Review Article

Risk of fatal and nonfatal coronary heart disease and stroke events among adult patients with hypertension: basic Markov model inputs for evaluating cost-effectiveness of hypertension treatment: systematic review of cohort studies

Mende Mensa Sorato ${ }^{1, *,(D), ~ M a j i d ~ D a v a r i ², ~ A b b a s ~ K e b r i a e e z a d e h ², ~}$ Nizal Sarrafzadegan ${ }^{3}$, Tamiru Shibru ${ }^{4}$ and Behzad Fatemi ${ }^{2}$
'Department of Pharmacy, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia, ${ }^{2}$ Faculty of Pharmacy, Department of Pharmacoeconomics and Pharmaceutical Administration, Tehran University of Medical Sciences, Tehran, Iran,
${ }^{3}$ Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
${ }^{4}$ College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
*Correspondence: Mende Mensa Sorato, Department of Pharmacy, College of Medicine and Health Sciences, Arba Minch University, P.O. Box: 21, Arba Minch, Ethiopia. Tel: +98-9056309138; Email: mendemensa@gmail.com

Received September 3, 2020; Accepted December 2, 2020.

Abstract

Objectives Hypertension is a risk factor for a number of vascular and cardiac complications. A Markov like simulation based on cardiovascular disease (CVD) policy model is being used for evaluating cost-effectiveness of hypertension treatment. Stroke, angina, myocardial infarction (MI), cardiac arrest and all-cause mortality were only included CVD outcome variables in the model. Therefore this systematic review was conducted to evaluate completeness of CVD policy model for evaluation of cost-effectiveness across different regions. Key findings Fourteen cohort studies involving a total of 1674773 hypertensive adult population and 499226 adults with treatment resistant hypertension were included in this systematic review. Hypertension is clearly associated with coronary heart disease (CHD) and stroke mortality, unstable angina, stable angina, MI, heart failure (HF), sudden cardiac death, transient ischemic

Summary The CVD policy model can be used in most of the regions for evaluation of cost-effectiveness of hypertension treatment. However, hypertension is highly associated with HF in Latin America, Eastern Europe, and Sub-Saharan Africa. Therefore, it is important to consider HF in CVD policy model for evaluating cost-effectiveness of hypertension treatment in these regions. We do not suggest the inclusion of PAD and AAA in CVD policy model for evaluating cost-effectiveness of hypertension treatment due to lack of sufficient evidence. Researchers should consider the effect

of treatment resistant hypertension either through including in the basic model or during setting the model assumptions.

Keywords: cardiovascular disease policy model; twelve major cardiovascular events; hypertension; cost-effectiveness analysis; systematic review

Background

Hypertension is a leading risk factor for all-cause mortality and the largest contributor to global disability-adjusted life years (DALYs). Of 56.9 million global deaths in 2016, 40.5 million were due to noncommunicable diseases (NCDs). Hypertension was responsible for 7.5 million deaths (i.e. about 19.3% of all NCD deaths or 42% of all cardiovascular disease related deaths). ${ }^{[1]}$ Hypertension-related adverse outcomes were mostly secondary to its complications such as stroke, ischemic heart disease, heart failure, renal disease, and other vascular and non-vascular comorbidities. ${ }^{[2,3]}$

A study conducted to examine the global disparities of hypertension prevalence, awareness, treatment and control by world regions showed that the estimated global age-standardized prevalence of hypertension in adults aged ≥ 20 years in 2010 was 31.1%. The age-standardized prevalence of hypertension was 28.5% in high-income countries and 31.5% in low- and middle-income countries $(P=0.001)$. ${ }^{[4]}$ The disparity is not only with prevalence but also with the level of blood pressure (BP) control. Globally less than 20% of people with hypertension have controlled their blood pressure. ${ }^{[5]}$ This figure is less than $10 \%(5-10.3 \%)$ in Sub-Saharan Africa (SSA). ${ }^{[6-8]}$ Hypertension is responsible for at least 45% and 51% of deaths due to heart disease and stroke, respectively. ${ }^{[9]}$ In reality, it could be possible to achieve effective BP targets in about 70-80.5\% of patients by improving adherence and/or intensifying therapy. ${ }^{[10,11]}$

Controlling BP is one of seven key cardiovascular health metrics (i.e. smoking status, body mass index, physical activity, healthy diet, total cholesterol, BP and fasting plasma glucose) believed to reduce the risk of all-cause mortality, cardiovascular mortality, coronary heart disease (16%), stroke (38%) and vascular death (21%)..$^{[12-15]}$ An annual cost directly attributable to hypertension is projected to increase by $\$ 130.4$ billion in $2030 .{ }^{[16]}$ The cost of hypertension exceeded the total health expenditure per capita in most low- and middle-income countries (LMICs). ${ }^{[17]}$ Therefore, it is essential to conduct economic evaluation to determine whether the resources to evaluate the value for money being spent on hypertension treatment. The treatment cost-effectiveness of hypertension treatment is influenced by both the absolute initial cardiovascular risk, the relative risk reduction, and ${ }^{[18]}$ clinical guidelines frequently updated upon arrival of new evidence. ${ }^{[19-26]}$

A cohort-based Markov-like cardiovascular disease (CVD) policy models have been the most commonly used methods in assessing the cost-effectiveness of hypertension treatment, as they are relatively simple to develop, debug, analyze and communicate. ${ }^{[27]}$ Hypertension is a risk factor for several vascular and cardiac complications. The model should be comprehensive enough to include important variables (clinical states, secondary outcomes, treatment effects and costs). ${ }^{[28,29]}$ In addition to this, the cost-effectiveness model should be simple enough to be understood by decision-makers. ${ }^{\left[30,{ }^{31]}\right.}$ The recent CVD modeling studies on the cost-effectiveness of hypertension treatment included stroke, angina, myocardial infarction (MI), cardiac arrest and all-cause mortality outcomes. ${ }^{[32]}$

However, hypertension is a risk factor for coronary heart disease (CHD) and stroke-related deaths, nonfatal stable angina, nonfatal unstable angina, heart failure, nonfatal MI, nonfatal ischemic stroke, subarachnoid hemorrhage, intracranial hemorrhage, transient ischemic attack, peripheral arterial disease (PAD) and abdominal aortic aneurysm (AAA). ${ }^{[33-35]}$ Knowing the probabilities of these events among patients with hypertension (treated, untreated) is critical for researchers who want to conduct the cost-effectiveness of hypertension treatment based on standard treatment guidelines. This systematic review was conducted to provide a clear picture on the prevalence of fatal and nonfatal CHD and stroke events among patients with treated (controlled, uncontrolled and treatment-resistant) and untreated hypertension. In addition to this, the exclusion of cardiovascular events like heart failure, peripheral artery disease and AAA in previous cardiovascular disease policy model was explored.

Methods

Data sources and search strategy

We searched articles written in the English language from January 2000 to January 2020 from the following databases: PubMed/Medline, Ovid/Medline, Embase, Scopus, Web of Science and Google Scholar with a systematic search query (available in Supplementary file).

Review target and questions

This review is designed to answer the following three questions among adult hypertensive patients aged ≥ 18 years. The described relationship between hypertension with fatal and nonfatal CHD and stroke events was based on the CVD policy model (Figure 1). ${ }^{[27]}$

1. What is the risk of developing fatal (acute) and nonfatal (chronic) CHD among patients with hypertension?
2. What is the risk of developing fatal (acute) and nonfatal (chronic) CHD among patients with treatment-resistant hypertension?
3. How comprehensive is the CVD policy model being utilized for the evaluation of the cost-effectiveness of hypertension treatment in addressing most relevant events?

Study types

Cohort studies addressing fatal and nonfatal CHD and stroke events (CHD death, stroke death, nonfatal stable angina, nonfatal unstable angina, nonfatal myocardial infarction, nonfatal stroke and nonfatal transient ischemic attack) among adults with hypertension.

Inclusion and exclusion criteria

Cohort studies comparing fatal and nonfatal CHD and stroke events among adult patients with hypertension (treated controlled, treated uncontrolled and treatment-resistant hypertension) are included. Studies conducted before January 2000, systematic reviews, guidelines, short communications, conference proceedings and articles that do not meet quality evaluation criteria are excluded.

Figure 1 Cardiovascular disease policy model structure presenting the relationship between fatal and nonfatal CHD and stroke events in hypertensive adults. Adapted from: Moran et al. ${ }^{[27]}$

Abbreviations: BMI, body mass index; CHS, coronary heart disease; CVD, cardiovascular disease; MI, myocardial infarction; TIA, transient Ischemic attack.

Figure 2 PRISMA flowchart representing the result of search and the number of articles excluded and eligible for review.

Study selection and data abstraction

From a total of 213 articles identified by literature search 35 , potentially relevant articles were selected. After applying the inclusion-exclusion criteria listed above, only 14 articles were found to be relevant. These fourteen articles were included in the final review ${ }^{[36]}$ (Figure 2).

Risk of bias assessment

Studies fulfilling our eligibility criteria were assessed for internal validity at the study level by two reviewers independently. The risk of bias of cohort studies was evaluated using the risk of bias assessment tool for cohort studies. ${ }^{[37]}$ The tool contains eight questions with four
ratings for each question. These questions address; selecting exposed and unexposed from the same population; certainty in the assessment of exposure; confidence that the outcome of the study is not present at the start of the study; matching exposed and unexposed for all variables; confidence in the assessment of presence or absence of prognostic factors; confident on the assessment of the outcome; adequacy of the follow-up; and similarity of co-interventions between groups. Definitely yes (low risk), probably yes, probably no, and definitely no (high risk). ${ }^{[37]}$ All authors evaluated the risk of bias independently and rated the risk bias as high, intermediate or low. The overall risk of bias of included cohort studies was low (Table 1).

Quality assessment and data abstraction

Two investigators independently rated each study's quality as 'good', or 'poor' by using JBI Critical Appraisal Checklist for Cohort Studies (Table 2). ${ }^{[38]}$ The checklist addresses the following 11 issues: recruiting cohort groups from a similar population; similarity in exposures measurement to assign people to both exposed and unexposed groups; validity and reliability exposure measurement methods; identification of confounding factors; setting strategies to deal with confounding factors stated; absence of the outcome in the groups/participants at the start of the study; validity and reliability of outcomes measurement; sufficiency of follow-up time for outcome occurrence; follow up completeness; strategies to address an incomplete follow up and appropriateness of statistical analysis being used. ${ }^{[38]}$ We excluded poor-quality cohort studies. In general, good-quality studies did not meet at most one pre-specified criteria. A poor-quality study did not meet at least two criteria and had a fatal limitation. Disagreements among us are managed through discussion in the presence of other authors. Two investigators abstracted study design information, baseline population characteristics, intervention details, BP control and clinical outcomes from all included studies into an evidence table (Table 3). A third investigator checked these data for accuracy.

Data synthesis and analysis

We qualitatively described and summarized the evidence on the prevalence of fatal and nonfatal CHD and stroke events among adults with controlled and uncontrolled hypertension. We stratified results by prevalence of CHD and stroke mortality, prevalence of stable angina, prevalence of stable angina, prevalence of myocardial infarction, prevalence of stroke and transient ischemic attack, cardiovascular disease risk difference and transitional probabilities between events. Finally, appropriate conclusions and recommendations will be made based on the results of the included studies.

Results

Description of included studies

Fourteen cohort studies involving 1674773 hypertensive adult population and 499226 adults with treatment-resistant hypertension were included in this systematic review. Seven studies were from the USA, ${ }^{[39-45]}$ two were from China ${ }^{[46,50]}$ and one study from each of the following countries; Japan, ${ }^{[48]}$ UK, ${ }^{[33]}$ Spain, ${ }^{[47]}$ Korea ${ }^{[49]}$ and Sweden. ${ }^{[51]}$ The duration of follow-up of included cohort studies ranged from 5 years to 29 years. The following twelve vascular, cerebral, and peripheral complications, along with fatal CHD and stroke events were included. The included events were CHD and stroke mortality, unstable angina, stable angina, myocardial infarction, heart failure (HF), cardiac arrest, transient ischemic attack, ischemic
stroke, subarachnoid hemorrhage, intracranial hemorrhage, PAD and AAA. ${ }^{[33,39-51]}$

Association between hypertension and all-cause, coronary heart disease and cardiovascular disease mortality

A cohort study conducted in the UK among 1.2 million adults showed that the relative risk of developing CHD death among hypertensive adults was 1.26 (95\% CI, 1.19-1.34). ${ }^{[33]}$ A cohort study conducted in the USA to evaluate the impact of sustained BP control showed that the relative risk of fatal CHD and composite outcomes (fatal CHD, stroke, and HF, and mortality) were 1.16 (95% CI, $0.93-1.44$) and 1.14 (95% CI, $0.99-1.44$), respectively. ${ }^{[41]}$ A cohort study conducted in the UK showed that the relative risk of developing cardiac arrest among hypertensive adults was 1.19 (95\% CI, 1.10-1.29). ${ }^{[33]}$ A cohort study conducted to identify the relationship of SBP with all-cause mortality among 121082 Chinese adults aged 18 or older showed higher mortality rate in men with SBP < 100 mmHg , SBP $120-139 \mathrm{mmHg}, \mathrm{SBP} 140-159 \mathrm{mmHg}, \mathrm{SBP}$ $160-179 \mathrm{mmHg}$ and $\mathrm{SBP} \geq 180 \mathrm{mmHg}$ were 1.46 ($95 \% \mathrm{CI}, 1.14-$ 1.86), 1.14 (95% CI, 1.04-1.26), 1.29 (95% CI, 1.16-1.44), 1.57 ($95 \% \mathrm{CI}, 1.38-1.79$) and 2.07 (95% CI, $1.76-2.43, P<0.0001$), respectively. ${ }^{[50]}$

Another cohort study conducted among 97013 Chinese adults to examine the impact of different levels of SBP on the incidence of cardiovascular and cerebrovascular events and all-cause mortality showed that the risk of all-cause mortality and cardiovascular and cerebrovascular events below 50 years was 1.20 (95% CI, $1.13-1.28$) and 1.27 (95% CI, 1.20-1.34), respectively. Similarly, all-cause mortality and cardiovascular and cerebrovascular events at ≥ 50 years were 1.08 (95% CI, $1.05-1.10$) and 1.17 (95% CI, $1.14-1.19$), respectively at $P<0.01)$. ${ }^{[46]}$

A cohort study conducted in Spain among 52007 adults aged ≥ 30 years to estimate the attributable risk associated with hypertension for all-cause mortality and cardiovascular hospitalization showed that avoidable deaths attributed by hypertension were (PAR) $41.8 \% ~(95 \%$ CI, $28-53.24)$ and $37.84 \% ~(95 \%$ CI, $5.74-61.5$) in men and women, respectively. The risk of hypertension attributed to total mortality was 38.6 (95% CI, 24.1-53.0) and 13.4 (95% CI, 5.1-21.8) in men and women, respectively. The risk of hypertension attributed CHD in-hospital admission was 61.1 (95% CI, 43.8-78.3) and 14.7 (2.4-27.0) in men and women, respectively. Similarly, the risk of HTN attributed in-hospital stroke admission was 40.0 ($95 \% \mathrm{CI}, 24.1-55.8$) and 14.7 ($95 \% \mathrm{CI}, 2.3-27.0$) in men and women, respectively. ${ }^{[47]}$

A cohort study conducted in Japan to clarify the relationship between BP and mortality from stroke, heart disease, CVD and all causes of death showed higher risk all-cause mortality 1.01 (95% CI, $0.66-1.53, P<0.001$), and 1.33 ($95 \% \mathrm{CI}, 0.92-1.93, P=0.076$) among men and women respectively at BP $120-129 / 80-84 \mathrm{mmHg}$ when compared with $\mathrm{BP}<120 / 80 \mathrm{mmHg}$. A relative risk of CVD case mortality was also higher 1.28 ($95 \% \mathrm{CI}, 0.87-9.05, P<0.001$), and $1.73(95 \% \mathrm{CI}, 0.91-3.29, P=0.005)$ among men and women respectively at BP $120-129 / 80-84 \mathrm{mmHg}$ when compared with BP $<120 / 80 \mathrm{mmHg}$. Similarly, relative risk of CHD case mortality 5.25 ($95 \% \mathrm{CI}, 0.83-33.01, P<0.024$), and 1.62 (95% CI, $0.70-3.72$, $P=0.24$) among men and women respectively at BP 120-129/8084 mmHg when compared with $\mathrm{BP}<120 / 80 \mathrm{mmHg} .{ }^{[48]}$ A cohort study conducted in Korea to estimate the proportion of hypertensive adults who would meet BP goals under SPRINT criteria and under
Table 1 Rating risk bias of cohort studies included for estimating of lifetime risks of CVD associated with hypertension at different index ages, for potential consideration in basic Markov model as inputs for evaluating cost-effectiveness of hypertension treatment based on treatment guidelines based on tools for assessment of risk of bias in cohort studies

Tool question number	Rapsomanik E. et al. 2014		Huffman MD.et al. 2013		Lloyd-Jones DM.etal. 2002		Bowling CB. et al. 2019		Rodriguez CJ. et al. 2014		BangaloreS. et al. 2014		Irvin MR. et al. 2014		$\begin{aligned} & \text { Sim JJ. } \\ & \text { et al. 2015) } \end{aligned}$		$\begin{aligned} & \text { Song Y. } \\ & \text { et al. } 2016 \end{aligned}$		Redon J. et al. 2016		$\begin{aligned} & \text { Lida M. } \\ & \text { et al. } 2003 \end{aligned}$		$\begin{aligned} & \text { Ko MJ. } \\ & \text { et al. } 2016 \end{aligned}$		$\begin{gathered} \text { Li C. } \\ \text { et al. } 2018 \end{gathered}$		Holmqvist L. et al. 2018	
	Yes	No																										
1	\checkmark																											
2	\checkmark		\checkmark		\checkmark		V		,		\checkmark																	
3	\checkmark		,		1		$\sqrt{ }$		\checkmark		\checkmark																	
4	\checkmark			\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark			\checkmark											
5	\checkmark		\checkmark		\checkmark		,		\checkmark		1		\checkmark		\checkmark		\checkmark											
6	\checkmark		,																									
7	\checkmark																											
8	\checkmark		$\sqrt{ }$		\checkmark		\checkmark		,		\checkmark		,		\checkmark		$\sqrt{ }$,									
Over all bias	Low																											

Table 2 Critical appraisal of cohort studies included for estimating of lifetime risks of CVD associated with hypertension at different index ages, for potential consideration in basic Markov model as inputs for evaluating cost-effectiveness of hypertension treatment based on treatment guidelines based on JBI Critical Appraisal Checklist for Cohort Studies
Re Huffman Lim Song Y Redon Lida Ko MJ. LiC. Holmqvist

 evaluating cost-effectiveness of hypertension treatment based on treatment guidelines

S. No	Reference	Study type	Country	Study objective	Sample size	Events/Outcomes	Life time risk		
							Normotensives	Hypertensives	Lifetime risk difference
1	Rapsomanik					Index age 30			
	E. et al.					Stable angina	4.9 (4.7-5.2)	8.9 (8.7-9.2)	4.0 (3.7, 4.3)
	$2014{ }^{[33]}$					Unstable angina	6.7 (6.4-7.0)	10.1 (9.8-10.3)	$3.4(3.0,3.7)$
						Myocardial infarction	5.5 (5.3-5.8)	8.0 (7.8-8.3)	2.5 (2.2, 2.8)
						Unheralded CHD death	1.9 (1.8-2.1)	2.5 (2.4-2.6)	0.6 (0.3, 0.8)
						Heart failure	5.2 (4.9-5.6)	7.8 (7.6-8.1)	2.6 (2.2, 3.0)
						Cardiac arrest/SCD	1.8 (1.7-2.0)	2.3 (2.2-2.4)	$0.5(0.3,0.7)$
						Transient ischemic attack	5.9 (5.6-6.2)	6.5 (6.3-6.7)	0.6 (0.3, 1.0)
						Ischemic stroke	6.5 (6.2-6.9)	7.6 (7.3-7.8)	1.0 (0.7, 1.4)
						Subarachnoid hemorrhage	0.6 (0.5-0.7)	0.9 (0.7-1.0)	0.3 (0.2, 0.4)
						Intracerebral hemorrhage	0.9 (0.8-1.0)	1.3 (1.2-1.4)	$0.4(0.2,0.5)$
						Peripheral arterial disease	4.5 (4.2-4.7)	5.8 (5.6-6.0)	1.3 (1.0, 1.6)
						Abdominal aortic aneurysm	1.5 (1.4-1.7)	1.6 (1.5-1.7)	$0.1(-0.1,0.3)$
						Index age 60			
						Stable angina	4.5 (4.3-4.7)	8.1 (7.9-8.4)	3.6 (3.3, 3.9)
						Unstable angina	$5.9(5.6-6.2)$	8.6 (8.3-8.9)	2.7 (2.4, 3.0)
						Myocardial infarction	5.0 (4.8-5.2)	7.1 (6.9-7.4)	$2.1(1.8,2.4)$
						Unheralded CHD death	1.9 (1.8-2.1)	2.4 (2.3-2.6)	0.5 (0.3, 0.7)
						Heart failure	5.5 (5.2-5.9)	8.0 (7.7-8.3)	2.5 (2.1, 2.9)
						Cardiac arrest/SCD	1.7 (1.6-1.9)	2.0 (1.9-2.2)	0.3 (0.1, 0.5)
						Transient ischemic attack	$5.9(5.6-6.3)$	$6.6(6.4-6.8)$	0.6 (0.3, 1.0)
						Ischemic stroke	$6.6(6.3-7.0)$	7.7 (7.5-8.0)	1.1 (0.7, 1.5)
						Subarachnoid hemorrhage	0.5 (0.4-0.6)	0.7 (0.6-0.9)	0.3 (0.1, 0.4)
						Intracerebral hemorrhage	0.9 (0.8-1.0)	1.3 (1.2-1.4)	$0.4(0.2,0.5)$
						Peripheral arterial disease	$4.4(4.1-4.6)$	$5.9(5.7-6.1)$	$1.5(1.2,1.8)$
						Abdominal aortic aneurysm	1.7 (1.5-1.9)	1.7 (1.5-1.8)	$0.0(-0.2,0.2)$
						Index age 80			
						Stable angina	3.6 (3.4-3.8)	6.6 (6.3-6.8)	3 (2.7, 3.2)
						Unstable angina	4.7 (4.5-5.0)	6.9 (6.6-7.2)	2.2 (1.9, 2.5)
						Myocardial infarction	4.0 (3.8-4.2)	5.9 (5.6-6.1)	1.8 (1.6, 2.1)
						Unheralded CHD death	1.8 (1.6-2.0)	2.3 (2.1-2.5)	0.5 (0.4, 0.7)
2	Huffman MD. et al. 2013 ${ }^{[39]}$	Cohort	USA	To estimate lifetime risk of HF by race and sex	37, 572	HF risk among hypertensives at age 45 (\%)			
						$\mathrm{BP} \leq 120 / 80 \mathrm{mmHg}$ white men	9.8 (5.8-13.9)	$12.1(10.3-14.0)$	2.3\%
						$\mathrm{BP} \leq 120 / 80 \mathrm{mmHg}$ white women	9.9 (6.9-12.8)	$8.6(7-10.4)$	
						$\mathrm{BP} \leq 120 / 80 \mathrm{mmHg}$ black men	-	13.9 (5.9-22)	
						$\mathrm{BP} \leq 120 / 80 \mathrm{mmHg}$ black women	$6.7(0-14)$	6.9 (0-16.1)	
						$B P \geq 160 / 100 \mathrm{mmHg}$ white men	9.8 (5.8-13.9)	16.3 (13.5-19.2)	6.5\%
						$\mathrm{BP} \geq 160 / 100 \mathrm{mmHg}$ white women	$9.9 \text { (6.9-12.8) }$	$13.3 \text { (9.7-16.9) }$	3.4\%
						BP $\geq 160 / 100 \mathrm{mmHg}$ black men	-	12.7 (3.2-22.2)	
						BP $\geq 160 / 100 \mathrm{mmHg}$ black women	6.7 (0-14)	16.0 (6.4-25.5)	7.3\%

Table 3 Continued

S. No	Reference	Study type	Country	Study objective	Sample size	Events/Outcomes	Life time risk		
							Normotensives	Hypertensives	Lifetime risk difference
3	Lloyd-Jones DM. et al. $2002^{[40]}$	Cohort	USA	To determine Lifetime Risk for Developing Congestive Heart Failure	8229	Lifetime risk for CHF			
						at 40 for men	14.8\%	21.0\% (18.7-23.2)	6.2\% (RD)
						at 50 for men	17.3\%	20.9\% (18.6-23.2)	3.6\%
						At 60 for men	17.4\%	20.5\% (18.1-22.9)	3.1\%
						at 70 for men	15.1\%	20.6\% (17.8-23.4)	5.5\%
						at 40 for women	12.0\%	20.3 (18.2-22.5)	8.3\%
						at 50 for women	12.4\%	20.5 (18.3-22.6)	8.1\%
						at 60 for women	14.4\%	20.5 (18.3-22.8)	6.1\%
						at 70 for women	14.3\%	20.2 (17.8-22.6)	5.9\%
4	Bowling CB. et al. $2019{ }^{[41]}$	Cohort	USA	To evaluate the impact of Sustained BP control ($<140 \mathrm{~mm} \mathrm{Hg}$) on coronary heart disease,stroke, heart failure and mortality	24309	Sustained BP control rate $\geq 75-100 \%$			
						Fatal CHD or non-fatal MI		1.07 (0.83-1.39)	$P=0.14$
						Stroke		1.13 (0.78-1.65)	$P<0.01$
						Heart failure		1.11 (0.83-1.48)	$P<0.01$
						Composite CVD outcomes*		$1.08(0.90-1.29)$	$P<0.01$
						All-cause mortality		$1.04(0.88-1.22)$	$P=0.06$
						Sustained BP control rate 50-75\%			
						Fatal CHD or non-fatal MI		1.22 (0.97-1.52)	$P=0.14$
						Stroke		1.05 (0.74-1.47)	$P<0.01$
						Heart failure		1.30 (1.01-1.67)	$P<0.01$
						Composite CVD outcomes*		1.16 (0.99-1.36)	$P<0.01$
						All-cause mortality		1.00 (0.87-1.16)	$P=0.06$
						Sustained BP control rate < 50\%			
						Fatal CHD or non-fatal MI		1.16 (0.93-1.44)	$P=0.14$
						Stroke		1.71 (1.26-2.32)	$P<0.01$
						Heart failure		1.63 (1.30-2.06)	$P<0.01$
						Composite CVD outcomes*		1.39 (1.20-1.62)	$P<0.01$
						All-cause mortality		1.14 (0.99-1.30)	$P=0.06$
5	Rodriguez CJ. et al. $2014{ }^{[42]}$	Cohort	USA	To examine the risk of incident cardiovascular (CV) events among adults with HTNaccording to 3 SBP levels: 140 mm Hg or higher; 120 to 139 mm Hg ; and a reference level of lower than 120 mm Hg .	4480	Heart failure (RR)			
						SBP 120-139 mmHg	1.14 (0.97-1.34)	1.49 (1.23-1.81)	0.35
						SBP 120-139 mmHg men	$1.08(0.86-1.35)$	$1.44 \text { (1.08-1.92) }$	
						SBP 120-139 mmHg women	1.15 (0.92-1.45)	1.54 (1.18-2.02)	
						SBP 120-139 mmHg blacks	1.43 (1.12-1.83)	1.57 (1.18-2.08)	
						SBP 120-139 mmHg whites	1.01 (0.82-1.25)	1.44 (1.09-1.90)	
						Stroke			
						SBP 120-139 mmHg	1.05 (0.83-1.32)	1.87 (1.43-2.44)	
						SBP 120-139 mmHg men	1.02 (0.73-1.43)	1.90 (1.27-2.85)	
						SBP 120-139 mmHg women	1.08 (0.78-1.49)	1.83 (1.28-2.61)	

Table 3 Continued

S. No	Reference	Study type	Country	Study objective	Sample size	Events/Outcomes	Life time risk		
							Normotensives	Hypertensives	Lifetime risk difference
6	Bangalore S. et al. 2014 [43]	Cohort	USA	To determine the prevalence, predictors, and outcomes among apparent treatmentresistant hypertension, especially in patients with coronary artery disease.	10001	SBP 120-139 mmHg African American	1.10 (0.80-1.52)	1.63 (1.15-2.32)	
						SBP 120-139 mmHg whites	1.09 (0.78-1.52)	2.03 (1.33-3.09)	0.94
						Myocardial infarction			
						SBP 120-139 mmHg	0.99 (0.82-1.20)	1.41 (1.12-1.78)	
						SBP 120-139 mmHg men	0.88 (0.68-1.14)	1.53 (1.10-2.13)	
						SBP 120-139 mmHg women	1.03 (0.78-1.36)	1.18 (0.85-1.65)	
						SBP 120-139 mmHg blacks	1.00 (0.74-1.34)	1.35 (0.97-1.88)	
						SBP 120-139 mmHg whites	1.00 (0.78-1.29)	1.45 (1.03-2.04)	0.45
						aTRH is associated with			
						Major cardiovascular event		1.64 (1.39-1.94)	$P<0.001$
						Coronary heart disease death		1.69 (1.22-2.34)	$P=0.001$
						Non-fatal MI		1.73 (1.39-2.16)	$P<0.0001$
						Resuscitated cardiac arrest		1.72 (0.81, 3.64)	$P=0.1544$
						Stroke		1.52 (1.05-2.19)	$P=0.0714$
						Angina pectoris		1.68 (1.44-1.95)	$P<0.0001$
						Heart failure		1.37 (0.88-2.13)	$P=0.05$
						All case mortality		1.45 (1.12-1.89)	$P<0.0011$
						Coronary re-vascularization		1.59 (1.35-1.87)	$P<0.0001$
						All-cause mortality		1.45 (1.16-1.80)	$P=0.0011$
						Transient ischemic attack		0.95 (0.62-1.45)	$P=0.8009$
						Any coronary event		1.60 (1.43-1.78)	$P<0.0001$
						Any CV event		1.53 (1.39-1.69)	$P<0.0001$
7	Irvin MR. et al. $2014^{[44]}$	Cohort	USA	To evaluate the association of apparent (aTRH)with incident stroke, CHD and all-cause mortality	14522	Non-resistant HTN ref. (Hazard ratio,$95 \% \text { CI) }$			
						Ange-sex and race adjusted stroke		1.16 (0.76-1.77)	
						Multivariable adjusted stroke		1.07 (0.67-1.71)	$P>0.05$
						Ange-sex and race adjusted CHD		$1.91 \text { (1.12-3.26) }$	
						Multivariable adjusted CHD		2.33 (1.21-4.48)	$P<0.05$
						Ange-sex and race adjusted all-cause mortality		1.07 (0.84-1.36)	
						Multivariable adjusted all-cause mortality		1.15 (0.91-1.45)	$P>0.05$
8	$\begin{aligned} & \text { Sim JJ. } \text { et al. } \\ & 2015)^{[45]} \end{aligned}$	Cohort	USA	To compare the risk of endstage renal disease (ESRD), ischemic heart event (IHE), CHF, cerebrovascular accident (CVA), and allcause mortalityamong 470386 individuals with resistant and nonresistanthypertension (non-RH).	470386	IHD (Adjusted hazard ratio, $95 \% \mathrm{CI}$)			

Table 3 Continued

S. No	Reference	Study type	Country	Study objective	Sample size	Events/Outcomes	Life time risk		
							Normotensives	Hypertensives	Lifetime risk difference
9	$\begin{aligned} & \text { Song Y. et al. } \\ & 2016^{[46]} \end{aligned}$	Cohort	China			RH (cRH+uRH) versus non-RH		1.24 (1.20, 1.28)	$P<0.05$
						cRH versus non-RH		1.21 (1.16, 1.26)	$P<0.05$
						uRH versus non-RH		1.26 (1.21, 1.31)	$P<0.05$
						cRH versus uRH		0.96 (0.91, 1.01)	$P<0.05$
						Heart failure (Adjusted hazard ratio, $95 \% \mathrm{CI}$)			
						RH (cRH+uRH) versus non-RH		1.46 (1.40, 1.52)	$P<0.05$
						cRH versus non-RH		1.51 (1.43, 1.59)	$P<0.05$
						uRH versus non-RH		1.42 (1.35, 1.50)	$P<0.05$
						cRH versus uRH		1.06 (0.99, 1.12)	$P<0.05$
						Cerebrovascular event (adjust. HR, $95 \% \mathrm{CI}$)			
						RH (cRH+uRH) versus non-RH		1.14 (1.10, 1.19)	$P<0.05$
						cRH versus non-RH		$1.01(0.95,1.07)$	$P<0.05$
						uRH versus non-RH		1.24 (1.18, 1.30)	$P<0.05$
						cRH versus uRH		0.81 (0.76, 0.88)	$P<0.05$
						ESRD (adjust. HR, 95\% CI)			
						RH (cRH+uRH) versus non-RH		1.32 (1.27, 1.37)	$P<0.05$
						cRH versus non-RH		1.16 (1.10, 1.22)	$P<0.05$
						uRH versus non-RH		1.45 (1.39, 1.52)	$P<0.05$
						cRH versus uRH		0.80 (0.75, 0.85)	$P<0.05$
						All-cause mortality (adjust. HR, $95 \% \mathrm{CI}$)			
						$\mathrm{RH}(\mathrm{cRH}+\mathrm{uRH}) \text { versus non-RH }$		1.06 (1.03, 1.08)	$P<0.05$
						cRH versus non-RH		1.05 (1.02, 1.09)	$P<0.05$
						uRH versus non-RH		1.06 (1.03, 1.09)	$P<0.05$
						cRH versus uRH		0.99 (0.95, 1.03)	$P<0.05$
				To examine the impact of differentlevels of SBP on the incidence ofcardiovascular and cerebrovascular events and all-causedeath in Chinese adults	97013	Cardiovascular and cerebrovascular events HR)		1.20 (1.13-1.28)	
						$\mathrm{SBP}<110 \mathrm{~mm} \mathrm{Hg}$ (reference)	1		
						Adjusted for sex and age VS SBP 5	1.49 (1.11-2.00)	2.63 (2.00-3.46)	1.14
						Adjusted for multivariable	1.35 (1.00-1.82)	2.05 (1.55-2.72)	0.7
						MI			
						Adjusted for sex and age	1.47 (0.82-2.64)	2.08 (1.21-3.56)	0.61
						Adjusted for multivariable	1.35 (0.74-2.47)	1.58 (0.89-2.79)	
						Ischemic stroke			
						Adjusted for sex and age	$1.49(1.01-2.22)$	$2.61(1.82-3.75)$	1.12
						Adjusted for multivariable	1.35 (0.91-2.01)	$2.00(1.38-2.90)$	
						Hemorrhagic stroke			
						Adjusted for sex and age	1.51 (0.77-2.96)	3.57 (1.93-6.60)	2.06
						Adjusted for multivariable	1.37 (0.69-2.72)	2.97 (1.59-5.56)	1.6

Table 3 Continued

Table 3 Continued

S. No	Reference	Study type	Country	Study objective	Sample size	Events/Outcomes	Life time risk		
							Normotensives	Hypertensives	Lifetime risk difference
13	$\begin{aligned} & \text { Li C. et al. } \\ & 2018^{[50]} \end{aligned}$	Cohort	China	To identify the relationship of SBP with all-cause mortality in Chinese menand women.	121082	Age- and sex-adjusted MI			
						Above SPRINT but Below JNC 8 BP goal	1.02 (0.74-1.42)	1.51 (1.08-2.12)	$P<0.001$
						Multivariable adjusted MI			
						Above SPRINT but Below JNC 8 BP goal	1.22 (0.88-1.70)	1.68 (1.19-2.36)	$P<0.001$
						Age- and sex-adjusted Stroke			
						Above SPRINT but Below JNC 8 BP goal	1.03 (0.78-1.35)	1.49 (1.12-1.99)	$P<0.001$
						Multivariable adjusted Stroke			
						Above SPRINT but Below JNC 8 BP goal	1.14 (0.86-1.51)	1.61 (1.20-2.16)	$P<0.001$
						Age- and sex-adjusted all-cause mortality			
						Above SPRINT but Below JNC 8 BP goal	0.71 (0.62-0.81)	0.86 (0.74-1.00)	$P=0.96$
						Multivariable adjusted all-cause mortality			
						Above SPRINT but Below JNC 8 BP goal	0.83 (0.72-0.95)	0.98 (0.84-1.15)	$P=0.22$
						Multivariable adjust. Mortality rate (SBP 100-119mmHg reference)	1		
						In general population SBP $<100 \mathrm{mmHg}$		1.30 (1.03-1.64)	$P<0.0001$
						In male SBP < 100 mmHg		1.46 (1.14-1.86)	$P<0.0001$
						In female SBP < 100 mmHg		0.56 (0.24-1.29)	$P<0.017$
						In general population SBP $120-139 \mathrm{mmHg}$		1.13 (1.03-1.24)	$P<0.0001$
						In male SBP 120-139 mmHg		1.14 (1.04-1.26)	$P<0.0001$
						In female SBP 120-139 mmHg		1.02 (0.75-1.39)	$P<0.017$
						In general population SBP $140-159 \mathrm{mmHg}$		1.29 (1.17-1.44)	$P<0.0001$
						In male SBP 140-159 mmHg		1.29 (1.16-1.44)	$P<0.0001$
						In female SBP 140-159 mmHg		1.44 (1.01-2.07)	$P<0.017$
						In general population SBP $160-179 \mathrm{mmHg}$		1.57 (1.39-1.78)	$P<0.0001$
						In male SBP 160-179 mmHg		1.57 (1.38-1.79)	$P<0.0001$
						In female SBP 160-179 mmHg		1.63 (1.04-2.55)	$P<0.017$
						In general population $\mathrm{SBP} \geq 180 \mathrm{mmHg}$		2.09 (1.79-2.44)	$P<0.0001$
						In male SBP $\geq 180 \mathrm{mmHg}$		2.07 (1.76-2.43)	$P<0.0001$
						In female SBP $\geq 180 \mathrm{mmHg}$		2.31 (1.27-4.20)	$P<0.017$

Table 3 Continued

S. No	Reference	Study type	Country	Study objective	Sample size	Events/Outcomes	Life time risk		
							Normotensives	Hypertensives	Lifetime risk difference
14	Holmqvist L. et al. $2018^{[51]}$	Cohort	Sweden	To assess CV outcome in patients with TRH compared with patients with non-TRH	4317	TRHN compared with non-resistant HTN			
						Age-sex adjusted total mortality risk		1.10 (1.01-1.20)	$P<0.05$
						Multivariable adjusted total mortality		1.12 (1.03-1.23)	$P<0.05$
						Age-sex adjusted CVD mortality risk		1.27 (1.10-1.47)	$P<0.05$
						Multivariable adjusted CVD mortality risk		1.20 (1.03-1.40)	$P<0.05$
						Age-sex adjusted IHD risk		1.16 (1.02-1.31)	$P<0.05$
						Multivariable adjusted IHD risk		1.12 (0.99-1.27)	$P<0.05$
						Age-sex adjusted Angina pectoris risk		1.27 (1.07-1.51)	$P<0.05$
						Multivariable adjusted Angina risk		1.24 (1.03-1.48)	$P<0.05$
						Age-sex adjusted MI risk		1.08 (0.93-1.25)	$P>0.05$
						Multivariable adjusted MI risk		$1.03(0.89-1.20)$	$P>0.05$
						Age-sex adjusted HF risk		1.31 (1.15-1.49)	$P<0.05$
						Multivariable adjusted HF risk		1.34 (1.17-1.54)	$P<0.05$
						Age-sex adjusted stroke risk		1.11 (0.97-1.27)	$P>0.05$
						Multivariable adjusted stroke risk		1.03 (0.90-1.19)	$P>0.05$
						Age-sex adjusted TIA risk		$1.12(0.87-1.45)$	$P>0.05$
						Multivariable adjusted TIA risk		1.12 (0.86-1.46)	$P>0.05$

[^0]JNC-8 recommendations showed that the rate of CV death was [1.11 ($95 \% \mathrm{CI}, 0.71-1.73$) and $1.39(95 \% \mathrm{CI}, 0.87-2.20), P=0.13]$ above SPRINT but below JNC 8 BP goal, and above JNC-8 goal respectively. Similarly, rate of all-cause mortality was $[0.83(0.72-0.95)$ and 0.98 ($95 \% \mathrm{CI}, 0.84-1.15$), $P=0.22]$ above SPRINT but below JNC 8 BP goal, and above JNC-8 goal respectively. ${ }^{[49]}$

A cohort study conducted to determine the prevalence and outcomes of apparent treatment-resistant hypertension (aTRH) showed that the relative risk of developing major cardiac events (MACE) 1.64 ($95 \% \mathrm{CI}, 1.39-1.94, P<0.001$), CHD death 1.69 ($95 \% \mathrm{CI}$, $1.22-2.34, P<0.001$) and all-cause mortality 1.45 (95% CI, 1.12$1.89, P=0.005) \cdot{ }^{[43]}$ Another cohort study conducted to assess CV outcome in patients with treatment-resistant hypertension (TRH) compared with patients with non-TRH in Sweden among 4317 showed that the relative risk of all-cause mortality was 1.12 (1.031.23) and CVD mortality was 1.20 (1.03-1.40). ${ }^{[51]} \mathrm{A}$ similar cohort study conducted to evaluate the association of apparent aTRH with CHD and stroke events in the USA among 14522 patients with aTRH showed that the relative risk of developing CHD and all-cause mortality was 1.69 (95% CI, 1.27-2.24) and 1.29 (95% CI, 1.14-1.46), respectively. The risk of CHD in uncontrolled aTRH compared with controlled aTRH was 2.33 (95% CI, 1.21-4.48). ${ }^{[44]}$ A cohort study conducted among 478385 patients showed that patients with resistant hypertension [controlled resistant hypertension (cRH) and uncontrolled resistant hypertension (uRH)] had increased risk of ischemic heart event 1.24 (95% CI, 1.20-1.28), HF. 46 (95% CI, 1.40-1.52), cardiovascular events $(H R=1.14,1.10-1.19)$, end-stage renal disease (ESRD) 1.32 (95% CI, 1.27-1.37) and allcause mortality 1.06 (95% CI, 1.03-1.08) when compared with the non-RH population. ${ }^{[45]}$

Association between hypertension and heart failure

A cohort study conducted to estimate the lifetime risk of HF by race and gender showed that the relative risk of developing HF among white men, white women and black women with $\mathrm{BP} \leq 120 / 80 \mathrm{mmHg}$ in 45 years old was $9.8 \%, 9.9 \%$ and 6.9%, respectively. The relative risk of developing HF among white men, white women, black men and black women with BP $140-159 / 90-99 \mathrm{mmHg}$ at 45 years was $12.1 \%, 8.6 \%, 13.9 \%$ and 6.7%, respectively. Similarly, the relative risk of developing HF among white men, white women, black men and black women with $\mathrm{BP} \geq 160 / 100 \mathrm{mmHg}$ or treated at 45 years was $16.3 \%, 13.3 \%, 12.7 \%$ and $16.0 \% .{ }^{[39]}$ A cohort study conducted in the USA to examine the risk of CV events among adults with hypertension in reference to SBP < 120 mmHg among 4480 adults showed that RR of developing HF was 1.49 (95% CI, 1.23-1.81) at SBP $\geq 140 \mathrm{mmHg}$ [i.e. 1.44 (95% CI, $1.08-1.92$) in men and 1.54 ($95 \% \mathrm{CI}, 1.18-2.02$) in women]. ${ }^{[42]}$ A cohort study conducted in the UK showed that HF was 1.5 times more common in patients with hypertension than in those with normal blood pressure 1.5 (95% CI, 1.44-1.55). ${ }^{[33]} \mathrm{A}$ cohort study conducted to determine the prevalence and outcomes of apparent treatment-resistant hypertension (aTRH) showed that the relative risk of developing HF 1.37 ($95 \% \mathrm{CI}, 0.88-2.13, P=0.1610$) when compared with non-resistant hypertension. ${ }^{[43]}$

Association between hypertension and angina pectoris

A cohort study conducted in the UK showed that the RR of developing stable angina among hypertensive adults, 30-59 years old normotensives, $60-79$ years old normotensives and ≥ 80 years old
normotensives were 1.41 ($95 \% \mathrm{CI}, 1.36-1.46$); 0.63 ($95 \% \mathrm{CI}, 0.53-$ 0.76); 0.77 (95% CI, $0.70-0.85$); and 0.64 (95% CI, $0.47-0.87$), respectively. Similarly, the relative risk of developing unstable angina among hypertensive adults, 30-59 years old normotensives, 60-79 years old normotensives and ≥ 80 years old normotensives were 1.25 (95% CI, $1.18-1.32$); 0.70 (95% CI, $0.60-0.81$); 0.78 (95% CI, $0.71-0.86$); and 0.89 (95% CI, $0.70-1.13$), respectively. Stable angina was 1.8 times more common in patients with hypertension than in those with normal blood pressure and stable angina with a lifetime risk ratio of 1.82 ($95 \% \mathrm{CI}, 1.76-1.87$). ${ }^{[33]} \mathrm{A}$ cohort study conducted to determine the prevalence and outcomes of apparent treatment-resistant hypertension (aTRH) showed that the relative risk of developing angina pectoris 1.98 ($95 \% \mathrm{CI}, 1.58-2.47$, $P<0.0001)$. ${ }^{[43]}$

Association between hypertension and myocardial infarction

A cohort study conducted in the USA to examine the risk of CV events among adults with hypertension in reference to SBP < 120 mmHg among 4480 adults showed a higher risk of developing MI at SBP $\geq 140 \mathrm{mmHg}$ among men 1.53 ($95 \% \mathrm{CI}, 1.10-2.13$) in men and 1.18 ($95 \% \mathrm{CI}, 0.85-1.65$) in women. ${ }^{[42]}$ A cohort study conducted in the UK showed that the relative of developing MI among hypertensive adults, 30-59 years old normotensives, 60-79 years old normotensives and ≥ 80 years old normotensive were 1.29 (95% CI, 1.25-1.34), 0.68 (95% CI, $0.58-0.80$), 0.78 (95% CI, $0.70-0.87$) and $0.86(95 \%$ CI, $0.70-1.05)$, respectively. ${ }^{[33]}$ Another cohort study conducted among 97013 Chinese adults showed that risk of MI at age below 50 years and ≥ 50 years were $1.08(R R=1.09,0.93-1.27)$, 1.04 ($95 \% \mathrm{CI}, 1.04-1.15$) and 1.17 ($95 \% \mathrm{CI}, 1.14-1.19$), respectively. ${ }^{[46]} \mathrm{A}$ cohort study conducted to determine the prevalence and outcomes of apparent treatment-resistant hypertension (aTRH) showed that the relative risk of developing MI was 1.73 ($95 \% \mathrm{CI}$, $1.39-2.16, P<0.0001)^{[43]}$

Association between hypertension and stroke and transient ischemic attack

A cohort study conducted in the USA to examine the risk of incident CV events among adults with hypertension in reference to SBP < 120 mmHg among 4480 adults showed that the relative risk of developing stroke at SBP $\geq 140 \mathrm{mmHg}$ was 1.87 ($95 \% \mathrm{CI}, 1.43-2.44$) [i.e. $1.90(95 \% \mathrm{CI}, 1.27-2.85)$ men and $1.83(95 \% \mathrm{CI}, 1.28-2.61)$ in women] ${ }^{[42]} \mathrm{A}$ cohort study conducted in the UK showed that higher risk of developing ischemic stroke was 1.35 (95% CI, 1.28-1.42), subarachnoid hemorrhage (SAH) 1.43 (95% CI, 1.25-1.63); and intracerebral hemorrhage (ICH) 1.44 (95% CI, 1.32-1.58) among hypertensive adults. ${ }^{[33]}$ Another cohort study conducted among 97 013 Chinese adults showed that the risk of hemorrhagic stroke, ischemic stroke below 50 years, was 1.41 (95% CI, 1.29-1.54) and 1.23 ($95 \% \mathrm{CI}, 1.14-1.33$), respectively. Similarly, the risk of hemorrhagic stroke, ischemic stroke at ≥ 50 years, was 1.22 ($95 \% \mathrm{CI}$, $1.16-1.28)$ and 1.18 ($95 \% \mathrm{CI}, 1.14-1.21, P<0.01$), respectively. ${ }^{[46]}$

According to a cohort study conducted in Spain among adults aged ≥ 30 years of age, the risk of hypertension attributed stroke hospital admission was 40 (95% CI, 24.1-55.8) and 14.7 (95% CI, 2.3-27.0) in men and women, respectively. ${ }^{[47]}$ A cohort study conducted in Japan to clarify the relationship between BP and mortality from stroke, heart disease, CVD, and all causes of death showed that the RR of stroke case mortality was 1.36 ($95 \% \mathrm{CI}, 0.27-6.82$, $P<0.001$), and $3.0(95 \% \mathrm{CI}, 0.95-9.44, P=0.004)$ among men and
women respectively at BP $120-129 / 80-84 \mathrm{mmHg}$ when compared with $\mathrm{BP}<120 / 80 \mathrm{mmHg} .{ }^{[48]}$ A cohort study conducted in Korea to estimate the proportion of hypertensive adults who would meet BP goals under SPRINT criteria and JNC-8 recommendations showed that the rate of developing stroke was 1.49 ($95 \% \mathrm{CI}, 1.38-1.61$), 1.36 ($95 \% \mathrm{CI}, 1.05-1.76$) and 1.92 ($95 \% \mathrm{CI}, 1.69-2.18$) among adults with hypertension, below systolic blood pressure intervention trial (SPRINT) BP goal and above Eighth Joint National Committee (JNC-8) goal, respectively. ${ }^{[49]}$

A cohort study conducted in the UK among 1.2 million adults showed that the RR of developing TIA among hypertensive adults, 30-59 years old normotensives, 60-79 years old normotensives and ≥ 80 years old normotensives were 1.15 (95% CI, 1.11-1.19), 1.06 ($95 \% \mathrm{CI}, 0.80-1.40$), 0.92 ($95 \% \mathrm{CI}, 0.83-1.02$) and 0.96 ($95 \% \mathrm{CI}$, $0.82-1.11$), respectively. Ischemic stroke, TIA was 1.1 -times more common in patients with hypertension than in those with normal blood pressure. ${ }^{[33]}$ A cohort study conducted to determine the prevalence and outcomes of apparent treatment-resistant hypertension (aTRH) showed that the relative risk of developing stroke 1.52 (95\% CI, 1.05-2.19, $P<0.025) .{ }^{[43]}$ Another cohort study conducted to assess CV outcome in patients with TRH compared with patients with non-TRH in Sweden among 4317 showed that the relative risk of incident stroke 1.03 ($95 \% \mathrm{CI}, 0.90-1.19$), and TIA 1.12 (95% CI, $0.86-1.46) \cdot{ }^{[51]} \mathrm{A}$ similar cohort study conducted to evaluate the association of apparent aTRH with CHD and stroke events in the USA among 14522 patients with aTRH showed that the relative risk of developing stroke was 1.25 (95\% CI, 0.94-1.6). ${ }^{[44]}$

Peripheral arterial disease and abdominal aortic aneurysm

A cohort study conducted in the UK among 1.2 million adults showed that the RR of developing PAD and AAA among hypertensive adults was 1.35 (95% CI, $1.30-1.40$) and 1.08 (95% CI, $1.00-1.17$), respectively. ${ }^{[33]}$ The relative risk of developing PAD and AAA among 30-59 years old normotensives was 0.85 (95% CI, $0.71-1.03$) and 0.93 (95% CI, $0.51-1.67$), respectively. ${ }^{[33]}$ The relative risk of developing PAD and AAA among 60-79 years old normotensive adults was 0.91 ($95 \% \mathrm{CI}, 0.82-1.01$) and 0.95 (95% CI, $0.80-1.14)$, respectively. ${ }^{[33]}$ The relative risk of developing PAD and AAA among ≥ 80 years old normotensives was 0.85 (95% CI, $0.68-1.07$) and 0.88 (95% CI, $0.62-1.26$), respectively. The AAA was 1.1 -times more common in patients with hypertension than in those with normal blood pressure. ${ }^{[33]}$

Discussion

This systematic review described the risk of developing the following twelve vascular, cerebral and peripheral complications among hypertensive adults with treated and untreated hypertension. The included events were CHD and stroke mortality, unstable angina, stable angina, myocardial infarction, heart failure, cardiac arrest, transient ischemic attack, ischemic stroke, subarachnoid hemorrhage, intracranial hemorrhage, PAD and AAA. ${ }^{[33,39-54]}$

The lifetime risk of total CVD at 30 years of age for people with hypertension and normal BP was 63.3% and 46.1%, respectively (absolute difference 17.2\%). At age 60, the risk decreased to 60.2% and 44.6% for those with and without hypertension. ${ }^{[33]}$ The relative risk of developing CHD events varies with the age and sex of patients. For example, in ≥ 60 years, SBP was no longer associated with subarachnoid hemorrhage or with AAA. In those aged ≥ 80 years,

SBP is highly associated with stable angina, MI, intracerebral hemorrhage and PAD. ${ }^{[33]}$ A cohort study showed that lifetime risks of developing CHD were 1.32 times higher at 50 years 51.7% ($95 \% \mathrm{CI}$, $49.3-54.2$) and $39.2 \% ~(95 \% \mathrm{CI}, 37.0-41.4$) for men and women, respectively ${ }^{[53]}$. A cohort study showed that at age 45 years, white men were at a six-fold increase of fatal CHD risk compared with white women, whereas black men had a two-fold increased risk of fatal CHD compared with black women. ${ }^{[55]} \mathrm{A}$ similar study showed that the lifetime risk of developing CVD at age 40 years was two in three in men and one in two in women. The prevalence of CHD is higher in men until after 75 years of age. After age 75 , females have a longer life expectancy, and they account for a higher prevalence of CVD. ${ }^{[56]}$

The discrepancy was not explained by adjustment for CHD risk factors. This variation is also maintained across the general adult population. For example, a cohort study conducted among the general population showed that the relative risk of developing CHD events in men is 1.5 times higher than that of women across $40-60$ years of age in the general population. ${ }^{[52]}$

Hypertension is associated with a higher risk of developing CHD death 1.26 (95% CI, 1.19-1.34) compared with normotensive adults. ${ }^{[33,57]}$ A cohort study conducted in Spain among adults aged ≥ 30 years showed that avoidable deaths attributed to hypertension were 41.8% and 37.84% in men and women, respectively. ${ }^{[47]}$ A cohort study conducted relative risk of all-cause mortality at $40-59$ years and 60-79 years was 5.99 ($95 \% \mathrm{CI}, 2.13-16.8$) and 4.09 (95% CI, $1.70-9.85$) respectively when compared with normotensive counterparts. ${ }^{[54]}$ A rate of all-cause mortality was 1.3 ($95 \% \mathrm{CI}$, 1.16-1.44) and 1.6 (95% CI, 1.38-1.79) times higher among adult men ≥ 18 years with SBP $140-159 \mathrm{mmHg}$ and SBP $160-179 \mathrm{mmHg}$, respectively, when compared with when compared to SBP 100$119 \mathrm{mmHg} .{ }^{[50]}$ A 20 -year prospective cohort study conducted in Fangshan District, Beijing, China involving 7314 participants with a median follow-up a of 20 years showed that hypertension (BP $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$) was significantly associated with mortality due to CVDs ($\mathrm{HR}=2.49,95 \% \mathrm{CI}=1.77-3.50$) among people aged $35-59$ years rather than people aged ≥ 60 years. However, stage 1 hypertension (BP 130-139/80-89 mm Hg) was not associated with an increased risk of CVDs mortality. ${ }^{[58]}$

A recent meta-analysis of 9 prospective cohort studies reported that achieving the most ideal cardiovascular health metrics including BP control is associated with a lower risk of all-cause mortality 0.55 ($95 \% \mathrm{CI}, 0.37-0.80$), CV mortality 0.25 ($95 \% \mathrm{CI}, 0.10-0.63$) and stroke 0.31 ($95 \% \mathrm{CI}, 0.25-0.38) \cdot{ }^{[12,13]} \mathrm{BP}$ control significantly reduced the rate of all-cause mortality. ${ }^{[59]}$ For example, the rate of allcause mortality was 4.45 (95% CI, 4.25-4.65) among hypertensives, 5.79 (95% CI, 5.11-6.57) among patients with uncontrolled BP and 4.08 (95% CI, 3.85-4.32) among those with uncontrolled BP. ${ }^{[49]}$ Control of hypertension could reduce CVD mortality by 30.4% among males and 38.0% among females. ${ }^{[60]}$ This difference could be explained by the longer life expectancy of women and the associated high prevalence of hypertension and associated chronic illness.

A meta-analysis of 61 prospective studies showed that at ages $40-69$ years, each difference of $20 / 10 \mathrm{mmHg}$ BP is associated with more than a two-fold difference in the stroke death rate and two-fold differences in the death rates from IHD and other vascular causes. ${ }^{[61]}$ A systematic review and meta-analysis showed that reduction BP by 10 mm Hg of SBP or 5 mm Hg SBP was associated with the lower rate of CHD 0.73 (95% CI, $0.72-0.74$) and all-cause mortality 0.86 (95% CI, $0.83-0.89$) among $35-59$ years hypertensives. ${ }^{[62]}$ Another systematic review showed that average reduction of BP by 10 mm

Hg of SBP or 5 mm Hg SBP was associated with a lower rate of CHD 0.77 (95% CI, $0.74-0.78$), and all-cause-mortality 0.91 ($95 \% \mathrm{CI}$, $0.91-0.92$) among 60-74 years hypertensives. ${ }^{[63]}$

The lifetime risk of developing HF is higher among the adult hypertensive population across all ages. ${ }^{[40]}$ The lifetime risk of developing heart failure at age 40 is 21% and 20.3% in men and women, respectively. ${ }^{[40]}$ Hypertension is associated with an increased risk of heart failure, and 42% of patients with newly diagnosed CVD have HF. ${ }^{[64]}$ A cohort study conducted in the USA among hypertensive adults showed that the relative risk of developing HF at SBP \geq 140 mmHg was 1.44 ($95 \% \mathrm{CI}, 1.08-1.92$) and 1.54 ($95 \% \mathrm{CI}, 1.18-$ 2.02) among men and women respectively when compared with SBP $<120 \mathrm{mmHg} .{ }^{[42]}$ Another study showed that the risk of developing HF at $\mathrm{BP} \geq 160 / 100 \mathrm{mmHg}$ is 2.3 and 1.3 times higher when compared with $\mathrm{BP}<120 / 80 \mathrm{mmHg}$ in black women and white women, respectively. ${ }^{[39]}$ This could be explained by the greater prevalence of treatment-resistant hypertension in blacks. ${ }^{[65]}$ In a large randomized trial of hypertension medication, black women had the lowest BP control rate (59%). In comparison with whites, blacks were more likely to be aware of their hypertension, those aware of their hypertension were more likely to be on treatment (OR, 1.69; $95 \% \mathrm{CI}$, $1.40-2.05)$, but those treated were still less likely to have their BP controlled (OR, 0.73 ; 95\% CI, 0.64-0.83). ${ }^{[66]}$

A global congestive heart failure (G-CHF) cohort study conducted among 23047 participants in 40 countries showed the most common causes of HF were ischemic (37.8%), hypertensive (20.0%), idiopathic (15.1%) and valvular disease (8.8%), respectively. ${ }^{[67]}$ A large cohort study conducted in the UK showed that hypertension is associated with a higher risk of developing HF among hypertensive adults 1.27 (95% CI, 1.23-1.32) compared with normotensive adults aged ≥ 30 years. ${ }^{[33]}$ The relative risk of developing HF was lower among patients with controlled BP 0.62 ($95 \% \mathrm{CI}, 0.45-0.84$, $P=0.002) .{ }^{[59]}$ Risk factors of HF vary substantially across world regions. Hypertension is highly associated with HF in all regions but most commonly in Latin America, the Caribbean, Eastern Europe and sub-Saharan Africa..$^{[68]}$ Therefore, it is important to consider HF in the cardiovascular disease policy model to evaluate the cost-effectiveness of hypertension treatment in Latin America, the Caribbean, Eastern Europe and sub-Saharan Africa.

Hypertension is a risk factor for all types of stroke. A cohort study conducted among 97013 Chinese adults showed that the risk of hemorrhagic stroke, ischemic stroke below 50 years, was 1.41 (95% CI, $1.29-1.54$) and 1.23 (95% CI, 1.14-1.33), respectively. Similarly, hemorrhagic stroke, ischemic stroke events ≥ 50 years were 1.22 (1.16-1.28) and 1.18 (95% CI, 1.14-1.21), respectively. ${ }^{[46]}$ A cohort study conducted in Japan showed that RR of stroke case mortality was $1.36(P<0.001)$ and $3.0(P=0.004)$ among men and women respectively at BP $120-129 / 80-84 \mathrm{mmHg}$ when compared with $\mathrm{BP}<120 / 80 \mathrm{mmHg} \cdot{ }^{[48]}$ This is supported by evidence from a case-control study involving age-matched stroke-free, treated hypertensive patients in the USA, which showed that uncontrolled hypertension is associated with a higher risk of ischemic stroke 1.52 (95% CI, 1.2-1.94) and hemorrhagic stroke (HS) risk 3.0 ($95 \% \mathrm{CI}$, 1.7-5.4) ${ }^{[69]}$ A meta-analysis of 24 randomized trials among 47991 individuals with high normal BP showed that BP-lowering treatment significantly reduced stroke risk. ${ }^{[70]}$ A cohort study conducted in Sweden showed high BP was a stronger risk factor for stroke. ${ }^{[71]}$ Hypertension is the major risk factor for all stroke types with an estimated population-attributable fraction (PAF) ranging from 35 to 52%, depending on the definition of hypertension and stroke subtypes. ${ }^{[72]}$ Females have a higher lifetime risk of stroke than males.

The lifetime risk of stroke among those 55-75 years of age was one in five for females and ≈ 1 in six for males. ${ }^{[73]}$

Another cohort study conducted in the USA showed that sustained BP control ($<140 / 90 \mathrm{mmHg}$) had increased risk for nonfatal stroke 1.71 (95% CI, 1.26-2.32), transient ischemic attack 1.71 (95% CI, 1.26-2.32), respectively. ${ }^{[41]}$ Cohort study conducted in USA among 4480 adults showed that RR of developing stroke at SBP $\geq 140 \mathrm{mmHg}$ was 1.87 ($95 \% \mathrm{CI}, 1.43-2.44$) [i.e. 1.90 (95% CI, 1.27-2.85), and 1.83 ($95 \% \mathrm{CI}, 1.28-2.61$)] in men and women respectively when compared with SBP < $120 \mathrm{mmHg} .{ }^{[42]}$ Another study showed that both treated and untreated hypertension were associated with higher odds of deep intracranial hemorrhage whites $(\mathrm{OR}=2.13)$, blacks $(\mathrm{OR}=4.45)$, and Hispanics $(\mathrm{OR}=2.28)$. In patients with ICH, treated hypertension was a significant risk factor in Hispanics ($\mathrm{OR}=7.07$), but not in whites ($\mathrm{OR}=1.53$) or blacks ($O R=2.28$). Untreated hypertension was a significant risk factor for ICH in all three ethnic groups: whites ($O R=11.64$), blacks ($\mathrm{OR}=5.11$) and Hispanics ($\mathrm{OR}=38.47$). ${ }^{[16]}$ The recent systematic review conducted to evaluate effects of intense BP control $(<130 / 80 \mathrm{mmHg})$, which showed that relatively lower risk of stroke 0.81 (95% CI, $0.71-0.89$), MI 0.76 (95% CI, $0.64-0.89$), HF 0.80 (95% CI, $0.67-0.97$) and CV death $0.88(95 \% \mathrm{CI}, 0.51-1.62)$ at BP below 130 mmHg when compared with SBP $\geq 130 \mathrm{mmHg}$. ${ }^{[74]}$ A systematic review and meta-analysis showed that mean reduction BP by 10 mm Hg of SBP or 5 mm Hg DBP was associated with a lower rate of stroke 0.64 (95% CI, $0.61-0.66$) among 35-59 years hypertensives. ${ }^{[62]}$ Another systematic review showed that reducing SBP by 10 mm Hg or DBP 5 mm Hg was associated with the lower rate of stroke $0.69(95 \% \mathrm{CI}, 0.66-0.71)$ among $60-74$ years of hypertensives. ${ }^{[63]}$

A meta-analysis of 34 studies, including a total of $73184 \mathrm{pa-}$ tients with either ischemic stroke or TIA, the annual risk of recurrent stroke was $4.26 \% ~(95 \% \mathrm{CI}, 3.43 \%-5.09 \%)$. The annual risk was 0.77% ($95 \% \mathrm{CI}, 0.45-1.10$) for fatal stroke and $2.92 \% ~(95 \%$ CI, 2.22-3.62) for nonfatal stroke. ${ }^{[75]}$ Transient ischemic attack contributes to a substantial short-term risk of stroke, hospitalization for CVD events and death. ${ }^{[76]}$ Patients who survived the initial attack of transient ischemic attack have an estimated 10 -year stroke risk of 19% and 43% combined 10 -year risk of (stroke, MI or vascular death) (i.e. 4% per year). ${ }^{[77]} \mathrm{A}$ recent meta-analysis of nine trials showed that BP control to $<150 / 90 \mathrm{mmHg}$ reduces stroke 0.74 ($95 \% \mathrm{CI}, 0.65-0.84$), and lower targets ($\leq 140 / 85 \mathrm{mmHg}$) are associated with significant decreases in stroke 0.79 ($95 \% \mathrm{CI}$, $0.59-0.99) .{ }^{[78]}$ In a meta-analysis of clinical trials, antihypertensive therapy was associated with an average decline of 41% ($95 \% \mathrm{CI}$, 33-48) in stroke incidence. ${ }^{[79]}$ A standardized international age and sex-matched case-control study in 32 countries in Asia, America, Europe, Australia, the Middle East and Africa showed that history of hypertension or BP $\geq 140 / 90 \mathrm{mmHg}$ significantly associated with all types of stroke (AOR $=2.98 ; 95 \% \mathrm{CI}, 2.72-3.28) \cdot{ }^{[80]} \mathrm{A}$ cohort study conducted in Korea showed that the risk of developing stroke was 1.49 (95% CI, 1.38-1.61), 1.36 (95% CI, 1.05-1.76) and 1.92 (99% CI 1.69-2.18) among hypertensives adults, patients with controlled BP and patients with uncontrolled BP, respectively. ${ }^{[99]}$

Hypertension is associated with the risk of acute coronary syndrome, including angina pectoris. Seventy percent of patients with angina had a previous history of hypertension. ${ }^{[81]}$ Hypertension is associated with a higher risk of developing stable angina and unstable angina 1.41 (95% CI, 1.36-1.46) and 1.25 (95% CI, 1.181.32), respectively when compared with normotensive adults aged ≥ 30 years. ${ }^{[33]}$ Concerning mortality implications of angina and BP
in hypertensive patients with CAD, data from extended follow-up of the International Verapamil/Trandolapril Study (INVEST) showed that persistent-angina was significantly associated with an apparent protective effect (HR: $0.82,95 \% \mathrm{CI}, 0.75-0.89, P<0.0001$). ${ }^{[82]}$ The systolic blood pressure intervention trial (SPRINT) was conducted to compare the safety and efficacy of intensive lowering of SBP to $<120 \mathrm{mmHg}$ versus routine management (i.e. $<140 \mathrm{mmHg}$) among 9361 hypertensive patients aged 50 years and above with at least one of the following risk factors (i.e. presence of clinical or subclinical CVD other than stroke, or Framingham risk score for 10-year CVD risk $\geq 15 \%$, or chronic kidney disease, or age >75 years). The trial showed a lower relative risk of the composite outcome (MI, ACS, stroke, acute HF) in the intensive treatment group is $0.75(95 \% \mathrm{CI}$, $0.64-0.89, P<0.001$). ${ }^{[59]}$

Concerning the association of hypertension with MI, a cohort study conducted in the UK showed that hypertension is associated with a higher risk of developing MI, 1.29 (95% CI, 1.25-1.34) compared with normotensive adults aged ≥ 30 years. MI had a stronger association with SBP in women than in men $(P<0.0001))^{\left[{ }^{[33]}\right.} \mathrm{A}$ cohort study conducted in Korea showed that the rate of developing MI was 1.02 (95% CI, $0.74-1.42$) below JNC 8 BP goal and 1.51 (95% CI, 1.08-2.12) above JNC 8 BP goal. ${ }^{[49]}$ Another cohort study conducted in the USA among 4480 adults showed that relative risk of developing MI at SBP $\geq 140 \mathrm{mmHg}$ was 1.53 ($95 \% \mathrm{CI}, 1.10-$ 2.13) and $1.18(95 \% \mathrm{CI}, 0.85-1.65)$ in men and women, respectively] when compared with $\mathrm{SBP}<120 \mathrm{mmHg} .{ }^{[42]} \mathrm{A}$ study conducted to determine the association between antecedent hypertension and myocardial injury in patients with re-perfused ST-elevation MI showed that antecedent hypertension is associated with poor outcomes in patients with STEMI. MACE was more frequent in patients with hypertension as compared to patients without hypertension $(\mathrm{HR}=3.42,95 \% \text { CI } 1.45-8.08, P<0.01)^{[83]}$

Concerning the mortality rate of MI, within one year after a first MI, 18% of males and 23% of females will die at ≥ 45 years of age. Similarly, in 45-64 years of age, 3% of white males, 5% of white females, 9% of black males and 10% of black females will die. Fourteen percent of white males, 18% of white females, 22% of black males and 21% of black females will die at $65-74$ years of age. Twenty-seven percent of white males, 29% of white females, 19% of black males and 31% of black females will die at ≥ 75 years of age. ${ }^{[84]}$ Within five years after a first MI: 36% of males and 47% of females will die at ≥ 45 years of age. Eleven percent of white males, 17% of white females, 16% of black males and 28% of black females will die at 45-64 years of age. Twenty-five percent of white males, 30% of white females, 33% of black males and 44% of black females will die at 65-74 years of age. Fifty-five percent of white males, 60% of white females, 61% of black males and 64% of black females will die at ≥ 75 years of age. ${ }^{[84]}$

A sudden cardiac death (SCD) is responsible for over 60% of all cardiovascular deaths. Hypertension is associated with a higher risk of developing sudden cardiac death 1.19 ($95 \% \mathrm{CI}, 1.10-1.29)$. ${ }^{[33]}$ Each $20 / 10 \mathrm{mmHg}$ increase in BP is associated with a 20% additional increase in SCD risk. ${ }^{[85]}$ Antihypertensive treatment is expected to reduce the risk of SCD. However, a recent meta-analysis of 15 RCTs showed that antihypertensive treatment does not reduce the incidence of SCD ${ }^{[86]}$ A cohort study showed that LVH the highest risk for SCD $(\mathrm{AOR}=2.99 ; 95 \% \mathrm{CI}, 1.47-6.09 ; P=0.002)$ after adjustment for age ($P<0.0001$), sex ($P=0.019$), diabetes mellitus ($P<0.0001$) and 24-h ambulatory pulse pressure ($P=0.036$)..$^{[87]}$ Aggressive HTN control may lead, at least in part, to regression of LVH and thus lower the risk of AF and SCD. ${ }^{[88]}$

Regarding association of hypertension and PAD, hypertension is associated with a higher risk of developing PAD 1.35 (95% CI, $1.30-1.40$) compared with normotensive adults aged ≥ 30 years. ${ }^{[33]}$ About $35-55 \%$ of patients with PAD also having hypertension at presentation. A recent study among Chinese hypertensives showed that SBP, but not DBP, was an independent risk factor for low anklebrachial pressure index. ${ }^{[89]}$ Reanalysis of data from ALLHAT trial involving 33357 patients showed that SBP < 120 mmHg was associated with a $26 \%(95 \% \mathrm{CI}, 5-52 ; P=0.015)$ higher hazard and SBP $\geq 160 \mathrm{mmHg}$ was associated with a 21% (CI, $0-48$; $P=0.050$) higher hazard for a PAD event, in comparison with SBP $120-129 \mathrm{mmHg}$. Lower DBP was associated with a higher hazard of PAD events: for DBP $<60 \mathrm{mmHg}(\mathrm{HR}=1.72,95 \% \mathrm{CI}, 1.38-$ 2.16) ${ }^{[90]}$ A cross-sectional study conducted to assess the prevalence and factors associated with PAD, and the usefulness of the anklebrachial index (ABI) in evaluating cardiovascular risk in hypertensive patients showed that hypertension remained an independent factor associated with PAD $(\mathrm{AOR}=3.20 ; 95 \% \mathrm{CI}, 1.56-6.58) .^{[91]}$ Pooled data from 11 studies in six countries found that the pooled age-, sex, risk factor, and CVD adjusted RRs in people with PAD (defined by $\mathrm{ABI}<0.9$) versus those without were 1.45 ($95 \% \mathrm{CI}$, $1.08-1.93$) for CHD and 1.35 (95% CI, 1.10-1.65) for stroke. ${ }^{[92]}$ The association between hypertension and PAD needs further strong results from a meta-analysis.

Hypertension is also associated with a higher risk of developing AAA 1.08 (95% CI, $1.00-1.17$) when compared with normotensive adults. ${ }^{[33]}$ However, the evidence concerning the association was not strong. For example, systematic review including data on 6619 AAA patients showed no association between hypertension and AAA $(P=0.19) .{ }^{[93]}$ Another systematic review of 21 cohort studies showed that the RR of AAA in hypertensive patients is 1.66 times ($95 \% \mathrm{CI}$: 1.49-1.85) of non-hypertensive patients. Besides, there was a 14% (95% CI: $6-23$) and a 28% (95% CI: 12-46) increase in the RR of AAA for every 20 mmHg and 10 mmHg increase in SBP and DBP, respectively. Hypertension had increased the risk of developing AAA by $66 \% .{ }^{[94]}$ More strong evidence from the meta-analysis is required to justify the variation of risk between SBP and DBP. During modeling study, consistent relative risk and transition probabilities are required. Hence, the inclusion of AAA in CVD policy model during the cost-effectiveness evaluation of hypertension treatment is not reasonable.

Another important event not included in the previous CVD policy model was the issue of treatment-resistant hypertension. Apparent treatment-resistant hypertension (aTRH) is associated with a higher relative risk of developing MACE, CHD death, MI, stroke, angina pectoris and all-cause mortality. ${ }^{[43,44,51]}$ A retrospective cohort study showed that patients with TRH were more likely to experience death, MI, HF, stroke or chronic kidney disease (CKD) compared to patients with controlled BP. ${ }^{[95]}$ Another retrospective study conducted among patients with TRH showed that patients with TRH have a higher prevalence of comorbid conditions, including diabetes mellitus, ischemic heart disease (41% versus 22%) and cerebrovascular disease (16% versus 9%) compared to non-resistant hypertension. ${ }^{[45]}$ In hypertensive patients with coronary artery disease (CAD), TRH's presence is associated with a higher risk of all-cause mortality, nonfatal MI and nonfatal stroke compared with treated hypertensive patients with controlled BP. ${ }^{[43,96,97]}$ Therefore, it is important to consider the effect of treatment resistance on hypertension treatment outcomes during the analysis of hypertension treatment cost-effectiveness by using the CVD policy model. This can be done by either inclusion in the model structure on during setting model assumptions.

Finally, the CVD policy model for evaluating cost-effectiveness is comprehensive to address the important variables (clinical states, secondary outcomes, treatment effects and costs). ${ }^{[27,32]}$ However, it is essential to consider HF in the CVD policy model to evaluate the cost-effectiveness of hypertension treatment, especially in Latin America, Caribbean, Eastern Europe and Sub-Saharan Africa as a strong association of hypertension and heart failure was reported from these regions. This should be done with due consideration of model complexity, diagnostic capacity of health facilities and data availability. Patients with TRH are exposed to three to a five-fold higher risk of cardiovascular events, including IHD, heart failure, stroke, CKD and peripheral vascular disease. Researchers should take the effect of treatment-resistant hypertension either through the basic model or setting the model assumptions.

Finally, hypertension is associated with the following 12 events CHD and stroke mortality, unstable angina, stable angina, myocardial infarction, heart failure, sudden cardiac death, transient ischemic attack, ischemic stroke, subarachnoid hemorrhage, intracranial hemorrhage, PAD and AAA. The exclusion of HF, PAD and AAA in the previous CVD policy model used to evaluate the cost-effectiveness of hypertension treatment was reasonable except for HF. Hypertension being highly associated with HF in Latin America, the Caribbean, Eastern Europe and Sub-Saharan Africa. Hypertension is associated with a higher risk of developing PAD. However, the association between hypertension and PAD needs further strong results from a meta-analysis. Hypertension increased the risk of developing AAA by two-third. The risk is highly associated with DBP than SBP, which requires further strong analysis to clear out this variation. Another critical concern not included in the previous CVD policy model was treatment-resistant hypertension. Treatment-resistant hypertension (aTRH) is associated with a higher relative risk of developing MACE, CHD death, MI, stroke, angina pectoris and all-cause mortality compared with non-treatment resistant hypertension.

Strengths and limitations

This review has the following strengths. First, it is the first systematic review conducted to address twelve CVD outcomes associated with hypertension in light of CVD policy model being used to evaluate the cost-effectiveness of hypertension treatment. Second, it suggested the inclusion of heart failure in the previous CVD policy model for cost-effectiveness evaluation of hypertension treatment in selected regions. Third, it also suggested consideration of apparent treatment-resistant hypertension during modeling or assumption setting. However, the findings of our study should be used in light of its limitations. We only included articles written in the English language, and articles in other languages could have an effect on the findings of the study.

Conclusion

In conclusion, the CVD policy model being used to evaluate cost-effectiveness is comprehensive to address the important variables in most regions. We recommend the inclusion of HF in CVD policy model for evaluating the cost-effectiveness of hypertension treatment in Latin America, Caribbean, Eastern Europe and SubSaharan Africa as a strong association of hypertension and HF was reported from these regions. This should be done with due consideration of model complexity, diagnostic capacity of health facilities and data availability. We do not recommend PAD and AAA's inclusion in the CVD policy model to evaluate the cost-effectiveness
of hypertension treatment due to a lack of sufficient evidence. Researchers should also consider the effect of treatment-resistant hypertension either through including in the basic model or during setting the model assumptions.

Supplementary Material

Supplementary data are available at Journal of Pharmaceutical Health Services Research online.

Acknowledgements

We would like to thank all Tehran University medical sciences, department of pharmacoeconomics and Pharmaceutical Administration staffs for their technical and material support during our review including access to Internet.

Authors' contributions

All authors read and approved the manuscript. $M M, M D$ and $A K$ have, framed the format design; conducted review and developed the manuscript for publication NN and NS participated in literature review and format design; TS and $S N$ participated in literature review and polished the language of the manuscript; and BF has participated in quality appraisal and possibility of bias evaluation.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Data availability

Not Applicable. We used only published articles, and search strategy is provided in Supplementary file.

References

1. Marczak L, Williams J, Loeffler M, Metrics ftFtIfH, Evaluation. Global deaths attributable to high systolic blood pressure, 1990-2016. JAMA 2018; 319: 2163.
2. Chen R, Dharmarajan K, Kulkarni VT et al. Most important outcomes research papers on hypertension. Circulation Cardiovasc Qual Outcomes 2013; 6: e26-e35.
3. Noubiap JJ, Nansseu JR, Nyaga UF et al. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart 2019; 105: 98.
4. Mills KT, Bundy JD, Kelly TN et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016; 134: 441-50.
5. GRF. Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories,

1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923-94.
6. Campbell NR, Bovet P, Schutte AE et al. High blood pressure in subSaharan Africa: why prevention, detection, and control are urgent and important. J Clin Hypertens 2015; 17: 663-7.
7. Oti SO, van de Vijver SJM, Kyobutungi C et al. A community-based intervention for primary prevention of cardiovascular diseases in the slums of Nairobi: the SCALE UP study protocol for a prospective quasiexperimental community-based trial. Trials 2013; 14: 409.
8. WHO. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016, Geneva: WHO; 2018.
9. World Health Organization. Regional Office for the Eastern Mediterranean. World health day 2013: control your blood pressure... control your life: cut your risk of heart attack and stroke control your blood pressure. 2013. https://extranet.who.int/iris/restricted/handle/10665/116843.
10. Volpe M, Savoia C. Natural history of treated and untreated hypertension. In: Berbari AE, Mancia G (eds.), Disorders of Blood Pressure Regulation: Phenotypes, Mechanisms, Therapeutic Options. Cham: Springer International Publishing, 2018, 33-44.
11. Elliott WJ. What factors contribute to the inadequate control of elevated blood pressure? J Clin Hypertens 2008; 10: 20-6.
12. Yang Q, Cogswell ME, Flanders WD et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. Jama 2012; 307: 1273-83.
13. Fang N, Jiang M, Fan Y. Ideal cardiovascular health metrics and risk of cardiovascular disease or mortality: a meta-analysis. Int J Cardiol 2016; 214: 279-83.
14. Kulshreshtha A, Vaccarino V, Judd SE et al. Life's Simple 7 and risk of incident stroke: the reasons for geographic and racial differences in stroke study. Stroke 2013; 44: 1909-14.
15. Lindholm LH. The problem of uncontrolled hypertension. J Hum Hypertens 2002; 16: S3-S8.
16. Walsh KB, Woo D, Sekar P et al. Untreated hypertension: a powerful risk factor for lobar and nonlobar intracerebral hemorrhage in whites, blacks, and Hispanics. Circulation 2016; 134: 1444-52.
17. Gheorghe A, Griffiths U, Murphy A et al. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health 2018; 18: 975.
18. Ménard J. Cost-effectiveness of hypertension treatment. Clin Exp Hypertens 1996; 18: 399-413.
19. Whelton PK Carey RM, Aronow WS et al. 2017 ACC/AHA/AAPA/ABC/ ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension (Dallas, Tex: 1979) 2018; 71: e13-e115.
20. Reboussin DM, Allen NB, Griswold ME et al. Systematic review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. J Am Coll Cardiol 2017; 71: 2176-98.
21. Organization. WH. Prevention of Cardiovascular Disease: Guidelines for Assessment and Management of Cardiovascular Risk. Geneva: WHO; 2007.
22. World Health Organization. It's Time to Walk the Talk: WHO Independent High-level Commission on Noncommunicable Diseases Final Report. Geneva: World Health Organization, 2019. Licence: CC BY-NC-SA 3.0 IGO. 2019.
23. health Wh. HEARTS: Technical Package for Cardiovascular Disease Management in Primary Health Care. Geneva: World Health Organization, 2016.
24. Gabb GM, Mangoni AA, Anderson CS et al. Guideline for the diagnosis and management of hypertension in adults-2016. Med J Australia 2016; 205: 85-9.
25. Leung AA, Daskalopoulou SS, Dasgupta K et al. Hypertension Canada's 2017 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults. Can J Cardiol 2017; 33: 557-76.
26. Williams B, Mancia G, Spiering W et al. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Pressure 2018; 27: 314-40.
27. Moran AE, Odden MC, Thanataveerat A et al. Cost-effectiveness of hypertension therapy according to 2014 guidelines. N Engl J Med 2015; 372: 447-55.
28. Thokala P, Dodd P, Baalbaki H et al. Developing Markov Models From Real-World Data: A Case Study of Heart Failure Modeling Using Administrative Data. Value Health 2020; 23: 743-50.
29. Sanders GD, Neumann PJ, Basu A et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. Jama 2016; 316: 1093-103.
30. Paisley S. Identification of evidence for key parameters in decision-analytic models of cost effectiveness: a description of sources and a recommended minimum search requirement. PharmacoEconomics 2016; 34: 597-608.
31. Brazier J, Ara R, Azzabi I et al. Identification, review, and use of health state utilities in cost-effectiveness models: an ISPOR good practices for outcomes research task force report. Value Health 2019; 22: 267-75.
32. Vasudeva E, Moise N, Huang C et al. Comparative cost-effectiveness of hypertension treatment in non-hispanic blacks and whites according to 2014 guidelines: a modeling study. Am J Hypertens. 2016; 29: 1195-205.
33. Rapsomaniki E, Timmis A, George J et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1. 25 million people. Lancet 2014; 383: 1899-911.
34. Lamprea-Montealegre JA, Zelnick LR, Hall YN et al. Prevalence of hypertension and cardiovascular risk according to blood pressure thresholds used for diagnosis. Hypertension 2018; 72: 602-9.
35. Lewsey JD, Lawson KD, Ford I et al. A cardiovascular disease policy model that predicts life expectancy taking into account socioeconomic deprivation. Heart 2015; 101: 201.
36. Moher D, Shamseer L, Clarke M et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev [Internet] 2015; 4: 1.
37. Guyatt G, Busse J. Tool to assess risk of bias in cohort studies. In: Book Tool to Assess Risk of Bias in Cohort Studies. Hamilton, ON: Evidence Partners, McMaster University; 2011.
38. Moola S, Munn Z, Tufanaru C et al. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z (eds.), JBI Manual for Evidence Synthesis. JBI, 2020. https://synthesismanual.jbi.global.
39. Huffman MD, Berry JD, Ning H et al. Lifetime risk for heart failure among white and black Americans: cardiovascular lifetime risk pooling project. J Am Coll Cardiol 2013; 61: 1510-7.
40. Lloyd-Jones DM, Larson MG, Leip EP et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 2002; 106: 3068-72.
41. Bowling CB, Davis BR, Luciano A et al. Sustained blood pressure control and coronary heart disease, stroke, heart failure, and mortality: An observational analysis of ALLHAT. J Clin Hypertens (Greenwich) 2019; 21: 451-9.
42. Rodriguez CJ, Swett K, Agarwal SK et al. Systolic blood pressure levels among adults with hypertension and incident cardiovascular events: the atherosclerosis risk in communities study. JAMA Intern Med 2014; 174: 1252-61.
43. Bangalore S, Fayyad R, Laskey R et al. Prevalence, predictors, and outcomes in treatment-resistant hypertension in patients with coronary disease. Am J Med 2014; 127: 71-81.e1.
44. Irvin MR, Booth JN, 3rd, Shimbo D et al. Apparent treatment-resistant hypertension and risk for stroke, coronary heart disease, and all-cause mortality. J Am Soc Hypertens 2014; 8: 405-13.
45. Sim JJ, Bhandari SK, Shi J et al. Comparative risk of renal, cardiovascular, and mortality outcomes in controlled, uncontrolled resistant, and nonresistant hypertension. Kidney Int 2015; 88: 622-32.
46. Song Y, Wu S, Liu X et al. Association of systolic blood pressure levels with cardiovascular and cerebrovascular events and all-cause mortality: a result from the Kailuan study. Blood Press Monit 2016; 21: 149-54.
47. Redon J, Tellez-Plaza M, Orozco-Beltran D et al. Impact of hypertension on mortality and cardiovascular disease burden in patients with cardiovascular risk factors from a general practice setting: the ESCARVAL-risk study. J Hypertens 2016; 34: 1075-83.
48. Lida M, Ueda K, Okayama A et al. Impact of elevated blood pressure on mortality from all causes, cardiovascular diseases, heart disease and stroke among Japanese: 14 year follow-up of randomly selected population from Japanese--Nippon data 80. J Hum Hypertens 2003; 17: 851.
49. Ko MJ, Jo AJ, Park CM et al. Level of blood pressure control and cardiovascular events: SPRINT criteria versus the 2014 hypertension recommendations. J Am Coll Cardiol 2016; 67: 2821-31.
50. Li C, Chen Y, Zheng Q et al. Relationship between systolic blood pressure and all-cause mortality: a prospective study in a cohort of Chinese adults. BMC Public Health 2018; 18: 107.
51. Holmqvist L, Boström KB, Kahan T et al. Cardiovascular outcome in treatment-resistant hypertension: results from the Swedish Primary Care Cardiovascular Database (SPCCD). J Hypertens 2018; 36: 402-9.
52. Lloyd-Jones DM, Larson MG, Beiser A et al. Lifetime risk of developing coronary heart disease. Lancet 1999; 353: 89-92.
53. Lloyd-Jones DM, Leip EP, Larson MG et al. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 2006; 113: 791-8.
54. Sairenchi T, Iso H, Irie F et al. Age-specific relationship between blood pressure and the risk of total and cardiovascular mortality in Japanese men and women. Hypertens Res 2005; 28: 901-9.
55. Ho JE, Paultre F, Mosca L. The gender gap in coronary heart disease mortality: is there a difference between blacks and whites? J Womens Health 2005; 14: 117-27.
56. Mosca L, Barrett-Connor E, Wenger NK. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 2011; 124: 2145-54.
57. Navar AM, Peterson ED, Wojdyla D et al. Temporal changes in the association between modifiable risk factors and coronary heart disease incidence. Jama 2016; 316: 2041-3.
58. Wang M, Wu T, Yu C et al. Association between blood pressure levels and cardiovascular deaths: a 20-year follow-up study in rural China. BMJ Open 2020; 10: e035190.
59. Group SR. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2015; 373: 2103-16.
60. Wei Y-C, George NI, Chang C-W et al. Assessing sex differences in the risk of cardiovascular disease and mortality per increment in systolic blood pressure: a systematic review and meta-analysis of follow-up studies in the United States. PloS One 2017; 12: e0170218.
61. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903-13.
62. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ (Clin Res Ed) 2009; 338: b1665-b.
63. Group SCR. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). Jama 1991; 265: 3255-64.
64. Damasceno A, Mayosi BM, Sani M et al. The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries: results of the sub-Saharan Africa survey of heart failure. Arch Intern Med 2012; 172: 1386-94.
65. Calhoun D. American Heart Association Professional Education Committee. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 2008; 117: e510-e26.
66. Cushman WC, Ford CE, Cutler JA et al. Original Papers. Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). J Clin Hypertens 2002; 4: 393-404.
67. Joseph P, Dokainish H, McCready T et al. A multi-national registry to study the characteristics and outcomes of heart failure patients: The global congestive heart failure (G-CHF) registry. Am Heart J 2020; 227: 56-63.
68. Khatibzadeh S, Farzadfar F, Oliver J et al. Worldwide risk factors for heart failure: a systematic review and pooled analysis. Int J Cardiol 2013; 168: 1186-94.
69. Klungel O, Kaplan R, Heckbert S et al. Control of blood pressure and risk of stroke among pharmacologically treated hypertensive patients. Stroke 2000; 31: 420-4.
70. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressurelowering treatment on outcome incidence. 12. Effects in individuals with high-normal and normal blood pressure: overview and meta-analyses of randomized trials. J Hypertens 2017; 35: 2150-60.
71. Wilhelmsen L, Köster M, Harmsen P et al. Differences between coronary disease and stroke in incidence, case fatality, and risk factors, but few differences in risk factors for fatal and nonfatal events. Eur Heart J 2005; 26: 1916-22.
72. Kuklina EV, Tong X, George MG et al. Epidemiology and prevention of stroke: a worldwide perspective. Expert Rev Neurother 2012; 12: 199-208.
73. Seshadri S, Beiser A, Kelly-Hayes M et al. The lifetime risk of stroke: estimates from the Framingham Study. Stroke 2006; 37: 345-50.
74. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levelsupdated overview and meta-analyses of randomized trials. J Hypertens 2016; 34: 613-22.
75. Boulanger M, Béjot Y, Rothwell PM et al. Long-term risk of myocardial infarction compared to recurrent stroke after transient ischemic attack and ischemic stroke: systematic review and meta-analysis. J Am Heart Assoc 2018; 7: e007267.
76. Johnston SC, Gress DR, Browner WS et al. Short-term prognosis after emergency department diagnosis of TIA. Jama 2000; 284: 2901-6.
77. Clark T, Murphy M, Rothwell P. Long term risks of stroke, myocardial infarction, and vascular death in "low risk" patients with a non-recent transient ischaemic attack. J Neurol Neurosurg Psychiatry 2003; 74: 577-80.
78. Weiss J, Freeman M, Low A et al. Benefits and harms of intensive blood pressure treatment in adults aged 60 years or older: a systematic review and meta-analysis. Ann Intern Med 2017; 166: 419-29.
79. Waters E, Doyle J. Systematic reviews of public health in developing countries are in train. Bmi 2004; 328: 585.
80. O'Donnell MJ, Chin SL, Rangarajan S et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016; 388: 761-75.
81. Steg PG, Greenlaw N, Tardif J-C et al. Women and men with stable coronary artery disease have similar clinical outcomes: insights from the international prospective CLARIFY registry. Eur Heart J 2012; 33: 2831-40.
82. Winchester DE, Cooper-Dehoff RM, Gong Y, Investigators I. Mortality implications of angina and blood pressure in hypertensive patients with coronary artery disease: New data from extended follow-up of the International Verapamil/Trandolapril Study (INVEST). Clin Cardiol 2013; 36: 442-7.
83. Reinstadler SJ, Stiermaier T, Eitel C et al. Antecedent hypertension and myocardial injury in patients with reperfused ST-elevation myocardial infarction. J Cardiovasc Magn Reson 2016; 18: 80.
84. Benjamin EJ, Muntner P, Alonso A et al. Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circulation 2019; 139: E56-28.
85. Pan H, Hibino M, Kobeissi E et al. Blood pressure, hypertension and the risk of sudden cardiac death: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol 2020; 35: 443-54. https://doi.org/10.1007/ s10654-019-00593-4
86. Tereshchenko LG, Soliman EZ, Davis BR et al. Risk stratification of sudden cardiac death in hypertension. J Electrocardiol 2017; 50: 798-801.
87. Verdecchia P, Angeli F, Cavallini C et al. Sudden cardiac death in hypertensive patients. Hypertension 2019; 73: 1071-8.
88. Shenasa M, Shenasa H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol 2017; 237: 60-3.
89. Bennett P, Silverman S, Gill P. Hypertension and peripheral arterial disease. J Hum Hypertens 2009; 23: 213-5.
90. Itoga NK, Tawfik DS, Lee CK et al. Association of blood pressure measurements with peripheral artery disease events: reanalysis of the ALLHAT data. Circulation 2018; 138: 1805-14.
91. Korhonen PE, Syvänen KT, Vesalainen RK et al. Ankle-brachial index is lower in hypertensive than in normotensive individuals in a cardiovascular risk population. J Hypertens 2009; 27: 2036-43.
92. Targher G, Arcaro G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis 2007; 191: 235-40.
93. Takagi H, Umemoto T. Association of hypertension with abdominal aortic aneurysm expansion. Ann Vasc Surg 2017; 39: 74-89.
94. Kobeissi E, Hibino M, Pan H et al. Blood pressure, hypertension and the risk of abdominal aortic aneurysms: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol 2019; 34: 547-55.
95. Daugherty SL, Powers JD, Magid DJ et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation 2012; 125: 1635-42.
96. Smith SM, Gong Y, Handberg E et al. Predictors and outcomes of resistant hypertension among patients with coronary artery disease and hypertension. J Hypertens 2014; 32: 635.
97. Acelajado MC, Hughes ZH, Oparil S et al. Treatment of resistant and refractory hypertension. Circ Res 2019; 124: 1061-70.

[^0]: without CKD or diabetes, $\mathrm{BP}<150 / 90 \mathrm{~mm} \mathrm{Hg}$ in subjects $\$ 60$ years of age without CKD or diabetes, $\mathrm{BP}<140 / 90 \mathrm{~mm} \mathrm{Hg}$ in subjects with CKD, and BP $<140 / 90 \mathrm{~mm}$ Hg in subjects with diabetes.

 included fatal and nonfatal events.

 (events/10 000 person-years); REGARDS, REasons for Geographic And Racial Differences in Stroke; RD, risk difference; RR, relative risk

