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Abstract

Objectives The purpose of the experiment was to estimate whether intrathecal antimalarial drugs 
could provoke spinal block, and their comparison with lidocaine.
Methods Rats were intrathecally administrated with antimalarial agents (primaquine, chloro-
quine, hydroxychloroquine and amodiaquine) and lidocaine, and neurobehavioural examinations 
(nociception, proprioception and motor function) were assessed; n = 8 per group. One-way and 
two-way analysis of variance were designed to analyse data.
Key findings At a concentration of 20 mM, primaquine (0.46 mg/rat) exhibited the longest duration 
and the most potent effect of nociceptive, proprioceptive and motor blockade (P < 0.01) among 
five drugs, whereas the other antimalarial drugs displayed a lesser or similar potency of spinal 
blockade compared with lidocaine (0.29 mg/rat). In dose-dependent studies, primaquine was more 
potent (P < 0.01) than lidocaine for spinal block. At ED25, ED50 and ED75 equipotent doses, prima-
quine produced a greater duration of spinal motor, proprioceptive and nociceptive blockade when 
compared with lidocaine (P < 0.01).
Conclusions Primaquine, chloroquine, hydroxychloroquine and amodiaquine produced spinal 
blockade. Primaquine was more potent and displayed a prolonged life of local anaesthetic effect 
compared with lidocaine, whereas the other antimalarial drugs displayed a lesser or similar 
potency compared with lidocaine.
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Introduction

Antimalarial drugs (i.e. primaquine, chloroquine, hydroxychloroquine 
and amodiaquine) are majorly used to treat malaria.[1] Antimalarial 
primaquine has been known to inhibit transmembrane action poten-
tials.[2] Local anaesthetic agents reversibly blocked firing of action 
potentials by inhibiting sodium channels, and they processed sci-
atic nerve block, spinal/epidural anaesthesia and skin infiltration 
anaesthesia.[3] Since the 1940s local anaesthetic lidocaine with an 
intermediate duration of efficacy and rapid onset of action has been 
used safely. Intrathecal low-dose hyperbaric lidocaine in spinal an-
aesthesia for patients who receive ambulatory surgical procedures 
results in rapid recovery from motor and sensory blockade, while the 
incidence of transient neurologic symptoms appears to be small.[4] 
However, a higher risk of transient neurologic symptoms after lido-
caine spinal anaesthesia has been reported.[5] Recently, isobaric lido-
caine spinal anaesthesia seems to be an effective and safe option for 
knee and hip replacement surgery in a day-case setting, and all pa-
tients report no transient neurologic symptoms.[6]

Spinal block, by injecting a small amount of local anaesthetic 
with easy landmark, is a relatively easy technique that provides 
excellent operating conditions for surgeries.[7, 8] Because prima-
quine and chloroquine blocked voltage-gated sodium channels,[9, 

10] chloroquine produced a dose-dependent effect on skin (periph-
eral) infiltration anaesthesia in rats.[11] To date, no study of spinal 
(central) anaesthesia with antimalarial drugs has been investigated. 
This study aimed to investigate whether intrathecal injection of anti-
malarial drugs (primaquine, chloroquine, hydroxychloroquine and 
amodiaquine) could produce a spinal anaesthetic effect and com-
pared it with lidocaine as a reference drug. We demonstrated that 
antimalarial drugs (primaquine, chloroquine, hydroxychloroquine 
and amodiaquine) produced spinal motor and sensory blockade.

Method

Animals
The China Medical University (Taiwan) Institutional Animal Care 
and Use Committee approved the study (certification number: 
2016–036; date of ethical approval: 4 December 2015). Male 
Sprague–Dawley (SD) rats, weighing 300–350 g, were acquired from 
BioLASCO Taiwan Co., Ltd (Taiwan), and they were housed in the 
Laboratory Animal Center (22°C; 50% relative humidity) under a 
standard 12 h light–dark cycle (6:00 am, on/6:00 pm, off).

Chemical agents
Chloroquine diphosphate salt, amodiaquine dihydrochlororide 
dihydate, hydroxychloroquine sulfate, primaquine bisphosphate and 
lidocaine hydrochloride monohydrate were acquired from Sigma 
Chemical Company of St. Louis and Aldrich Chemical Company 
of Milwaukee (MO, USA). Prior to injection, the agents were com-
pletely dissolved in 5% hydrous dextrose, and the pH was adjusted 
to the range ~5.5 to 6.5.

Experimental groups
In group 1, spinal nociceptive, proprioceptive and motor blockade 
by four antimalarial drugs and the local anaesthetic lidocaine at a 
concentration of 20 mM was examined (n = 8 per group). A 20 mM 
dose was chosen as according to our previous study the ED50 of 
lidocaine has been shown to be 20 mM.[12] In group 2, a study of 
the effect on spinal nociceptive, proprioceptive and motor blockade 
by primaquine (1.25, 1.00, 0.75, 0.50, 0.35 and 0.20  μmol) 

and lidocaine (2.40, 2.00, 1.00, 0.50 and 0.38  μmol) in a dose-
dependent fashion was performed (n  = 8 per group). In group 3, 
spinal nociceptive, proprioceptive and motor blockade effects by 
primaquine (25 mM; 0.57 mg/rat), lidocaine (48 μmol; 0.69 mg/rat) 
and 5% dextrose were compared (n = 8 per group). In group 4, the 
duration of full recovery caused via primaquine was compared with 
that caused via lidocaine for spinal blockade on an equianaesthetic 
(ED25, ED50, ED75) basis (n = 8 per group).

Intrathecal injection
Before injection, the rat was handled for 3–5  days to familiarize 
him with the laboratory room or researcher. Intrathecal injection 
(lumbar puncture) of the drug was performed in the conscious rat 
as described previously.[13, 14] One rat received only one injection of 
the agent. Before intrathecal injection, subcutaneous injection of 1% 
lidocaine (0.5 mL) was given at the lumbar L4–5 intervertebral space 
to each rat in the prone position. After 5 min, a 28-G needle with a 
Hamilton (Reno, Nevada) microlitre syringe was inserted into the 
L4–5 intervertebral space until tail flick. Then 50 µl of drug solution 
was administrated intrathecally into the lumbar 4–5 intervertebral 
space. A rat with a unilateral spinal block was not included in the 
study.

Neurobehavioural examination
Quantitative neurobehavioural testing (nociceptive, motor and pro-
prioceptive function) was examined[15, 16] before, and 1, 3, 5, 7, 10, 
15, 20, 30, 40, 50, 60, 75, 90, 105, 120 and 150 min after drug injec-
tion. A trained researcher, who was blinded to the treatment group or 
control group, was responsible for the evaluation of motor function, 
proprioception or nociception. Motor function was measured and 
presented as the force (g) that is produced by the thrust of the rat’s 
hind feet touching the platform of the electronic balance (Mettler 
Toledo, PB 1502-S, Switzerland). The degree of motor deficit (motor 
block) is considered as a decrease in gram force, resulting from ex-
tensor muscle strength. The extent of nerve block was recorded as 
percent possible effect (%PE), which was defined as followed:

% PE = 100%x (Fb− Fa)÷ (Fb− 20)

where Fb and Fb refer to the maximum muscle strength meas-
ured on one foot of the rat before and after injection, respectively. 
The maximal %PE was reported as percent maximum possible effect 
(%MPE). A  muscle strength measurement of <20  g means 100% 
block of motor function, and the control value before injection was 
interpreted as 0% block of motor function.[12, 17] Proprioceptive 
function was assessed through ‘tactile placing’ or ‘hopping’. This 
evaluation was tested by lifting the upper body of the animal off 
the ground and standing on one foot only. We moved the animal 
in the direction of the weight-bearing leg, which generally caused 
the weight-bearing limb to swing rapidly in the same direction to 
prevent the rat from falling over. A block of proprioception caused 
a slower hopping, and then a larger lateral hopping occurred so the 
rat avoided falling over. In the case of complete block, there is no 
single-leg jump reaction. Proprioceptive evaluation was classified as 
0 (100% MPE or completely impaired), 1 (67% MPE or severely 
impaired), 2 (33% MPE or slightly impaired) and 3 (0% MPE or 
normal). Nociceptive blockade was evaluated based on the vocal-
ization (or withdrawal reflex) provoked via pinching the skinfold on 
the middle part of the tail, the dorsal skin of the rat adjacent to the 
base of the tail, or the lateral metatarsus of both right and left hind-
limbs. A surgical locking forceps, the production of a standardized 
force (225 ± 10 g) without tissue damage, was performed to lock the 
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grasping surfaces in a closed position. The block of nociception was 
graded as 0% MPE (normal reaction), 25% MPE, 50% MPE, 75% 
MPE and 100% MPE (no reaction).

The parameters of spinal block
The duration (full recovery time) is the time from injection to com-
plete recovery (0% MPE). The area under a curve (AUC) of spinal 
block was constructed by Kinetica version 2.0.1 software (InnaPhase 
Corporation, Philadelphia, PA) and was calculated as follows:

AUC = 1/2 (C1 + C2) x (t2 − t1)

where t is the testing time point and C is the %PE. In addition, 
the dose-related curve was obtained after animals received 5–6 doses 
of each agent (n = 8 per group). Then, the SAS NLIN procedure (SAS 
Institute Inc., Carey, NC) was specially used for fitting the curve, and 
the ED50 was obtained.[11, 18] The ED75 or ED25 was derived via the 
SAS NLIN procedure that was employed to construct the median 
effective dose.[15, 19]

Statistical analysis
The data are presented as the mean±standard error (SE) from four 
independent experiments. Most of our experimental values con-
formed to the normal assumption after the Shapiro–Wilk test to 
examine whether our experimental values showed the normal distri-
bution. For this reason, the parametric tests were used to analyse the 
differences among multiple groups. All types of data analysis were 
tested via SPSS for Windows (version 17.0). A  P-value ≤5% was 
considered statistically significant. Experimental data among mul-
tiple groups were tested by one-way (Figures 1–3; Tables 1 and 2) 
and two-way (Figure 4) analysis of variance (ANOVA) with Tukey’s 
honest significance difference (HSD).

Results

Spinal block following intrathecal injection of 
antimalarial drugs
Spinal block (%MPE) in proprioception, motor function or 
nociception by antimalarial primaquine (0.46 mg/rat), chloroquine 
(0.52 mg/rat), hydroxychloroquine (0.43 mg/rat) and amodiaquine 
(0.46  mg/rat) and the local anaesthetic lidocaine (0.29  mg/rat) 
at a concentration of 20 mM is shown in Figure 1. Among these 
drugs, primaquine had the higher potency in spinal nociceptive, pro-
prioceptive and motor blockade when compared with lidocaine. 
Chloroquine or hydroxychloroquine provoked a similar potency of 
spinal blockade in comparison with lidocaine, while amodiaquine 
had the lower potency of spinal blockade when compared with 
lidocaine (Figure 1). Full recovery time of spinal blockade by anti-
malarial drugs (primaquine, chloroquine, hydroxychloroquine and 
amodiaquine) and lidocaine is shown in Figure 2. Using a 20 mM 
solution, full recovery time of spinal blockade by antimalarial drugs 
(primaquine, chloroquine, hydroxychloroquine and amodiaquine) 
was greater than that of lidocaine (Figure 2).

Dose-dependent studies of spinal block by 
primaquine and lidocaine
Lidocaine or primaquine produced spinal block of nociception, 
proprioception and motor function in a dose-dependent manner 
(Figure 3). Their ED75, ED50 and ED25 values are given in Table 1. 
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Figure 1  The percent of maximal possible effect (%MPE) of spinal blockade 
by antimalarial primaquine (0.46  mg/rat), chloroquine (0.52  mg/rat), 
hydroxychloroquine (0.43  mg/rat) and amodiaquine (0.46  mg/rat) and the 
local anaesthetic lidocaine (0.29  mg/rat) at 20  mM in rats (n  =  8 in each 
group of different treatments). Data are reported as mean ± S.E.M. *P < 0.05, 
**P < 0.01, ***P < 0.001, when compared with lidocaine by using one-way 
analysis of variance followed by pairwise Tukey’s honest significance differ-
ence test.
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At an ED50 equipotent dose, the rank order of potency for 
spinal blockade of proprioception, nociception and motor func-
tion are primaquine > lidocaine (P  <  0.01; Table 1). Intrathecal 

administration of 5% dextrose did not produce spinal blockade 
(Table 2). At a concentration of 25 mM, primaquine (0.57 mg/rat) 
produced complete blockade (100% MPE) in motor, propriocep-
tive and nociceptive functions with full recovery times of ~54.4, 
67.5 and 106.9  min (Table 2), respectively. At a concentration 
of 48  mM, lidocaine (0.69  mg/rat) displayed complete blockade 
(100% MPE) in motor, proprioceptive and nociceptive functions 
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Figure 2  The duration of full recovery of spinal blockade by antimalarial 
primaquine (0.46  mg/rat), chloroquine (0.52  mg/rat), hydroxychloroquine 
(0.43  mg/rat) and amodiaquine (0.46  mg/rat) and the local anaesthetic 
lidocaine (0.29  mg/rat) at 20  mM in rats (n  =  8 in each group of different 
treatments). Data are reported as mean ± S.E.M. *P  <  0.05, **P  <  0.01, 
***P < 0.001, when compared with lidocaine by using one-way analysis of 
variance followed by pairwise Tukey’s honest significance difference test.
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Figure 3  Dose–response curves of spinal blockade by antimalarial prima-
quine and the local anaesthetic lidocaine at 5–6 different doses in rats (n = 8 
in each group of different treatments). Data are reported as mean ± S.E.M. 
The differences in potency of spinal blockade of primaquine versus lidocaine 
were evaluated by one-way analysis of variance followed by pairwise Tukey’s 
honest significance difference test.
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with full recovery times of ~26.3, 30.0 and 33.8  min (Table 2), 
respectively.

The AUCs, complete blockade time and duration 
of full recovery of spinal block by primaquine and 
lidocaine
At ED25, ED50 and ED75 equipotent doses, the duration of spinal 
motor, proprioceptive and nociceptive blockade by primaquine was 
longer than that of lidocaine (P  < 0.01; Figure 4). AUCs and dur-
ations of action of primaquine were larger (all P < 0.05) than these of 
lidocaine for spinal motor, nociceptive and proprioceptive blockade 
(Table 2). All animals recovered fully following intrathecal injections.

Discussion

We are the first to show that antimalarial drugs (primaquine, chloro-
quine, hydroxychloroquine and amodiaquine) produced spinal 
motor and sensory (nociception and proprioception) block. Among 
four antimalarial drugs and the local anaesthetic lidocaine, prima-
quine had the best potency and produced the longest duration of 
spinal motor and sensory blockade. Intrathecal primaquine and lido-
caine displayed dose-dependent spinal blockade.

Antimalarial drugs are commonly used to prevent or to treat 
malaria.[20] Antimalarial primaquine and chloroquine could inhibit 
the activity of Na+ channels,[9, 10, 21] and chloroquine has been shown 
to produce the local anaesthetic effect of skin infiltration local an-
aesthesia in rats.[11] Local anaesthetics displayed the blockade of 

voltage-gated sodium channels, and they processed the generation of 
peripheral nerve block, skin infiltration anaesthesia and spinal/epi-
dural anaesthesia.[3] Furthermore, antimalarial primaquine has been 
known to inhibit the generation of action potentials[2] and to produce 
use-dependent block of Na+ channels.[10] In this study, we showed 
that antimalarial primaquine, chloroquine, hydroxychloroquine 
and amodiaquine at 1  μmol produced spinal blockade. Overall 
findings were in keeping with subcutaneous injection of chloro-
quine (12  μmol) producing skin infiltration anaesthesia in rats.[11] 
Although it is not a replacement for lidocaine, primaquine may have 
a value in local anaesthesia clinically.

Primaquine was the most potent among antimalarial drugs 
(primaquine, chloroquine, hydroxychloroquine ad amodiaquine) in 
spinal anaesthesia. Therefore, only primaquine and lidocaine were 
tested for dose-related studies. In addition, systemic lidocaine effect-
ively reduced pain in patients with fibromyalgia.[22] This is similar to 
previous experiments showing that antimalarial drugs are effective 
in treating chronic pain and traumatic brain injury.[23, 24] Primaquine 
was almost 1.7-fold more potent than lidocaine for spinal blockade. 
Our resulting data resembled a previous study showing that 
bupivacaine was almost 11-fold more potent than chloroquine for 
skin infiltration anaesthesia.[11] At ED25, ED50 and ED75 equipo-
tent doses, the duration of primaquine was greater than that of lido-
caine for spinal blockade (Figure 4). In the future, it may be worth 
using the local anaesthetics (e.g. primaquine) for postoperative pain 
control and surgical procedures.

Based on their chemical structures, antimalarial drugs can be sep-
arated into secondary and tertiary amines. After intrathecal injection, 

Table 1  ED50, ED25 and ED75 with 95% confidence interval (95% CI) of drugs for spinal blockade of motor function, proprioception and 
nociception in rats

Drug Motor function Proprioception Nociception Mean

ED50 (95% CI) ED50 (95% CI) ED50 (95% CI) ED25 ED50 ED75

Primaquine 0.63 (0.58 –0.68)* 0.57 (0.52 –0.61)* 0.54 (0.49 –0.59)* 0.43 0.58 0.77
Lidocaine 1.07 (1.01 –1.14) 0.97 (0.90 –1.04) 0.88 (0.82 –0.93) 0.76 0.97 1.25

The EDs of drugs (μmol) were constructed from Figure 3. The potency ranking of drugs (ED50) was primaquine > lidocaine (*P < 0.01 for the differences) by 
using one-way ANOVA followed by pairwise Tukey HSD test.

Table 2  %MPE, duration of action and AUCs of primaquine (1.25 μmol; 0.57 mg/rat), lidocaine (2.40 μmol; 0.69 mg/rat) and 5% dextrose on 
spinal blockade of motor function, proprioception and nociception in rats

%MPE Duration (min) AUC (%MPE x min)

Complete blockade time Full recovery time

Motor function
  Primaquine 100 ± 0 9.1 ± 0.9** 54.4 ± 3.7*** 2710 ± 224***
  Lidocaine 100 ± 0 5.8 ± 0.9 26.3 ± 1.8 1205 ± 120
  5% Dextrose – – – –
Proprioception
  Primaquine 100 ± 0 12.3 ± 0.8*** 67.5 ± 4.0*** 3737 ± 233***
  Lidocaine 100 ± 0 6.1 ± 1.0 30.0 ± 1.9 1489 ± 129
  5% Dextrose – – – –
Nociception
  Primaquine 100 ± 0 19.0 ± 1.3* 106.9 ± 8.2*** 5891 ± 365***
  Lidocaine 100 ± 0 11.6 ± 3.1 33.8 ± 1.8 1918 ± 213
  5% Dextrose – – – –

Data are reported as mean±S.E.M.; n = 8 rats in each group. Of note, all of the animals displayed complete blockade (100% MPE) of any function tested in 
both primaquine and lidocaine groups. *P < 0.05, **P < 0.01, ***P < 0.001, when compared with lidocaine by using one-way ANOVA followed by pairwise 
Tukey HSD test.
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the tertiary amine agents (hydroxychloroquine, amodiaquine and 
chloroquine) demonstrated a similar or lower potency of spinal 
blockade when compared with lidocaine. The secondary amine 
agent (primaquine) exhibited a higher efficacy of spinal blockade 
than did lidocaine (Figure 1). We found that, in general, tertiary 
amine drugs are not as strong as secondary amine drugs for spinal 
sensory and motor blockade. In addition, primaquine (a secondary 
amine agent) induced a greater duration of spinal blockade than did 
lidocaine (Figure 2). Our resuls may be beneficial for patients who 
need more prolonged surgical procedures.

There are the limitations in this study. First, the evaluation of 
acute cardiovascular and central nervous system toxicity after anti-
malarials injection should be considered in the future. Second, we 
did not investigate if primaquine or other antimalarial drugs pro-
voked local neurotoxicity. However, in our neurobehavioural study 
we did not observe apparent behavioural abnormalities after intra-
thecal injection. Third, it is worth conducting further experiments 
to confirm the possible mechanism (e.g. the block of sodium chan-
nels) by which antimalarial drugs provoke spinal sensory and motor 
blockade.

Conclusions

The main conclusion was that primaquine and the other antimalar-
ials (chloroquine, hydroxychloroquine and amodiaquine) produced 
spinal sensory and motor blockade. Primaquine and lidocaine pro-
voked dose-dependent spinal block. Primaquine exhibited greater 
potency and prolonged duration of action in comparison with lido-
caine for spinal blockade, while the other antimalarials had similar 
or lesser potency when compared with lidocaine.
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