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Background:Inherited mutations in the
BRCA1 gene may be responsible for al-
most half of inherited breast carcino-
mas. However, somatic (acquired) mu-
tations in BRCA1 have not been
reported, despite frequent loss of het-
erozygosity (LOH or loss of one copy of
the gene) at the BRCA1 locus and loss
of BRCAL protein in tumors. To ad-
dress whether BRCAL1 may be inacti-
vated by pathways other than muta-
tions in sporadic tumors, we analyzed
the role of hypermethylation of the
gene’s promoter region. Methods:
Methylation patterns in the BRCA1
promoter were assessed in breast can-
cer cell lines, xenografts, and 215 pri-
mary breast and ovarian carcinomas
by methylation-specific polymerase
chain reaction (PCR). BRCA1 RNA ex-
pression was determined in cell lines
and seven xenografts by reverse tran-
scription—PCR. P values are two-sided.
Results: The BRCAL1 promoter was
found to be unmethylated in all normal
tissues and cancer cell lines tested.
However, BRCA1 promoter hyper-
methylation was present in two breast
cancer xenografts, both of which had
loss of the BRCAL transcript. BRCAL
promoter hypermethylation was pres-
ent in 11 (13%) of 84 unselected pri-
mary breast carcinomas. BRCA1 meth-
ylation was strikingly associated with
the medullary (67% methylated; P =
.0002 versus ductal) and mucinous
(55% methylated; P = .0033 versus duc-
tal) subtypes, which are overrepre-
sented in BRCAL families. In a second
series of 66 ductal breast tumors infor-
mative for LOH, nine (20%) of 45 tu-
mors with LOH had BRCAL1 hyper-
methylation, while one (5%) of 21
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without LOH was methylated (P = .15).

In ovarian neoplasms, BRCA1 methyl-
ation was found only in tumors with

LOH, four (31%) of 13 versus none of
18 without LOH (P = .02). The BRCA1l

promoter was unmethylated in other

tumor types. Conclusion: Silencing of

the BRCAL gene by promoter hyper-
methylation occurs in primary breast

and ovarian carcinomas, especially in
the presence of LOH and in specific
histopathologic subgroups. These find-
ings support a role for this tumor sup-

pressor gene in sporadic breast and
ovarian tumorigenesis. [J Natl Cancer
Inst 2000;92:564-9]

methylation (13,14). Methylation is the
main epigenetic modification in humans
(13), and changes in patterns of methyl-
ation play an important role in tumorigen-
esis. In particular, hypermethylation of
normally unmethylated CpG islands lo-
cated in the promoter regions of many tu-
mor suppressor and DNA repair genes,
such as pl16, pl15, Rb, VHL, E-cadherin,
GSTP1, MGMT, and hMLH1, is associ-
ated with its loss of expression in cancer
cell lines and primary tumorgl3-18).In
the cases of p16 and hMLH1, germline
point mutations are responsible for ge-
netic diseases carrying an increased risk
of melanoma and of colorectal, endome-
trial, and gastric malignancies, respec-
An unexpected finding in the humantively, but _somatic mutations 'of these
genes are infrequent in sporadic tumors.

molecular genetics of cancer is the ab? - . . .
9 these nonfamilial malignancies, silenc-

. ; |
sence of somatic mutations of the breas
cancer susceptibility gene BRCALl in spo—Iﬂg of p16 and hMLH1 by promoter

radic cases of breast carcinoma. BRCA eth_ylanon 's often the most frequent al-
. eration(13,18,19).
was first mapped to chromosome 17q2

i : ) Several report20-24) suggest that
by I|_n_kage StUd!eﬂ) and_later isolated b,y aberrant methylation of BRCAL1 could oc-
positional cloning(2). Since the gene’s

cloning, germline mutations in BRCAL cur in breast carcinoma. This change hascgn

have been found in the hereditary cases ﬁ?ﬁen observed in some breast cancer cellg'
. I nd primar mors. However, a re-
breast and ovarian cancgi34). In fact, es and primary tumors. However, a re

germline alterations in BRCA1 have bee lationship among this methylation,

estimated to be responsible for about 509 8fRLCC')A‘|_} hg; Snﬁ Oﬁ)t(g:r?srlgn(’) r?endd 'Il'rzjcgsesnecses
of familial breast cance(3,5). However, P .

: : hether BRCA1 may be inactivated by
despite an extensive search, the BRCAEI igenetic mechanisms, we have studied
gene had not been shown to be mutated 5(2

any cases of truly sporadic breast cancer 5 primary breast and ovarian tumors
y ¢ Yy sp C and a series of breast cancer cell lines and
and in only an extreme minority of spo-

radic ovarian tumorgs,7). These findings xenografts for hypermethylation affecting

the CpG island located in the’ Segion
challenge the role O.f BRCAL as a tumornear the main transcription start site in the
suppressor gene in the nonhereditar

forms of breast and ovarian neoplasia tha RCAL gene. Our results suggest that =
b epigenetic loss of BRCAL function by =<

nstitut %—95% of th tumort . . .
Fowever, two lines of evidence coninud? OMoter hypermethylation, associated
to support BRCAL loss of function as an
important contributor to breast and ovar
ian tumorigenesis in the nonfamilial Aaffiliations of authors:M. Esteller, S. B. Baylin,
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BRCAL1 locus in approximately one half atias-Guiu, E. Lerma, E. B_ussaglla, J. Prat, De-_
: . - partment of Pathology, Hospital de la Santa Creu i
of sporadic breast and ovarian carcinomasan pau, Barcelona, Spain; I. C. Harkes, M. Schutte,
(8-10). Second, the BRCAL transcriptpepartment of Medical Oncology, Josephine
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with LOH and particular histologic sub- the xenografts (breast tumors grown in immunodewith ethidium bromide, and visualized under UV
types, occurs frequently in sporadic pri_ﬁcient [SCID] mice) has been previously describedllumination.

mary breast and ovarian carcinomas. . . St§t|st_|f:al analysis.All comparisons for statisti-
Analysis of BRCA1 promoter methylation pat-  cal significance were performed by use gfand

terns. DNA methylation patterns in the CpG islands Fisher's exact test, as appropriate, withRWValues
of BRCA1 gene were determined by methylation-representing two-tailed tests and statistically signifi-
specific PCR(29) in primary tumors and cell lines. cant at .05.

ti ical ’ lect The breast cancer cell lines used in the study were
o O o o> 0 1= \T20, BT474, BT549, CAMA-L, DU4475, EVSA- RESULTS
rom The Johns Hopkins Hospital (Baltimore, MD), ' \¢5767  MCF-7, MPE600, MDA-MB-157,

the Clinica Puerta de Hierro (Madrid, Spain), andy), \ \i 1751, MDA-MB-231, MDA-MB-361, BRCAL Promoter Hypermethylation
the Hospital Santa Cristina (Madrid). The 21 p”_MDA-MB-4358, MDA-MB-453, MDA-MB-468, and Expression in Breast Cancer Cell

mary ovarian carcinomas were collected from Hos- .
pital de la Santa Creu i Sant Pau (Barcelona, Spair;ZK-BR-& T47D, UACC-812, UACC-893, and Lines and Xenografts

; ) ’R75-1. Methylation-specific PCR distinguishes
nghpifst:fuot:Jgrstlii?:;ﬂgig?r]rxvrizrzp;:zvggri_unmethylated from methylated alleles in a given DNA samples from normal |ymph_0'
sponding normal tissues were snap-frozen in liquid©"e ©n the basis of sequence changes producéytes, breast, ovary, lung, colon, and liver
nitrogen immediately after resection. All specimengonov‘"ng bisulfite treatment of DNA, which con- were completely unmethylated at the
underwent histologic examination by two patholo-erts unmethylated, but not methylated, cytosines tSRCA1 promoter (Fig. 1, A), the pattern
gists 1) to confirm the diagnosis of adenocarcinomalracil and subsequent PCR by use of primers dgygrmally observed for a CpG island.
2) to confirm the presence of tumor, and 3) to evalu$igned for either methylated or unmethylated DNA\ 0 e of our 21 breast cancer cell lines
ate the percentage of tumor cells constituting thesg8)- Primer sequences of BRCAL for the unmeth-had abnormal BRCA1 methylation (Fig.

samples. ylated reaction were’STTG GTT TTT GTG GTA
Analysis of LOH at the BRCAL locus in pri- ATG GAAAAG TGT-3' (sense) and'SCAA AAA 1, B). However, when the BRCAL pro-

mary breast and ovarian tumors. All samples con- ATC TCA ACA AAC TCA CAC CA-3’ (antisense) moter hypermethylation was Stljlc“_Ed n
sisted of at least 75% tumor cells. DNA was ex-and for the methylated reactior’-5CG TGG TAA Seven breast cancer xenografts In Immu-
tracted from paired normal and tumor samples witH°GG AAA AGC GC-3 (sense) and'5AAA TCT  nodeficient mice, two of them demon-
the use of a nonorganic method (Oncor, Inc., GaiCAA CGA ACT CAC GCC G-3 (antisense). The strated complete methylation at this re-
thersburg, MD). Polymerase chain reaction (PCR¥ense primer of the unmethylated reaction begins "@}ion (Fig. 1, B). Both methylated
was performed in 25L volumes with the use of 0.2 1536 base palrs.(bp), ar"ld the sense primer of t'B?enografts also had LOH at the BRCA1
U of Taq DNA polymerase ath 1 x PCR buffer methylated reaction begins at 1543 bp from GenrQ
(Promega Corp., Madison WI), 20QM deoxy- Bank sequence U37574. The unmethylated produc . .
nucleoside triphosphate, 30 pmol of each primeris 86 bp long, and the methylated product is 75 bp. Expression of BRCA1 det.erm'ned by
and different concentrations of KCl and MgCtle-  This region crosses the major transcription start sitl T-PCR revealed that the six unmethyl-
pending on the polymorphic marker. A 30-cycle am-at 1581 bp(30). Placental DNA treateih vitro with ~ ated breast cancer cell lines and an un-
plification was done in a thermal cycler (The Perkin-Ss$ bacterial methylase was used as a positive corm ethylated breast cancer xenograft
Elmer Corp., Foster City, CA). For the breasttrol for methylated alleles of BRCAL1. DNA from expressed the BRCA1 transcript (Fig. 1,
s._':lmples, tyvo polymorphlc markers of the 17921 renormal lymphocytes was use(_j asa negative contr(&). However, in the two breast cancer
gion and intragenic to BRCAL gene were usedfor methylated genes. Ten microliters of each PCR
D17S855 and D17S1323 (provided by D. Goldgarreaction was loaded directly onto nondenaturing 6%(en09rafts compIeter methylated_ at
University of Utah Medical Center, Salt Lake City). polyacrylamide gels, stained with ethidium bromideth® BRCAL promoter, the expression
Sixty-six (82%) of 80 of the breast tumors examinedand visualized under UV illumination. of the BRCAL transcript was abolished
in this series were informative at one of two mark- Reverse transcription (RT)-PCR of BRCAL. (Fig. 1, C).

ers: D17S855 was informative in 60% of the casedsolation of total RNA by the use of the Rneasy kit

and D1751323 was informative in 62%. The 66 in-by Qiagen, Valencia, CA) and preparation ofBRCA1 Promoter Hypermethylation
formative tumors include 25 previously reportedcomplementary DNA (cDNA) with the use of in Primary Breast and Ovarian

(25) and 41 newly analyzed tumors. For the ovariarReady-to-go-you-prime-first-strand beads of AmerCarcinomas

samples, the markers were D17S250, TRHAlsham Life Science Inc. (Arlington Heights, IL)/

D17S800, D17S855, and D17S579. The alleles wereharmacia Biotech, Inc. (Piscataway, NJ) was done To address the relevance of the pro-
sgparated by mixing 2pL of the PCR products ac‘cording to the manufacturer’s instructiqns.moter hypermethylation of the BRCA1
with a 10qL volume of loading buffer (total vol- Briefly, 5 ug of total ceIIuIz_alr RNA and gene-specific genein vivo, we examined 84 unselected
ume, 35pL), 0.02% xylene cyanol, and 0.02% bro- forward and reverse primers were added to the . .

mophenol blue. Electrophoresis was run on nondebeads. The cDNA reaction was run for 1 hour alpr_lmary breast carcinomas. Hypermethyl-
naturing 8%—12% polyacrylamide gels for 12-1537 °C. PCR conditions were a hot start of 4 minutetion of the BRCAL promoter was de-
hours at 500 V. After gel electrophoresis, the allelicat 94 °C and then 30 cycles of 30 seconds at 94 °dected in 11 (13%) of the 84 tumors ex-
band intensity was detected by a nonradioisotopit minute at 54 °C, and 1 minute at 72 °C, followedamined (Fig. 2, A). The presence of
technique by use of a commercially available silverby a final extension of 5 minutes at 72°C. Twogbnormal BRCA1 methylation was more
staining method226). Allele intensity was analyzed primer sets for BRCAL were used:-$GG AAG  common in breast tumors from patients
by densitometry. The gel image was captured by usAAA GTG AAC TTG ATG-3' (sense) plus 5CCT o
of a GS-690 Imaging Densitometer (Bio-Rad Labo-CTG AAC TGA GAT GAT AG-3 (antisense) and less thano or equa! to 45 years old (19 %
ratories, Hercules, CA), digitized in 400 dots per5'-ATG CTG AAT GAG CAT GAT TTT G-3  Versus 4%) but did not reach statistical
inch, and the image analyzed by use of a Multi{sense) plus 5AGA GTG CTA CAC TGT cca Significance P = .056; two-tailed Fish-
Analyst/PC (Bio-Rad Laboratories). An allele wasAC-3' (antisense), this last set spanning several exel’'s exact test). BRCAL1 methylation was
considered to be lost when its signal was reduced byns to avoid amplification of DNA. RT-PCR for also more common when the tumor size
more than 50% with respect to that observed on thhypoxanthine phosphoribosyltransferase by use @j/gg greater than 2 cm (seven of 42 tumors
normal counterpart DNA. Concerning the 21 breasthe primers 5GTG GGG TCC TTT TCA CCA versus one of 34P = .068 [tumor size
cancer cell lines and xenografts, all of the cell linesG-3' (sense) and '5STAT GGA CAG GAC TGA . .. .

were obtained from the American Type Culture Col-ACG TC-3, again spanning several exons to ensur as unavaﬂable for the remammg elght]).
lection (Manassas, VA), except MPE600 (providedhat only RNA was amplified, served as a positive n the 73 'nV&Sl_Ve ductal carcinomas,
by Dr. Helene Smith, California Pacific Medical internal control. Ten microliters from each PCR re-BRCA1 methylation was observed only
Center, San FranciscqP7), while the origin of action was directly loaded onto agarose gel, staineth the grade 2 or 3 tumors. In this group of

MATERIALS AND METHODS

Study subjects.The 194 primary breast carcino-

Cus.
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Fig. 1. Panel A: Analysis by methylation-
specific polymerase chain reaction (MSP
PCR) of the promoter region of BRCA1 in
normal tissues: breast (NBr), ovary (NOv),
colon (NCol), and lung (NLun)Panel B:

MSP of BRCAL1 in breast cancer cell lines
(T47D and Hs578) and xenografts (BX-20,
BX-21, BX-22, and BX-23). The presence
of a visible PCR product in those lanes
marked U indicates the presence of unmetht
ylated genes of BRCAL; the presence of g
product in those lanes marked M indicates
the presence of methylated genés.vitro

methylated DNA (IVD) was used as a posi-
tive control for methylated BRCA1 alleles.
DNA from normal lymphocytes (NL) was
used as a negative control for methylated
BRCAL1 alleles. An MSP study demonstrates
complete BRCA1 methylation in two xeno-
grafts (BX-22 and BX-23)Panel C: The

pattern of expression determined by reverse
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transcription—PCR of the BRCAL transcript

in breast cancer xenografts and cell lines by use of two sets of primers. HPRT (hypoxanthine phosqj?%
bosyltransferase) expression demonstrates relatively equal amounts of initial messenger RNA. A xenogya .

fully methylated at BRCA1 (BX-23) demonstrates diminished BRCA1 expression, while an unmethylﬁegfd"rther analySIS of two other SUbtypes of
cell line (BT-20) and an unmethylated xenograft (BX-20) highly express the BRCA1 transcript.

tumors, there was no association of Two particular histologic subtypes ofstrated that none of 11 primary breast
BRCA1 methylation with the presence ofbreast carcinoma, medullary and mucinfobular carcinomas and none of 11 pri-
lymph node metastasi$® (= .72), estro- ous carcinomas, appear on the basis ofiary papillary breast carcinomas had
gen receptor statu®(= .47), or proges- earlier studies(31-33)to be overrepre- BRCAL promoter hypermethylation (Fig.
terone receptor statu (= .44). The sentedin BRCAl-inherited breast tumors2, B; Table 1). Thus, epigenetic inactiva-
presence of BRCA1 methylation was notAmong the unselected sporadic breast tuion of BRCAL in the sporadic tumors re-
related to the abnormal methylation ofmors described above, we found thatsembles the patterns described in the
GSTP1 P = 1.00), which had been pre-while most (nine of 11) of the tumors with BRCA1 families with inherited genetic
viously demonstrated in a subset of thesmethylation were of ductal origin, the defects.

other two methylated tumors consisted of To determine whether BRCAL pro-

tumors(15).

Fig. 2. Analysis by methylation-specific
polymerase chain reaction (MSP PCR) of
the promoter region of BRCA1 in primary
tumors. The presence of a visible PCR
product in those lanes marked U indicateg
the presence of unmethylated genes o
BRCAZ1,; the presence of a product in thosdg
lanes marked M indicates the presence of
methylated genesln vitro methylated

DNA (VD) was used as a positive control
for methylated BRCAL alleles. DNA from
normal lymphocytes (NL) was used as &
negative control for methylated BRCAL
alleles.Panel A: MSP of BRCAL in three

breast carcinoma patients comparing thg
tumor (BC) and the normal breast (NB) in
each case. Tumors 2 and 3 demonstraf]
BRCAL promoter hypermethylation re-
stricted to the tumor and absent in the nor
mal breastPanel B: MSP of BRCAL1 in

primary breast carcinomas of different
pathologic subtypes: medullary (MED1
and MEDZ2; both methylated), colloid
(COL1 and COL2; both methylated), and
lobular (LOB1 and LOBZ2; both unmethyl-

D

B

Patient 1 Patient 2  Patient 3

UMUMUMUMUMUMU MUMUM

Ov88 Ov93 Ov27 Ov30 Ov51 Ov47 IVD NL

UM uUMUMUMUMU MU MU MU M

CRC1 CRC2 Leul Leu2 LivC1 LiwC2 IVD NL H,0

UMUMUMUMUM U MU MUMUM

ated).Panel C: MSP of BRCAL1 in pri-

one mucinous and one medullary carci-
noma. Therefore, we studied BRCA1l
methylation in an additional set of 34 spo-
radic tumors that were selected on the ba-
sis of these and other histologic subtypes
(also lobular and papillary), all of which
are uncommon compared with ductal.
When the unselected and selected groups
were combined, BRCA1 promoter hyper-
methylation was present in six (55%) of
11 sporadic mucinous breast carcinomas
(P = .0033; mucinous versus ductal) and
in eight (67%) of 12 medullary breast car-
cinomas P = .0002; medullary versus
ductal) (Fig. 2, B; Table 1). The higher
rates of methylation obtained in these
subtypes suggest an important role of the 2
BRCAZ1 inactivation in the development
of breast carcinomas with mucinous and
Qtullary features. Supporting these data,

breast carcinomas uncommon in the fa-
milial cases associated with BRCAL,
lobular and papillary carcinoma, demon-

moter hypermethylation is associated
with the frequent loss of chromosomal
material at one allele of BRCAL observed
in breast carcinoma, we examined 66 ad-
ditional primary invasive ductal carcino-
mas that had, or were without, LOH at the
BRCAZ1 locus. This group of tumors, in-
formative for markers within the BRCA1
gene, represents 82% of the invasive duc-
tal tumors examined. Aberrant methyl-
ation of the BRCA1 promoter was found
in nine (20%) of 45 breast carcinomas
with LOH but was present in only one
(5%) of 21 tumors without LOHR =
.15; Fisher’'s exact test) (Table 1).

We next analyzed BRCA1 hypermeth-
ylation in 31 primary ovarian carcinomas,
the other tumor site clearly associated
with BRCA1 germline mutations, study-
ing only tumors informative for LOH at
the BRCA1 locus. BRCA1 promoter hy-
permethylation was present in four (31%)
of 13 sporadic ovarian carcinomas with
LOH at BRCA1, while none of the 18

¥20Z Iudy 01 uo1senb Aq ¥29€£9Z/79G/2/26/3191e/10ul/Woo dno olwepeoe//:sdyy woly papeoju

mary ovarian carcinomas (Ov88 to Ov47). The tumors Ov93 and Ov51 demonstrate BRCA1 pronnﬁgpary ovarian tumors WIFhOUt LOH at
hypermethylationPanel D: MSP of BRCAL in other tumor types: colorectal carcinomas (CRC1 and CRCBRCAL was methylated (Fig. 2, C; Table
leukemias (Leul and Leu?2), and liver carcinomas (LivC1 and LivC2).
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Table 1.Distribution of BRCAL promoter hypermethylation in human cancer* with inactivation of the other allele by a
“classical hit,” such as intragenic muta-

Frequency of BRCA1

hypermethylation tion or LOH, is a relatively common find-
No. of tumors/total No. ing in human cancg13,14).0ur findings
Primary tumors (% of tumors) P fit this model, demonstrating the strong
Breast tumors by histologic types ¢(a 118)t association b?tween BRCA]—_ promoter
Ductal breast carcinomas 9/73 (12) hypermethylation and the existence of
Medullary breast carcinomas 8/12 (67) .0002 H he BRCAL1 | Th
Mucinous breast carcinomas 6/11 (55) .0033 OH at the . C. OCUS. ese dl?t?
Lobular breast carcinomas 0/11 'SUQQeStt at, ”’? primary tumors, One a e'e
Papillary breast carcinomas 0/11 is lost by deletion and the other is inacti-
Ductal breast tumors by BRCA1 LOH status £ 66) vated by aberrant methylation, both
Breast tumors with LOH at BRCAL 9/45 (20) 158 events simultaneously leading to the bial-
Br?ast tumors without LOH at BRCA1 1/21 (5) lelic inactivation and complete lack of
Ovarian tumors by BRCA1 LOH status (1 21) function of the BRCA1 gene. This asso-
Ovarian tumors with LOH at BRCA1 4/13 (21) .028 L | | | h h
Ovarian tumors without LOH at BRCA1 0/18 ciation was clearly seen only when the
Other tumor types (n- 55) data from breast and ovarian tumors were
Colorectal tumors 0/18 considered together. Of interest is the fact 2
Liver tumors 0/18 that the rate of LOH at the BRCAL locus =
Leukemias 0/19 is higher than the percentage of tumors &

“LOH — | . methylated at BRCAL1 and suggests other &
= loss of heterozygosity. 3
tThis grouping of breast tumors does not resemble the distribution of histologic types found in the geﬁé/rﬁpues of research. Another gene CIOSGB
population because 34 of the nonductal tumors were chosen for study on the basis of their unusual histtfoddRCAL1 may be the primary target of =
subtypes. this deletion in some cases. Losing only
FTwo-tailed Fisher's exact test versus ductal carcinoma. one allele may also cause a gene-dose
8§Two-tailed Fisher's exact test versus tumors without LOH (separately for breast and ovarian). effect. Finally, inactivation of BRCA1
may occur by mechanisms other than pro-
breast carcinomas, BRCA1 promoter hysporadic cancers of the same type. Thimoter methylation.
permethylation and loss of the other allelgrediction has proven to be the case for Our data suggest that the role of
are associated in the ovarian carcinoa (Rb, p53, VHL, and APC. However, otherBRCAL in noninherited tumors is limited
= .02; Fisher’s exact test). Together, thénereditary cancer genes, such as BRCA® breast and ovarian tumors, similar to
data from the breast and ovarian tumorand ATM, do not appear to conform com-the pattern observed in carriers of germ-
show that the vast majority of tumors withpletely to this model. Also, mutations inline BRCA1 mutations. Thus, BRCALl
BRCA1 promoter methylation have LOHthe mismatch repair genes hMLH1 ancgromoter hypermethylation was found
at this locus, while methylation was rarelyhMSH2 are present only in 10% of theonly in the breast and ovarian carcinomas
observed in tumors without LOHP( = sporadic carcinomas with microsatelliteand was not observed in other tumor
.0069; Fisher’'s exact test, two-tailed). instability (35), the characteristic featuretypes, including colorectal and liver car-
To test whether or not BRCAL pro- of the tumors developed in patients withcinomas and leukemias. The colorectal
moter hypermethylation was limited tohereditary nonpolyposis colorectal carcicarcinomas are particularly interesting,
only breast and ovarian cancers, the tumaroma. More important, for this study, hy-since LOH at the BRCAL locus is not
types associated with BRCALl germlinepermethylation of hMLH1 is a frequentuncommon in this tumor typé36). The
mutations, we also studied neoplasms tha&vent in sporadic colon and endometriahbsence of BRCA1 methylation suggests
are not common in BRCA1 families. carcinomas with microsatellite instabilitya minor role, if any, for BRCAL in colo-
None of 18 primary colorectal carcino-(17-19).In a similar way, despite the rectal tumorigenesis, which is supported
mas, 18 primary liver carcinomas, or 19well-known contribution of germline by the lack of increased susceptibility to
leukemias was methylated at the BRCAInutations of BRCA1 in the developmentcolorectal tumors in BRCA1 families.
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CpG island (Fig. 2, D; Table 1). of inherited breast and ovarian cancerdylore striking, BRCA1 epigenetic inacti-
somatic BRCA1 mutations are notvation in sporadic cases also displays an
DISCUSSION described in breast tumors and arenusual distribution, again similar to that
extremely rare in ovarian carcinomaseen in BRCAL germline mutation carri-
Our study demonstrates that BRCAL6,7). ers, among histopathologic types of breast

promoter hypermethylation leading to The two hits referred to in the hypoth-carcinoma: We have found that BRCA1
gene silencing is found in nonfamilial, esis by Knudson et al. that are required fopromoter hypermethylation is more fre-
primary breast and ovarian carcinomasnactivation of tumor suppressor geneguent in the medullary and mucinous sub-
The existence of this epigenetic alteratiormre generally thought of as intragenic mutypes of breast carcinoma. More than half
in BRCA1 supports a role for this tumortations and loss of chromosomal materiabf the breast carcinomas included in these
suppressor gene in sporadic tumorigenLOH or homozygous deletion). Promotertwo particular subtypes displayed BRCA1
esis in the breast and ovary. The tumohypermethylation should now be considaberrant methylation. Both histopatholog-
suppressor theory by Knudson et @d4) ered one of the “hits” suffered by tumoric subtypes are very uncommon (<5%) in
predicts that genes that confer a risk ofuppressor gen€43,14).Thus, silencing an unselected population of sporadic pri-
cancer as a result of germline mutationgy abnormal promoter methylation of Rb,mary breast carcinomas but are overrep-
are likely to be somatically mutated inVHL, MLH1, p15, and pl6 associatedresented in the breast carcinomas that oc-
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cur in carriers of BRCAL1 germline TP53 regions associate with low expression of
mutations(31-33). Finally, further link- the estrogen receptor in sporadic breast carci-
age between BRCAL1 alteration and med- __ "oma. Int J Cancer 1997,74:322-5.
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