primary tumors or
metastatic disease has important implications for prognosti-
cation and patient management (1,3,4). Despite the adoption
of clinical criteria (2,5,6) meant to identify clinically low-risk
patients, the distinction between metastatic and independent

primary tumors remains diagnostically challenging. Given that
synchronous endometrial and ovarian carcinomas generally
present at younger age, earlier stage, and lower grade and have
a more favorable prognosis than endometrial or ovarian cancers
alone (1-3,7-9), these lesions are often regarded as independent
primary tumors rather than advanced-stage metastatic disease
(10-12).

Microsatellite instability, immunohistochemistry, loss of het-
erozygosity, and mutational analyses of single or small sets of
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genes have been used as ancillary markers to help discriminate
synchronous primary tumors from metastatic disease (13-17). It
should be noted, however, that endometrioid endometrial car-
cinomas (EECs) and endometrioid ovarian carcinomas (EOCs)
harbor similar molecular alterations (18-20), that intratumor
genetic heterogeneity has been documented in cancers (21-24),
and that the repertoire of genetic alterations in primary tumors
and metastases may differ (25,26), which might affect the inter-
pretation of studies based on the analyses of limited numbers
of markers/genes. Here, we employed whole-exome and high-
depth targeted capture massively parallel sequencing (MPS) to
define whether synchronously diagnosed EECs and EOCs, which
were clinically defined as either independent primary tumors or
metastases, are clonally related.

We collected a series of 23 synchronous EECs and EOCs,
which were histologically reviewed by two pathologists (XMG,
JCP), subtyped according to the World Health Organization
(WHO) criteria (2), and staged and graded according to the
International Federation of Gynecology and Obstetrics (FIGO)
guidelines (27-30). All samples were anonymized prior to analy-
sis, and approval by the local ethics committees of the respec-
tive contributing authors’ institutions was obtained. Signed,
written informed consent was obtained when appropriate. We
extracted DNA from the 23 synchronous EECs and EOCs, eight of
which were clinically diagnosed as metastatic disease and 15 as
independent primary tumors (Supplementary Table 1, available
online), and matched normal DNA from non-neoplastic myome-
trium or peripheral blood. DNA samples from the first five cases
(SYN1-SYNS5) were subjected to whole-exome sequencing (WES)
(31) to a median depth of 105x (range = 84x-132x) and orthogonal
validation using high-depth targeted amplicon resequencing
(32). DNA samples from the remaining 18 cases were subjected
to MPS targeting all exons and selected introns of 341 (n = 4) or
410 (n = 14) key cancer genes (MSK-IMPACT [33]) to a median
depth of 453x (range = 130x-1484x) (Supplementary Methods
and Supplementary Tables 1 and 2, available online).

WES analysis identified a median of 78 nonsynonymous
somatic mutations (range = 56-434) in the synchronous EECs
(Supplementary Table 3, available online), similar to the number
of mutations found in common forms of EECs by The Cancer
Genome Atlas (TCGA; median = 71, range = 4-10 860, Mann-
Whitney U test P =.2599) (34). All synchronous EECs harbored at
least one mutation in genes reported to be statistically signifi-
cantly mutated in common forms of EECs (34) (Supplementary
Figure 1 and Supplementary Tables 3 and 4, available online).
WES further revealed that the synchronous EECs and EOCs
of a given case displayed strikingly similar repertoires of
somatic mutations and gene copy number alterations (Figure 1;
Supplementary Tables 3 and 5, available online), irrespective
of the clinical classification as independent primary or meta-
static tumors. Furthermore, synchronous EECs and EOCs shared
from 12% to 46% of the somatic mutations identified; however,
additional somatic mutations restricted to the EECs or EOCs
were identified in each case (Figure 1; Supplementary Tables
1 and 3, available online). We next investigated if the muta-
tional processes that shape the genomes of synchronous EECs
and EOCs would differ. Using a previously published approach
(Supplementary Methods, available online) (35), we compared
the mutational spectra and context of the mutations present in
the EECs and EOCs and observed that the mutational processes
that have been operative in these lesions did not vary between
the tumors from each of the patients analyzed (Figure 1;
Supplementary Table 1, available online). We next employed two
conservative approaches for clonality analysis, assessing the

likelihood of two samples sharing mutations not expected to
have co-occurred by chance, based on all somatic synonymous
and nonsynonymous mutations (Supplementary Methods,
available online). Both clonality analyses revealed that the EECs
and EOCs from each patient were clonally related (Figure 2;
Supplementary Figures 2 and 3, available online). These obser-
vations suggest that sporadic synchronous EECs/EOCs are clon-
ally related and likely constitute dissemination from one site to
the other.

To define whether the differences in the mutational reper-
toires found in the EEC and EOC from each patient could stem
from spatial heterogeneity within these lesions, we obtained
three anatomically distinct regions from one EEC analyzed
(case SYN4). Truncal mutations (ie, present at high clonal fre-
quencies in all three EEC regions analyzed), including patho-
genic mutations affecting PTEN and KRAS, accounted for 9%
of all nonsynonymous somatic mutations; despite the large
proportion of branch mutations, the mutational processes did
not differ amongst the anatomically distinct areas (Figure 1;
Supplementary Table 1, available online), consistent with the
notion that EECs may display intratumor spatial heterogeneity,
akin to kidney, ovarian, lung, and breast cancers (21-24).

To define the generalizability of our findings, we sub-
jected a series of 17 sporadic synchronous EECs/EOCs and
one Lynch Syndrome case to targeted capture MPS (Figure 2A;
Supplementary Table 6, available online). Hierarchical cluster-
ing of the somatic mutations present in these lesions revealed
striking similarities between the EEC and EOC from each patient
in all sporadic cases (Supplementary Figure 4, available online).
Furthermore, formal analyses of clonal relatedness, based on
two statistical approaches, provided evidence to demonstrate
that all sporadic EECs and EOCs of a given patient were clon-
ally related (Figure 2B; Supplementary Figures 2 and 3, available
online), irrespective of the clinical classification as independent
primary or metastatic tumors. In four cases of bilateral EOCs,
samples from both EOCs were available and found to be clon-
ally related to each other and their respective EECs (Figure 2B;
Supplementary Figures 2 and 3, available online). Importantly,
we found that all sporadic synchronous EECs and EOCs from a
given patient shared nonsynonymous somatic mutations in at
least one cancer driver gene of EEC and/or EOCs, including PTEN,
PIK3CA, KRAS, ARID1A, or CTNNB1 (18-20,34) (Supplementary
Figure 1 and Supplementary Table 7, available online), in agree-
ment with the findings by Anglesio et al. (36).

In the Lynch Syndrome case (SV2), the EEC and EOC displayed
distinct somatic mutations; this case had a disproportionately
high number of somatic mutations, and the patient was found
to harbor a germline MSH6 mutation (p.R1076C) (Figure 2C). The
EEC and EOC samples from this patient harbored distinct somatic
MSH6 loss-of-function mutations in each site and lacked MSH6
expression (Figure 2C; Supplementary Table 6, available online);
furthermore, the EEC but not the EOC harbored a somatic POLE
p-S459F hotspot mutation and displayed a mutational signature
consistent with that of a hereditary ultra-hypermutated EEC (ie,
an EEC with a germline mismatch repair gene mutation and a
somatic POLE mutation) (35,37,38).

This study has important limitations. Our data provide strong
evidence to suggest that in patients with sporadic synchronous
EECs/EOCs these lesions are clonally related and likely constitute
dissemination from one site to the other. Based on the limited
sample size and approach employed, however, we can neither pro-
vide direct evidence to infer the chronology of the development
of the endometrial and ovarian tumors in patients with synchro-
nous EECs/EOCs nor define the biological basis of the metastatic
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Figure 1. Repertoires of somatic mutations, gene copy number alterations, and mutational signatures in sporadic synchronous endometrioid endometrial carcinomas
(EECs) and endometrioid ovarian carcinomas (EOCs). Somatic mutations (left), gene copy number alterations (middle), and mutational signatures (right) identified
in the five cases of synchronous EECs and EOCs subjected to whole-exome sequencing. The Venn diagrams represent the total number of somatic mutations (silent
single-nucleotide variants (SNVs), nonsynonymous SNVs, and insertions/deletions) that are unique to the EEC and EOC of a given case and that are shared between
the EEC and EOC. Driver mutations were defined as mutations classified as likely pathogenic by mutation effect prediction algorithms and/or associated with loss of
heterozygosity of the wild-type allele (Supplementary Methods, available online) and that affected known cancer genes included in Kandoth et al. (39), the Cancer Gene
Census (40), and/or Lawrence et al. (41), or genes statistically significantly mutated in nonultramutated EECs by The Cancer Genome Atlas (34). For case SYN4, three
anatomically distinct areas were subjected to whole-exome sequencing, and the phylogenetic tree depicts the evolution of these regions, where the colored branches
represent each of the subclones identified and selected somatic mutations that define a given clone are illustrated along the branches. The length of the branches is
representative of the number of mutations that distinguishes a given clone from its ancestral clone (42). In the chromosome plots, the Log, ratios are plotted on the
y-axis and the genomic positions are plotted on the x-axis. Gains and amplifications are highlighted in blue, and losses in red. Mutational signatures of all somatic
SNVs in the EECs and EOCs of a given case are displayed according to the 96 substitution classification defined by the substitution classes (C>A, C>G, C>T, T>A, T>C, and
T>G bins) and the 5’ and 3’ sequence context. All mutational signatures are normalized to the trinucleotide frequency of the human genome. The number in brackets
following “EEC” and “EOC” is the mutational signature assigned according to Alexandrov et al. (35), where signature 1A relates to aging and signature 6 to defective DNA
mismatch repair. Driv = driver mutation; EEC = endometrioid endometrial carcinoma; EOC = endometrioid ovarian carcinoma; I = >20% of mutations in case SYN4 were
small insertions/deletions; ns = nonsynonymous SNVs and insertions/deletions; SNV = single-nucleotide variant.
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Figure 2. Clonal relatedness analysis of synchronous endometrioid endometrial carcinomas (EECs) and endometrioid ovarian carcinomas (EOCs) occurring in a spo-
radic or Lynch Syndrome context. A) Nonsynonymous and synonymous somatic single-nucleotide variants and small insertions/deletions identified by targeted MPS
analysis in 18 cases of synchronous EECs/EOCs. Note that in all cases but SV2 the EEC and the EOC shared somatic mutations. B) Clonality Index (CI2) for the 23 cases of
synchronous EECs/EOCs analyzed in this study, defined as the likelihood of two lesions sharing mutations not expected to have co-occurred by chance (Supplementary
Methods, available online). Red dotted lines indicate the threshold to define clonal relatedness for the respective sequencing platform (whole-exome sequencing left,
targeted capture massively parallel sequencing right). Blue dotted line indicates the CI2 at which two samples from a given patient did not share any mutation on the
respective sequencing platform. With the exception of case SV2, a Lynch Syndrome case, all tumors from a given patient were found to be clonally related. C) In SV2,
MPS analysis demonstrated that none of the somatic mutations were shared between the synchronous EEC and EOC. The mutational signatures of the nonsynonymous
and synonymous somatic single-nucleotide variants in the EEC and EOC of SV2 are displayed according to the 96 substitution classification defined by the substitu-
tion classes (C>A, C>G, C>T, T>A, T>C, and T>G bins) and the 5’ and 3’ sequence context. All mutational signatures are normalized to the trinucleotide frequency of the
human genome. The EEC displayed a mutational signature consistent with that of a hereditary ultra-hypermutated carcinoma (ie, a tumor with a germline mismatch
repair gene mutation and a somatic POLE hotspot mutation), whereas the EOC displayed a mutational signature related to aging (35,37,38). A POLE S459F hotspot muta-
tion was identified in the EEC but not in the synchronous EOC as shown in the sequence electropherograms. Both the EEC and the synchronous EOC displayed loss of
MSHS6 expression as assessed by immunohistochemistry (scale bar = 100 pm). The patient SV2 harbored a germline MSH6 (R1076C) mutation as shown in the sequence
electropherograms. EEC = endometrioid endometrial carcinoma; EOC = endometrioid ovarian carcinoma; m = mutations; SNV = single-nucleotide variant.
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route in these patients. It is plausible that the favorable progno-
sis of most of these patients might be explained by the fact that
the EOCs represent ovarian implants of likely indolent EECs (eg,
small tumor size, low/intermediate grade, and/or tumors predom-
inantly composed of complex atypical endometrial hyperplasia)
and that these implants might occur as a result of retrograde flux
from the uterine corpus through the fallopian tubes rather than
hematogenous/lymphatic metastatic spread. Further studies to
define the chronology of the development of these synchronously
diagnosed, clonally related cancers and the biological basis for the
presence of uterine and ovarian disease, but no peritoneal spread,
are warranted. Given these uncertainties, one could contend that
despite their clonal relatedness at present patients with synchro-
nous EEC/EOC should be managed following current guidelines
based on clinico-pathologic criteria (2,3,5,6). Our results, however,
support the development of prospective clinical trials to define
the optimal treatment for patients with synchronously diagnosed
EECs/EOCs, which cannot be definitely classified into low-/high-
risk groups based on current criteria.
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