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Abstract

To investigate genetic predispositions for MYCN-amplified neuroblastoma, we performed a meta-analysis of three ge-
nome-wide association studies totaling 615 MYCN-amplified high-risk neuroblastoma cases and 1869 MYCN-nonamplified
non-high-risk neuroblastoma cases as controls using a fixed-effects model with inverse variance weighting. All statistical
tests were two-sided. We identified a novel locus at 3p21.31 indexed by the single nucleotide polymorphism (SNP)
rs80059929 (odds ratio [OR] ¼ 2.95, 95% confidence interval [CI] ¼ 2.17 to 4.02, Pmeta ¼ 6.47�10-12) associated with MYCN-
amplified neuroblastoma, which was replicated in 127 MYCN-amplified cases and 254 non-high-risk controls (OR¼2.30,
95% CI¼1.12 to 4.69, Preplication ¼ .02). To confirm this signal is exclusive to MYCN-amplified tumors, we performed a sec-
ond meta-analysis comparing 728 MYCN-nonamplified high-risk patients to identical controls. rs80059929 was not statis-
tically significant in MYCN-nonamplified high-risk patients (OR¼1.24, 95% CI¼0.90 to 1.71, Pmeta ¼ .19). SNP rs80059929 is
within intron 16 in the KIF15 gene. Additionally, the previously reported LMO1 neuroblastoma risk locus was statistically
significant only in patients with MYCN-nonamplified high-risk tumors (OR¼0.63, 95% CI¼0.53 to 0.75, Pmeta ¼ 1.51�10-8;
Pmeta ¼ .95). Our results indicate that common genetic variation predisposes to different neuroblastoma genotypes, includ-
ing the likelihood of somatic MYCN-amplification.

Neuroblastoma is characterized by a broad spectrum of clinical
behavior (1). Children with high-risk disease are treated with
high-dose chemotherapy, surgery, autologous stem cell trans-
plant, radiation, and immunotherapy (2). A core high-risk crite-
rion is MYCN oncogene amplification (2), which is present in
approximately 20% of all neuroblastoma tumors. Among high-
risk patients, half have MYCN-amplification. Multiple studies
have demonstrated that the biology of MYCN-amplified and
MYCN-nonamplified high-risk neuroblastoma is disparate (3,4).

However, the genetic events predisposing patients to MYCN-
amplified neuroblastoma remain unclear.

Genome-wide association studies (GWAS) comparing neuro-
blastoma patients to healthy controls have identified several sus-
ceptibility loci associated with clinical risk group (5–12). Many of
these susceptibility loci modify oncogenic drivers or have tumor
suppressor activity (13–15). Here, we performed a meta-analysis of
three GWAS to test the hypothesis that in addition to phenotypic
risk group, specific germline susceptibility loci are associated with
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Figure 1. Specific genomic loci associated with the development of MYCN-amplified high-risk neuroblastoma. A) Manhattan plot showing single nucleotide polymor-

phisms (SNPs) statistically significantly associated with MYCN-amplified neuroblastoma. B) LocusZoom (22) plot of novel loci identified at 3p21.31 shows that the most

strongly associated SNP is located in intron 16 within the KIF15 gene locus. C) Forest plot shows the P value and odds ratio with 95% confidence interval for rs80059929

from each set and meta-analysis. Error bars indicate 95% confidence intervals. All statistical tests were two-sided. D) Manhattan plot showing SNPs statistically signifi-

cantly associated with MYCN-nonamplified high-risk neuroblastoma. E) LocusZoom of previously identified loci on chromosome 11 shows the SNPs in LMO1 that were

not associated with the development of MYCN-amplified disease. F) Forest plot shows the P value and odds ratio with 95% confidence interval for rs2168101 from each

set and meta-analysis. Error bars indicate 95% confidence intervals. All statistical tests were two-sided. MAF ¼minor allele frequency; OR ¼ odds ratio.
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the development of somatic MYCN-amplification. We then per-
formed a second meta-analysis of MYCN-nonamplified high-risk
cases to identify associations differentially associated with MYCN-
amplified or MYCN-nonamplified high-risk neuroblastoma.

Patients were divided into three sets based on genotype array
platform, public availability of data, and use in published studies.
Set 1 comprised the 1662 patients from dbGaP project
phs000124.v2.p1 (8). Set 2 comprised data from 2242 patients for
whom data is not yet publically available, but who were analyzed
previously (9). Set 3 was the only set genotyped on the Illumina
OmniExpress 770 array and comprised the remaining 1245 patients
neither previously published nor publically available. Only patients
of self-reported European ancestry were included. All patients had
informed consent for the Children’s Oncology Group ANBL00B1
(NCT00904241) after institutional review board approval.

Prior to association testing, we performed genome-wide
quality control (QC), principal component analysis (PCA) to con-
firm ancestry, and imputation using single nucleotide polymor-
phisms (SNPs) common for cases and controls in each set as
previously described (16). We removed nine samples and 86 913
SNPs from Set 1, 63 samples and 60 979 SNPs from Set 2, and 45
samples and 94 851 SNPs from Set 3. Following imputation, we
performed GWAS for each individual set separately for MYCN-
amplified and MYCN-nonamplified high-risk cases compared
with non-high-risk controls in SNPTEST (17) using a frequentist
additive score test. The analysis workflow is detailed in
Supplementary Figure 1 (available online).

Two meta-analyses were performed on these GWAS results.
The first meta-analysis combined association evidence from the
three MYCN-amplified high-risk case sets (n ¼ 615) and 1869 non-
high-risk neuroblastoma controls. The second meta-analysis com-
bined association evidence from the three MYCN-nonamplified
high-risk GWAS (n ¼ 728) and the same 1869 non-high-risk con-
trols. The meta-analyses used a fixed-effects model with inverse
variance weighting implemented in METAL (18). The METAL out-
put included tests of heterogeneity, the Cochran’s test (Phet), and I2

of effect sizes within each meta-analysis for each SNP (19). SNPs
were excluded based on absence in any of the three input data
sets, not being an SNP, or I2 being greater than 75%.

The replication set comprised 127 MYCN-amplified and 140
MYCN-nonamplified high-risk cases, and 254 non-high-risk neuro-
blastoma patients as controls, all of European ancestry, genotyped
on the OmniExpress platform. Genotyped SNPs were QC-filtered
using PLINK (20) for minor allele frequency greater than 0.01, an
Hardy–Weinberg equilibrium P value of less than 1� 10-4, a miss-
ingness rate of less than 0.1, and missing SNP rate of 0.01. Ancestry
was inferred by PCA incorporating the 1000 Genomes Project popu-
lation v. 3 reference panel (21) and stratified using multidimen-
sional scaling analysis in PLINK. Prephasing and imputation were
performed as described above. Imputed SNPs with an info score of
less than 0.7 were excluded. Association testing was performed in
SNPTEST using a frequentist additive score test, with a P value of less
than .05 considered statistically significant. All statistical tests were
two-sided.

We identified a novel association that surpassed genome-
wide statistical significance between MYCN-amplified neuro-
blastoma and a locus at 3p21.31, indexed by the SNP rs80059929
(OR¼ 2.95, 95% CI¼ 2.17 to 4.02, Pmeta ¼ 6.47� 10-12) (Figure 1A)
located in intron 16 within the KIF15 gene locus with a minor al-
lele frequency of 8.6% in cases compared with 3.6% in controls.
This discovery was confirmed in an independent replication set
(rs80059929 OR¼ 2.30, 95% CI¼ 1.12 to 4.69, Preplication ¼ .02). The
locus containing this SNP spans nearly 150 kb (defined by SNPs
with Pmeta < 1�10-6 and r2 � 0.6 with rs80059929) (Figure 1B;T
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Supplementary Table 1, available online). All three discovery
studies and the replication study had the same risk allele for
rs80059929 with a P value of less than .05 (Figure 1C). SNPs
reaching genome-wide statistical significance were also found
in or near BARD1, OLA1, and GRK5 (Table 1). BARD1 was previ-
ously identified as a high-risk neuroblastoma susceptibility lo-
cus using high-risk cases from Set 1 (6). The associations in
OLA1 and GRK5 loci were not statistically significant in the repli-
cation set, although the association in OLA1 was suggestive
(Preplication ¼ .11).

A second meta-analysis evaluated the association of 3p21.31
and MYCN-nonamplified high-risk disease. Here, we found no as-
sociation in the MYCN-nonamplified high-risk cases compared
with non-high-risk controls (rs80059929 OR¼ 1.24, 95% CI¼ 0.90 to
1.71, Pmeta ¼ .19) (Figure 1D). There was statistically significant het-
erogeneity between the meta-analyses (Phet ¼ 1.4� 10-4, I2 ¼
93.1%). In contrast, we found that the previously identified high-
risk neuroblastoma susceptibility locus in LMO1 was statistically
significantly associated with MYCN-nonamplified high-risk neuro-
blastoma (rs2168101 OR¼ 0.63, 95% CI¼ 0.53 to 0.75, Pmeta ¼
1.51� 10-8), but not with MYCN-amplified disease (rs2168101
OR¼ 1.01, 95% CI¼ 0.85 to 1.19, Pmeta ¼ .95; Phet ¼ 7.0� 10-5, I2 ¼
93.7%) (Figure 1, D–F, and Table 1; Supplementary Table 2, available
online). This association was replicated in 140 MYCN-nonamplified
cases and 254 non-high-risk controls (rs2168101 OR¼ 0.61, 95%
CI¼ 0.42 to 0.88, Preplication ¼ 2.9� 10-3). SNPs reaching genome-
wide statistical significance were again found in or near BARD1.

Thus, we found that MYCN-amplified high-risk neuroblastoma
and MYCN-nonamplified high-risk neuroblastoma have both
shared and unique germline genetic architecture. We identified a
novel susceptibility locus at 3p21.31 uniquely associated with
MYCN-amplified disease. Additionally, neuroblastoma-associated
variants previously described in LMO1 were statistically significant
only in patients with MYCN-nonamplified high-risk disease.

The causal DNA variant at the 3p21.31 locus was not identi-
fied and expression quantitative loci (eQTLs) were not found,
which are limitations of our study. Thus, the mechanisms leading
to somatic MYCN-amplification remain unclear. Fine-mapping
and additional functional studies will be needed to determine
how germline DNA variants at 3p21.3 increase predisposition to
MYCN-amplified neuroblastoma tumors. Ultimately, these stud-
ies may lead to the discovery of new genomic biomarkers and
provide insight to the development of novel treatment strategies
for this aggressive pediatric disease.
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