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Abstract

The Tibetan Plateau (TP) holds fundamental ecological and en-
vironmental significances to China and Asia. The TP also 
lies in the core zone of the belt and road initiative. To pro-
tect the TP environment, a comprehensive screening on cur-
rent ecological research status is entailed. The teased out  
research gap can also be utilized as guidelines for the re-
cently launched major research programs, i.e. the second 
TP scientific expedition and silk and belt road research 
plan. The findings showed that the TP has experienced  
significant temperature increase at a rate of 0.2°C per decade since 
1960s. The most robust warming trend was found in the northern 
plateau. Precipitation also exhibited an increasing trend but with 
high spatial heterogeneity. Changing climates have caused a series 
of environmental consequences, including lake area changes, gla-
cier shrinkage, permafrost degradation and exacerbated desertifica-
tion. The rising temperature is the main reason behind the glaciers 
shrinkage, snow melting, permafrost degradation and lake area 
changes on the TP and neighboring regions. The projected loss of 
glacial area on the plateau is estimated to be around 43% by 2070 
and 75% by the end of the century. Vegetation was responsive to the 
changed environments, varied climates and intensified human activ-
ities by changing phenology and productivity. Future global change 

study should be more oriented toward integrating various research 
methods and tools, and synthesizing diverse subjects of water, vegeta-
tion, atmosphere and soil.
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INTRODUCTION
The Tibetan Plateau (TP), the biggest and highest elevation 
plateau in the world, covers an area of about 2.6 × 106 km2 
(Li et al. 2018b). It stretches from Pamir to Hindu Kush in the 
west, and Hengduan in the east. From north it is attached with 

Kunlun and Qilian mountains and to the south with Himalayas. 
The TP is named as ‘Third Pole’ or ‘Roof of the world’ because 
of its influential land surface process and strong interactions 
with atmosphere, cryosphere, hydrosphere and biosphere (Yao 
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et al. 2012a). The plateau is the origin of many Asian rivers such 
as Brahmaputra, Ganges, Indus, Mekong, Yangtze and Yellow 
river and is also known as ‘Asian water tower’ (Xu et al. 2008b). 
It is estimated that the TP provides natural resources to >1.5 
billion people in the form of fresh water, pasture and timber 
(Fig. 1).

Climatic conditions in this region have drastically changed 
since the middle of 20th century (Moors et  al. 2011) and 
shifted the ecological conditions on the TP (Wang et al. 2007). 
Additionally, heightened anthropogenic activities have been 
observed on the TP (Agarwal 2009). The recent global change 
has impacted regional environment of the plateau to an un-
precedented level, potentially threatening the livelihood of its 
inhabitants in the near future.

The plateau also exerts strong thermal influences on the 
regional and global climate system by isotropic, thermal and 
anthropogenic forcings (Duan and Wu 2005; Yanai et al. 1992; 
Yang et al. 2014). The TP not only influences the atmospheric 
circulation in the region but also affects the climate pattern of 
the globe (Fig. 2). Due to its strong effects on adjacent and re-
mote regions (Xu et al. 2015; Yao et al. 2013; Zhao et al. 2015), 
understanding the dynamics of cryosphere, hydrosphere and 
vegetation dynamics on the TP is crucial (Cleland et al. 2007; 
Garonna et al. 2016; Morisette et al. 2009; Peñuelas et al. 2009).

The TP and the adjacent central Asia plateau lie in the 
center of the silk and belt road initiative, which is an inter-
national cooperation development plan initiated by China. 
To provide scientific basis for a sustainable silk and belt road 
plan, full understanding on the environmental conditions and 
future change is imperative. To meet these needs, Chinese na-
tional government launched the second scientific expedition, 
which aims to apply innovative investigation technique and 

tools to evaluate environmental changes on the TP in the 
past 40  years. Also Chinese Academy of Sciences initiated 
the level A strategic scientific research plan, which was de-
signed to understand impacts of global change on the TP en-
vironment. In advocating these several unprecedented major 
scientific projects, it is entailed to comb through current re-
search status on the TP and point out new research directions. 
The objective of this review was to summarize global change 
status and its impacts on environments of the plateau. The 
impacts include on glaciers, snow cover, hydrological pro-
cesses, permafrost degradation and vegetation. Only with a 
thorough review, our research knowledge gap could be teased 
out and future research foci could be clarified.

OBSERVED CLIMATIC FACTORS ON 
THE TP

Surface air temperature

Temperature is the most commonly studied climatic factor on 
the TP due to its fundamental significances. To date, gener-
ally accepted viewpoint is about its overall mean and spatial 
pattern. The annual mean temperature observed on the TP is 
<0°C. Across the entire TP, temperature exhibits a high spatial 
heterogeneity, and it decreases from east to west (Sun et al. 
2015). Over the last several decades, the TP is significantly 
affected by global warming and exhibited a uniform warming 
trend (Gao et al. 2015a). From the mid-20th century, tempera-
ture on the TP has increased by 1.8°C (Wang et al. 2008), with 
a warming rate 1.5 times the global average (Yao et al. 2012a; 
Zhang et al. 2013). For separate periods, temperature showed 

Figure 1: the geographical location of Tibetan Plateau, stretches from Pamir and Hindu Kush in the west to the Hengduan Mountains in the 
east from the Kunlun and Qilian mountains in the north to the Himalayas in the South. (Yao et al. 2012a).
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stability during 1970s, significantly increased during 1980s 
and drastically increased since 1990s (Zhang et al. 2014).

Observation data showed that mean annual air tempera-
ture increased at a rate of 0.25°C/decade during 1961–2014. 
The winter temperature increased twice the mean annual 
value (You et al. 2010, 2013), and winter and autumn showed 
faster warming trends than spring and summer (Kuang et al. 
2016). Model based studies showed a shrink of −0.20°C/
annum in diurnal-night temperature range during 1961–
2013 due to a higher warming rate at night (You et al. 2016a) 
and this trend is predicted to continue in the near future (Zhu 
et al. 2013). Warming on the TP started earlier than other re-
gions of China and Polar regions of the world (Liu and Chen 
2000). Extended to a long temporal dimension, results from 
the ice core records revealed that climate varied more widely 
in the TP than Greenland and other cold regions of the world 
(Thompson et al. 1997).

Numerous studies have been conducted on the TP about 
the temperature changes in the past decades (Table 1). Each 
study reported discrepant temperature increasing values, 
and the conclusion about the faster temperature increasing 
rate on the TP than the Northern Hemisphere is also prelim-
inary. Whether the warming hiatus exists is also still illusive. 
The main reason is because that each study relies on distinct 
datasets and targeted different periods. In the future study, a 
comprehensive field observation and remote sensing data in-
tegration is imperative. By this integration, the data scarcity 
in the remote west TP can be surmounted to a certain degree.

Variable precipitation

Precipitation is the key source of water on this planet and it 
holds paramount importance for life existence on the Earth. 

It also plays a profound role in the energy balance, hydro-
logical cycle and terrestrial ecosystem sustainability by af-
fecting the biological, hydrological and ecological processes 
(Wan et al. 2017). Different from temperature, the trend of 
precipitation has not been as apparent. Due to the scarcity 
and low accuracies of remote sensed precipitation data, re-
search findings about precipitation are composed of consider-
able controversies.

The conclusion about its spatial pattern is unanimous. The 
meteorological station and remote sensing data both showed 
that annual mean precipitation exhibits a spatial pattern of 
decreasing from southeast to northwest (You et al. 2015). The 
precipitation also varied strongly with season. The summer 
precipitation (June–September) consists of 60–90% while 
the winter precipitation (December–February) accounts for 
<10% of the annual total (Xu et  al. 2008a). The southern 
edges of Himalayas and the other widespread valleys receive 
large amount of convective precipitation (Fig. 3).

Temporally, the TP precipitation does not show a uniform 
increasing or decreasing trend (Gao et al. 2015a; Tong et al. 
2014b; You et al. 2015). The precipitation increasing rate cal-
culated over a 55-year period for the entire plateau is 3.8 mm/
decade (Wan et al. 2017). The variable precipitation trend is 
significantly characterized by the regional physiognomies. 
The studies based on meteorological stations observation and 
simulations showed that the TP received yearly increasing 
precipitation in the northeast, central and southwest regions 
(Gao et al. 2015a, 2015b; Li and Xue 2010; Wang et al. 2014), 
while southeastern plateau has shown a decreased annual 
precipitation trend (Kuang and Jiao 2016).

Indian monsoon, Asian monsoon, and block effects from 
complex mountain chain on the TP all exert influences on 

Figure 2: atmospheric circulation pattern influencing TP from summer monsoon. Water pattern is associated with the tropical and subtropical 
areas with the Tibetan Plateau force. Note: L represents low pressure cyclonic core (Yao et al. 2012a).
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precipitation pattern on the TP, thereby a heterogeneous spa-
tial pattern. The TP is influenced primarily by East and South 
Asian monsoon, as well as westerlies to a modest extent. As a 
result, the TP gets wetting episodes during monsoon seasons 
(Yang et al. 2008). Land surface processes also feedback to cli-
mates. Heavy precipitation in the form of snowfall can slow 
down summer monsoon on TP (Liu et  al. 2004). Warming 

trend on the plateau has increased the atmospheric water 
holding capacity and results in high precipitation in some 
parts of the plateau (Trenberth 2011). But precipitation is also 
affected by many other factors, e.g. increasing CO2, North 
Atlantic Oscillation and El Nino (Dai 2013). As a whole, 
warming did not cause pronounced precipitation increment 
on the TP since 1980s (Fang et al. 2015).

Figure 3: atmospheric circulation system influencing TP from different geographical locations. Yellow arrows indicating summer monsoon 
while blue winter monsoon (Yang et al. 2014).

Table 1:  warming trend on the Tibetan Plateau since the mid of 20th century

Number Time period Number of stations Warming trend (°C per decade) Reference

1 1955–1996 197 0.16 Liu and Chen (2000)

2 1957–2000 161 0.16 Frauenfeld et al. 2005)

3 1971–2000 77 0.20 Wu et al. (2007)

4 1961–2000 43 0.24 Rangwala et al. (2009)

5 1961–2003 71 0.25 Duan and Wu (2006)

6 1961–2003 64 0.28 Duan et al. (2006)

7 1966–2003 75 0.28 Zhang (2007)

8 1961–2004 71 0.25 You et al. (2010)

9 1961–2005 71 0.27 You et al. (2016b)

10 1970–2005 75 0.31 Liu et al. (2011)

11 1961–2007 72 0.28 Guo and Wang (2012)

12 1961–2007 90 0.36 Wang et al. (2008)

13 1960–2008 63 0.25 Song et al. (2014b)

14 1970–2009 75 0.34 Xie and Zhu (2013)

15 1984–2009 97 0.67 Zhang et al. (2013)

16 1981–2010 80 0.50 Yin et al. (2013)

17 1957–2012 49 to 95 0.36 Zhang et al. (2014)

18 1970–2012 26 0.36 Xie et al. (2015)

19 1971–2015 88 0.30 Liu et al. (2017)

Modified from (Kuang et al. 2016).
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Due to the remoteness and inaccessible terrain of the TP, 
meteorological stations are insufficient and sparsely distrib-
uted. Currently, most of the meteorological stations are lo-
cated in central and eastern TP (semi-arid and humid region) 
while only few are in the western part (arid region). The 
development in the satellite remote sensing technology has 
provided an unprecedented opportunity to monitor precipita-
tion in this environmentally harsh region. To date, remotely 
sensed data have been widely used to monitor precipitation 
pattern on the TP, which greatly increased the data accuracies 
(Bai et al. 2008; Fujinami and Yasunari 2001; Ma et al. 2016; 
Tong et  al. 2014a; Wang et  al. 2014). The spatial pattern of 
precipitation on the TP is quite complicated and the magni-
tude from each causing factor is difficult to quantify. To in-
crease the accuracies of monitoring and prediction, there are 
several pending issues awaiting to be resolved: (i) generating 
new precipitation data series by integrating multiple sources 
of data, including remote sensing data and field observation 
data; (ii) tracking water vapor movement pathway from the 
southeastern TP; (iii) separating the contribution of local 
evapotranspiration and water vapor influx from outside the 
TP to precipitation formation on the TP; and (iv) setting up 
site monitoring equipment to increase the density of field 
measurements.

STRENGTHENED HUMAN ACTIVITIES
Due to the roughness and harsh environments of the plateau, 
it is speculated that human settled on the TP ~20 000 years 
ago, when the presence of worked stones, handprints and 
footprints were discovered >4200 m.a.s.l. in the southern 
parts of the TP (Aldenderfer 2011). Agropastoral was thought 
to be the main source of living over the high elevated re-
gions (Chen et al. 2015). After thousands of years, the plateau 
population reached ~12 million nowadays. This population 
increasing rate is higher than that of the entire China (Zhang 
et al. 2005). The number of tourists has also exponentially in-
creased from 3530 to 6 851 400 during 1980–2010 in Xizang 
province. In Qinghai province, the tourists increased from 
3 209 592 to 20 056 000 during 2000–14 (Chung et al. 2018). 
Livestock in Xizang grew from 955  000–2  349  000 during 
1951–2010 (Yu et al. 2012).

All human activities are spatially heterogeneous on the TP. 
For example, the livestock grazing occurs across the TP but 
high grazing pressure is exerted on regions down valleys and 
around human settlements. Such a spatial heterogeneity of 
human activities set the stage for spatially varied responses of 
ecosystems (Li et al. 2019). However, it is difficult to separate 
out effects of human activities on ecosystems and this know-
ledge is crucial for ecosystem management (Feng et al. 2017; 
Wang et al. 2016b).

In the future studies, the following pathways entail im-
mediate attentions. First, livestock grazing pressure needs to 
be spatially explicit mapped. The current livestock amount is 
recorded for each county and each county in the TP is too 

large to make effective analysis of livestock effects on eco-
systems. Second, fences locations are needed to be mapped. 
Grazing exclusion by fence is commonly applied on the TP. 
We can hypothesize that vegetation dynamics in fenced re-
gions are mostly driven by climates, while ecosystems outside 
are regulated by both human activities and climates. But only 
with spatially explicit distribution of grazing fences, can we 
separate the relative effects of climate changes and human 
activities.

IMPACTS OF CLIMATIC CHANGE ON 
THE CRYOSPHERIC COMPONENTS OF 
THE TP

Glaciers

The TP has third largest concentration of glaciers after Polar 
Regions in the world, containing 84% glacial of China (Liu and 
Chen 2000). The TP is the ‘water tower’ of Asia and the glaciers 
provide the majority of water sources. Mountain glacier status 
is also an indicator of climate changes. The monitoring results 
from a variety of sources revealed that the total number of gla-
ciers on the TP is >36 973, covering an area of ~49 873 km2 and 
with a total volume of ~5600 km3 (Yao et al. 2007).

Extensive glacier melting has occurred on the TP since the 
middle of last century and it accelerated since late 1980s. 
The glacier retreat exhibited a strong spatial heterogeneity 
on the TP. The retreat rate is comparatively low in the in-
terior plateau, medium at the lower elevated margins and 
maximum at high elevated edges (Yao et al. 2007). Spatially, 
the rate of glacial retreat wanes from southeastern TP to cen-
tral TP, although the negative trend appears on both sides. 
The greatest retreat was found in the Himalayas mountain 
region, followed by continental interior and the least in the 
eastern Pamir (Yao et al. 2012b). Such systematic variations 
are due to increasing temperature and less precipitation on 
the Himalayas and high precipitation on the eastern Pamir 
along with varied atmospheric circulation processes (Yao et al. 
2012b). It is projected that the TP would lose 43% of its total 
glacial by 2070 and 75% by the end of this century, respect-
ively (Maclean 2009). Accelerated glacier retreat results in in-
creased frequent flooding (Lee et al. 2013; Wang et al. 2013a; 
Yao et al. 2012a).

Rising temperature plays a crucial role in causing the glacial 
shrinkage on the TP and surrounding regions (Scherler et al. 
2011; Zhang et al. 2017a). Temperature increases in a greater 
magnitude along rising altitude and the increasing rate reaches 
the highest between 4800 and 6200 m a.s.l. (Qin et al. 2009), 
which marks as the ablation zone for most glaciers on the 
plateau. Precipitation decreased in Himalayas region, while 
eastern Pamir received more precipitation. Besides increasing 
temperature and precipitation anomalies, black carbon is also 
a necessary element in causing glacier melting by modifying 
surface albedo and energy balance (Menon et al. 2010).
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Glacier retreat has caused various hydrological process 
changes, such as increased river runoff and lake volumes, 
along with higher probability of natural disasters, such as 
ice avalanches or flooding (Faillettaz et  al. 2015; Haeberli 
et  al. 2017; Yao et  al. 2004). To protect and retard its re-
treat, it is imperative to monitor the spatial-temporal pat-
terns of glaciers and dig into the causing factors. To reach 
these goals, the following points are pressing in the fu-
ture glacier researches: (i) introducing new techniques to 
monitor glacier area, depth and volume changes. Previous 
monitoring has been focused on area change. Recently, 
developed techniques make glacier depth and volume 
measurement possible; (ii) gathering historical photo and 
documents and extend the past coverage of glacier records; 
(iii) establishing fixed and long-term environmental change 
stations to monitor environmental changes related to gla-
ciers; (iv) monitoring closely environmental change outside 
China, industry development in Southern Asia has trans-
ported massive pollution, such as black carbon to the TP and 
accelerate the glacier melting.

Snow cover

Snow is an essential and delicate part of cryosphere. It plays a 
dominant role in maintaining the hydrological cycles and also 
controls the seasonal distribution of water supplies in arid and 
semi-arid areas of the plateau (Ma et al. 2011). Snow is related 
to a wide range of land features, such as glacier area changes, 
glacial lakes outburst and lake area variations (Zhang et  al. 
2012). The TP contains third largest snow-covered area after 
Polar Regions in the world. Snow cover on the TP is strongly 
sensitive to climate change and also provides feedback to cli-
mates, implicating its robust and strong interactions with at-
mosphere, hydrosphere and biosphere. Thus, it is crucial to 
timely monitor responses of snow cover to climate variations 
on the plateau (Tang et al. 2013b).

Previous researches concluded that snow cover change 
has occurred on the TP in the past several decades, but 
plenty of variations remain. Snow cover is regulated by 
temperature and precipitation on the entire TP or at an in-
dividual river basin. Some studies revealed slightly positive 
trend in snow covered area prior to 1997 utilizing ground 
and satellite data (Li and Yanai 1996; Qin et al. 2006), while 
the trend turned during 1997–2012 (Ma et al. 2011; Pu et al. 
2007; Shen et al. 2015; Su et al. 2016). Spatially, high snow 
cover was found on the southern and western edges of the 
plateau, which receives moist air transported by East Asian 
monsoon (Li et al. 2018b).

Snow affects surface processes through changing surface 
energy balance (Qu and Hall 2014). Albedo acts as a pivotal 
interaction media between surface and local climates.

Based on the Coupled Model Intercomparison Project ver-
sions 3 (CMIP3) and 5 (CMIP5) (Guo et al. 2018), an increasing 
absorption of solar radiations due to decreased snow albedo 
amplified snow cover effects at high elevated regions of the 
TP (Wang et al. 2015). The snow–albedo relationship is highly 

influenced by several factors, such as snow grain size, solar 
zenith angle, liquid water content, snow impurities, layer 
structure in the snowpack, snow depth and so on. Out of 
these factors, snow grain size is found the key factor regu-
lating snow–albedo relationship (Aoki et  al. 2011; Flanner 
et al. 2007).

The recent advancement in satellite technology boosts 
snow cover monitoring for the remotely inaccessible and 
physically hostile regions (Rittger et  al. 2013; Tang et  al. 
2013a; Yang et al. 2015). Different remote sensing products 
have been used to monitor snow cover changes over the en-
tire TP. Comparatively, MODIS products have shown higher 
accuracies than the Interactive Multisensor Snow and Ice 
Mapping System (IMS) products, with an overall accuracy 
higher than 91% in accordance with field station data (Yang 
et al. 2015). Due to lack of ground observation data, results 
of various remote sensing data contain much spatiotemporal 
uncertainty. It is strongly recommended to use land surface 
models coupled with remote sensing observations in moni-
toring snow cover change on the plateau. Only integration 
of multiple data sources could we increase monitoring accur-
acies, and facilitate our predicting future snow cover condi-
tions under different climate scenarios.

Permafrost

The TP is underlain by ~1.4 million km2 of permafrost, ~75% 
of the total in China. The permafrost existence requires an 
average annual temperature between −0.5°C and −0.3°C 
and they are highly susceptible to global and regional climate 
change (Yang et al. 2010). The thickness of the TP permafrost 
varies spatially from 1 m to 130 m, depending on geography, 
biophysical components and climatic factors (Cheng 1997).

As a result of rising temperature globally, extensive perma-
frost degradation on the plateau has been reported during 
the past decades. In total, the TP has lost almost 10% of its 
permafrost during the last decade (Qiu 2008). The hydro-
logical model simulated 8.8% of permafrost reduction within 
elevation range of 3500–3900 m during 1971–2013 (Gao et al. 
2017). The fastest permafrost degradation occurred as being 
deepened by 0.032 m per decade. On average, the seasonally 
frozen soil layer showed a submerging trend of 0.032 m per 
decade, and the active layer thickness increased by 0.043 m 
per decade (Gao et al. 2017).

Numerous studies based on observational data has con-
firmed the warming trend over the plateau (mostly in the 
central, eastern and northwestern), and the trend is predicted 
to continue into the 21st century (Li and Cheng 1999). The 
fast temperature increment would further exacerbate TP 
permafrost degradation. Due to the relatively high population 
density on the TP, effects of human activities on permafrost is 
more intensive on the TP than in the Arctic and subarctic soils 
(Yang et al. 2010). It has been observed that the southern limit 
of permafrost has shifted by 16 km northward while northern 
limit moved by 2 km southward under the combined effects 
of human activities and climate changes (Cheng et al. 1993).
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The permafrost degradation caused an ensemble of envir-
onmental consequences such as land subsidence, soil erosion, 
and grassland degradation (Qin et  al. 2006). The perma-
frost degradation also influences the interactions between 
land surface and atmosphere and disrupts the energy–water 
balance on the terrestrial land (Walvoord and Striegl 2007). 
Understanding permafrost variations and its consequences 
on regional hydrological processes is integral for sustainable 
management of water resources and ecosystem manage-
ment in this cold region. Previous related studies still contains 
plenty of uncertainties, which open grounds for improving 
our understanding on its current spatial and temporal char-
acteristics, also its future variations and their effects on re-
gional environments (Gao et al. 2017). In the future studies, 
permafrost thawing and its effects on soil carbon storage need 
further studies. Organic carbon is mainly preserved in soil 
on the TP. Whether permafrost thawing causes carbon emis-
sion or sink is still illusive. The second pressing matter about 
permafrost research is to couple ecosystem process model 
with permafrost dynamics model. Only with their tight coup-
ling, can we improve the prediction of ecosystem status as 
caused by permafrost changes. Third, novelty soil penetra-
tion technology should be introduced into permafrost depth 
and dynamics monitoring, especially for the edge zone where 
permafrost is distributed.

Lake dynamics and its response to climate change

The inland lake surface areas and water volume on the TP are 
strong indicators of hydrological cycles and regional climate 
changes. Interactions of hydrological processes and climates 
influence the water budget of these lakes seasonally and an-
nually. The TP contains >1500 lakes, and the lake areas on 
the TP accounts for 49% of the total in China (Ma et al. 2010). 
The TP lakes are the primary water sources of the region and 
several other major outflowing rivers. Periodic monitoring of 
these resources is essential (Lei et al. 2014).

The water balance of the TP lakes is highly responsive to 
climate change, in particular to temperature, precipitation, 
evaporation, and duration of solar radiation (Yao et al. 2010). 
Due to the warming and wetting on the TP in the last 50 years, 
one-third of the TP lakes have expanded and vast area of dry-
land has submerged under lakes (Dong et al. 2018). Different 
factors determine the interannual and seasonal lake area 
dynamics. For example lakes are affected primarily by East 
Asian monsoon and subtropic westerlies in summer, while by 
dry and cold westerlies during winter (Yao et al. 2012a).

Precipitation has not been an unusual factor in increasing 
lake water level in the north and east regions. The reason lies 
in that evaporation rate is three times higher than precipi-
tation in these regions. So expanded lakes size is also sub-
ject to glacier melting and permafrost degradation (Zhang 
et al. 2017b). Due to less precipitation and high evaporation 
in northern Changtang Plateau, numerous lakes have shrunk 
or completely disappeared because of their total dependency 
on seasonal snowpack and snowmelt. The alpine lakes on 

the high altitudes are mostly sustained by melting glaciers/
snowpack and meltwater, which render them vulnerable to 
climate change (Lin et al. 2018). Furthermore, the spatial and 
temporal responses of the TP lakes are varied due to their 
nonhomogeneous climatic conditions and locations within 
distinct biomes (Song et al. 2014a). Lake area growth in the TP 
Interior (TPI) during late 1990s was found to be completely 
associated with the changing climate (Lei et al. 2014).

The lake expansion or shrinkage have caused various eco-
logical and hydrological consequences, such as glacial lake 
outburst flow and flooding across the TP. The glaciers melting 
and accelerated snow thawing caused by increasing tempera-
ture has modified lake environment, which in turn alters hy-
drology and biochemical settings of the river discharges and 
runoff (Lin et al. 2018).

The complex topography of the TP makes it difficult to con-
duct in situ observations on lake variations. The reason behind 
decreasing water levels in the lakes of southern TP, even with 
increased rates of glacier melting in Himalayas, still remains 
unclear (Kehrwald et  al. 2008). Therefore, space borne satel-
lite remote sensing and optical photogrammetry are entailed to 
monitor lakes variations on a regular basis. Though many quan-
titative studies have been conducted on monitoring lake phen-
ology, surface area change, and water balances, information 
associating them with climate change is still lacking (Sadia et al. 
2018). Timely monitoring and predicting the lake phenology on 
the entire TP is crucial for safe and sustainable development of 
regional economy, also for policy makers in sustaining the en-
vironment safety of this remote area (Yang et al. 2018).

CLIMATE EFFECTS ON VEGETATION

Response of vegetation phenology to climate change

The TP is mainly covered by vegetation of alpine grasslands 
and meadows (Bingrong et al. 2006; Pu et al. 2007), which are 
very sensitive to climate dynamics and an ideal bioindicator 
of climate change (Ding et al. 2013). Plant phenology is one 
important and convenient parameter indicating plant species 
responses to interannual climate change (Rosenzweig et  al. 
2007). It can be inferred from agricultural practices, animal 
husbandry, forestry, industries, tourism and so on (Beaubien 
and Freeland 2000; Gilbert et  al. 2006; Rauste et  al. 2007). 
Moreover, it has been observed by various studies, particu-
larly on the TP that plant phenology can influence pasturage, 
on which livestock depends (Ding et al. 2007; Xue et al. 2005; 
Fig. 4).

The delayed green-up date has been monitored during 
2000–11 in the southwestern TP, caused by rising preseasonal 
temperature and reduced preseasonal precipitation (Shen 
et al. 2014). This study revealed the significant precipitation 
effects on the alpine spring vegetation phenology. Other 
studies reported that enhanced preseasonal precipitation on 
the TP may delay starting of season (SOS) of alpine grassland 
and tundra due to its cooling effect (Piao et  al. 2006; Shen 
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et al. 2014). Findings from each study varied due to their dis-
tinct targeted periods or data sources employed (Table 2). At a 
community level, various plant species of a community dem-
onstrate different phenological responses toward climatic vari-
ations, resulting in modified species composition (CaraDonna 
et  al. 2014; Cleland et  al. 2007). Other ecological processes, 
including trophic incongruity and pollinator–host disagree-
ment, can further be influenced (Kerby and Post 2013).

Precipitation as rainfall or snow fall plays a great role in 
sustainable vegetation growth (Dorji et al. 2013). Temperature 
and precipitation profoundly interact with snow cover and 
exert effects on alpine vegetation phenology (Qin et al. 2006; 
Rammig et al. 2010; Wang et al. 2016a). Especially at high ele-
vated regions, snow cover dynamics is deeply associated with 
the shifting of spring phenology (Wang et al. 2017). Besides 
spring temperature and precipitation, the chilling winter, 
photoperiod and degrading permafrost also effects the life 
cycle of green vegetation on the TP (Wang et al. 2017).

For a short-time period, vegetation phenological changes 
would affect the geomorphology, as well as biophysical pro-
cesses and land surface parameters, such as albedo, evapo-
transpiration, energy budget and eventually regional climates 
(Babel et al. 2014; Jeong et al. 2009). Large scale changes in 
vegetation growing season could also bring drastic variations 
in biogeochemistry of soil environment through variations in 
carbon fluxes and trophic levels’ energy flow (Peñuelas and 
Filella 2009). Peculiar to the TP, it is not yet known how al-
tered spring vegetation phenology affects surface heat inten-
sity, then further feedback to climates. Remarkable warming 
on the TP is likely to inhibit the growth of alpine grassland 
and probably increases the atmospheric aridity. It is reported 
that vapor pressure deficit is projected to increase by 10–38% 
on the plateau in the future and this would further increase 
the atmospheric drought pressure on the Tibetan alpine grass-
lands and cause anisohydricity in Tibetan grasslands (Gao 
et al. 2015a).

Remote sensing data have been increasingly applied in ad-
dressing vegetation phenology dynamics on the TP. But find-
ings generated by differed data present a certain inconsistence. 
To understand the response mechanism of the TP vegetation 
phenology, future studies should increasingly collect field 
observations, including specific phenology monitoring net-
work and other useful information related to phenology (e.g. 
carbon fluxes network). Second, remote sensing monitoring 
results are better to be integrated with other heat require-
ment models to predict phenology dynamics. Third, precipi-
tation frequency and timing, and accumulated temperature 
need to be integrated to address their combined effects on 
vegetation phenology.

Climatic effects on vegetation productivity

Ecosystem productivity holds great value to ecosystem carbon 
cycle. Increasing temperature and precipitation extensively 
affects ecosystem productivity on the plateau. Increasing tem-
perature influences physiological activities like photosynthesis T

ab
le

 2
:  

sp
at

io
te

m
p

o
ra

l 
v
eg

et
at

io
n

 p
h

en
o
lo

g
ic

al
 c

h
an

g
es

 o
n

 T
ib

et
an

 P
la

te
au

S
R

P
er

io
d

D
at

a 
ty

p
e

S
O

S
E

O
S

L
O

S
R

eg
io

n
R

ef
er

en
ce

1
1
9
9
9
–2

0
0

9
S
P
O

T
–V

G
T

E
ar

li
er

  
6
 d

ay
s/

d
ec

ad
e

D
el

ay
ed

 b
y 

 
2
 d

ay
s/

d
ec

ad
e

L
en

gt
h

en
ed

 b
y 

8
 d

ay
s/

d
ec

ad
e

T
P

Ji
n

 e
t a

l. 
(2

0
1

3
)

2
1
9
8
9
–2

0
0

8
G

IM
M

S
A

d
va

n
ce

d
  

4
.6

–9
.9

 d
ay

s
D

el
ay

ed
  

7
.3

–1
0
.5

 d
ay

s
 

T
P

Ji
n

 e
t a

l. 
(2

0
1

3
)

3
1
9
8
2
–2

0
1

1
G

IM
M

S
 

D
el

ay
ed

  
0
.7

d
ay

/d
ec

ad
e

 
T

P
C

o
n

g 
et

 a
l. 

(2
0

1
6

)

4
1
9
8
3
–2

0
1

2
G

IM
M

S
5
2
.2

1
%

3
4
.3

0
%

—
T

P
W

an
g 

et
 a

l. 
(2

0
1

7
)

5
2
0
0
0
–1

6
M

O
D

IS
A

d
va

n
ce

d
  

1
.4

 d
ay

s/
d
ec

ad
e

 
 

N
o

rt
h

ea
st

er
n

 T
P

L
i 

et
 a

l. 
(2

0
1

7
)

6
1
9
8
2
–2

0
1

4
N

O
A

A
/A

V
H

R
R

A
d
va

n
ce

d
D

el
ay

ed
In

cr
ea

se
d

T
P

C
h

en
g 

et
 a

l. 
(2

0
1

8
)

7
1
9
6
0
–2

0
1

3
Te

m
p
er

at
u

re
  

an
d
 M

O
D

IS
A

d
va

n
ce

d
 b

y 
1
.4

2
 d

ay
s/

d
ec

ad
e 

u
si

n
g 

te
m

p
 d

at
a

6
.0

4
 d

ay
s/

d
ec

ad
e 

u
si

n
g 

M
O

D
IS

 
 

Y
u

 e
t a

l. 
(2

0
1

8
)

8
1
9
6
0
–2

0
1

4
 

 
 

A
ve

ra
ge

d
 1

0
3

 d
ay

s
T

P
H

e 
et

 a
l. 

(2
0

1
8

)

9
1
9
8
2
–2

0
1

3
A

V
H

R
R

A
d
va

n
ce

d
 2

–3
 d

ay
s/

d
ec

ad
e

D
el

ay
ed

 1
–2

 d
ay

s/
d
ec

ad
e

L
en

gt
h

en
ed

 b
y 

1
–2

 d
ay

s/
d

ec
ad

e
T

P
Z

h
an

g 
et

 a
l. 

(2
0

1
8

a)

A
bb

re
vi

at
io

n
s:

 S
O

S
 =

 s
ta

rt
 o

f 
gr

o
w

in
g 

se
as

o
n

, 
E

O
S
 =

 e
n

d
 o

f 
gr

o
w

in
g 

se
as

o
n

, 
L
O

S
 =

 l
en

gt
h

 o
f 

gr
o
w

in
g 

se
as

o
n

.

924 Journal of Plant Ecology

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/article/12/6/917/5532813 by guest on 23 April 2024



and respiration (Ganjurjav et al. 2015; Hu et al. 2016; Wu et al. 
2011), so does precipitation (Angert et al. 2005). They even-
tually accelerate plant growth, and the magnitude varies with 
respective ecosystem types (Craine et al. 2012; Davi et al. 2006; 
Oberbauer et  al. 2007; Sage and Kubien 2007; Zhang et  al. 
2018b). Generally, increased temperature causes higher NPP 
for the alpine ecosystem, but the effects differ with plant spe-
cies (Li et al. 2018c; Rustad et al. 2001). Carbon fluxes in the 
active growing seasons are also greatly influenced by water 
stress for the alpine ecosystem (Zhang et al. 2018b).

Due to its value in providing basic surviving mater-
ials for humans, NPP can also be considered as a significant 
socioeconomic well-being indicator. Based on economic losses 
attributed to reduced alpine grassland growth, the direct loss 
caused by decreased NPP on the Plateau was estimated to be 
$2.44 billion in 2008 (Wen et  al. 2013). Aggravated grass-
land degradation on the TP significantly shrink its ecosystem 
service capacity (Li et al. 2018a; Fig.5).The grassland degrad-
ation can be caused by overgrazing, climate change, wind 

and rain erosion and rodents (Chen et  al. 2014; Marston 
et al. 2014; Shang and Long 2007). The future studies about 
ecosystem productivity on the TP need to overcome the fol-
lowing restrictions. First, model parameter needs to be opti-
mized using field collected data to increase model accuracies. 
Second, studies on belowground vegetation parts need to be 
strengthened. The belowground part accounts for a signifi-
cant proportion of the alpine ecosystem, but its productivity 
and annual flux has still plenty of uncertainties.

FUTURE RESEARCH DIRECTIONS
Under the ongoing climate change, changed vegetation status 
would bring about profound impacts on the related surface 
processes such as, surface albedo, soil moisture and energy 
cycles, thereby providing feedback to climates (Notaro and 
Liu 2008). Due to its high altitude and large body size, in-
fluences of the TP on climates can be further amplified. 
Considering its environmental and ecological significances 
and our knowledge gap, the following pursuit avenues for 
ecological and environmental research were teased out:

 1.  Integration of multiple research methods: remote sens-
ing and field observation entail to be assembled seam-
lessly and observation needs to be structured from field 
to low sky and then to high sky satellite remote sensing.

 2.  Field observation network: considering sparsely distrib-
uted long-term field observation sites, more efforts are 
required for constructing long-term field observation 
network along environmental gradient.

 3.  Model parameter optimization: the TP possesses many 
unique environmental and ecological features, which 
underlines that parameter values on other systems are 
not applicable. Then locally optimizing model param-
eters are necessary before being utilized.

 4.  Strengthening interdisciplinary study: the TP is a typ-
ical region where cryospheric system, biospheric system, 

Figure 4: forms of rangeland degradation in representative geographic regions on the TP. (a) Alpine meadow degradation in South Qinghai; 
(b) Alpine steppe degradation near a major highway in Northern Tibet (Li et al. 2013).

Figure 5: grassland degradation in the Qaidam Basin (Li et al. 2013).
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hydrospheric system and ecosystem interact. Investiga-
tion on one sole system is hard to explain the core pro-
cesses and mechanisms. Only interdisciplinary cooper-
ation can advance our comprehensive understanding on 
interactions among each system.
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