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Abstract

Background Ambulance services produce a large quantity of
data, which can yield valuable summary statistics. For
strategic planning purposes, an economic framework is
proposed, and the following four resource allocation ques-
tions are answered, using data from the Surrey Ambulance
Service: (1) To satisfy government response time targets,
how many additional ambulances will be required, ceteris
paribus? (2) To minimize average response time (r*) with
given resources, how should ambulances be rostered
temporally? (3) Which innovations are worth undertaking?
(4) How would an increase in demand affect r*?

Methods The `Ambulance Response Curve' ± the relation
between response time and the number of available but not-
in-use ambulances ± is used to estimate how much r* will be
reduced by deploying an additional ambulance. Estimating
the marginal cost of an ambulance allows us to estimate the
opportunity cost of each second of response time, and to
compare the cost of three `innovations' with that of increas-
ing resources. The time savings of adding an extra ambu-
lance at each of the 168 h of the week are examined.

Results In 1997±1998, r* was 8 min 52 s. An additional
ambulance reduces r* by 8.9 s. Each reduction of 1 s in r*
costs £28 000 per year. Fourteen additional ambulances are
required to meet response time targets if the 8.9 s reduction
per ambulance is maintained. r* reduces by 4.6 s when
ambulances are shifted from early mornings to Saturday
evenings. Activation time reduces by 38 s when crews sit in
their ambulances. A 1 min decrease in overall call time
decreases r* by 1.1 s. Answering only 10 per cent of all calls
reduces r* by 63 s. An increase of demand of 10 per cent
increases r* by 7.8 s.

Conclusions Ambulance services will be better able to
determine which innovations are worth undertaking. Policy
makers will be better placed to determine funding levels to
achieve response time targets.

Keywords: ambulance, economics, resource allocation,
innovation

Introduction

A fast and reliable ambulance service is taken for granted in

modern societies. In Britain, demand for ambulances has been

increasing at the rate of about 4 per cent each year throughout

most of the last decade, and at 9 per cent, 5 per cent, 7 per cent

and 8 per cent over the last four years.1 Yet very little work has

been undertaken on the ef®cacy of innovations in the ambulance

service.1,2

Improvements in automated data capture in British ambu-

lance services over the past few years now make it possible to

analyse their performance in meeting time targets. A national

target for meeting a response time for life-threatening calls of 8

min or less in 75 per cent of cases has been set for the ®scal year

2000±2001. (`Response time' refers to the time elapsed from

when the ambulance control room answers an incoming `999'

call to when the ambulance arrives at its destination.)

Currently, only one of 37 NHS ambulance trusts (Staffordshire)

meets this target. An important question of resource allocation is to

determine how many additional ambulances would be required to

meet the standard, given that current performance standards are

maintained (i.e. neither improved nor made worse) and provided

there were no changes in demand for ambulances. This paper

develops an economic framework to answer this question.

In this paper, we show how our framework is also capable of

answering a number of other questions pertinent to the provision

of ambulances:

(1) How should ambulances be rostered (at different times of

the day and days of the week) to minimize average response

time for a given budget?

(2) Will an innovation with the same cost as an additional

ambulance provide more or less bene®t than the additional

ambulance? That is, is an innovation worth undertaking?

We consider three possible innovations, as examples of how

the method may be employed. Other innovations may also

be evaluated using this framework.

(3) Other things being equal, how would an increase in demand

affect response times? We look at the case of a 10 per cent

increase in demand.
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It is important to note that this analysis does not model where

ambulances should be located: that is a further exercise.

We have used data from the 1997±1998 records of calls to

the Surrey Ambulance Service (SAS) to analyse response times.

Over 10 months from 1 April 1997 to 31 January 1998, 75 239

calls were attended. The SAS is classi®ed as an urban service

and must meet targets set for urban areas (currently 50 per cent

of calls within 8 min and 95 per cent within 14 min). It operates

up to 37 ambulances at a time from 19 bases. Usually, up to 37

ambulances are used during the day, dropping to 19 in the early

hours of the morning, and averaging 28. When the ambulances

at a particular base are all in use, ambulances not in use in

adjacent areas will be sent to `cover' for that area. This may

cause a domino effect, of ambulances further a®eld covering for

the ambulance which is providing the primary cover.

Ambulances on cover may travel all the way to another base,

whose ambulances are already in use, but may also stand in a

roadside lay-by, part of the way to the base. Even where no

ambulance from a base is in use, an ambulance from that base

may be required to stand in a lay-by as part of a strategy of

covering the county more evenly, rather than at a base. In this

way, it can reach some of the population more quickly than

otherwise.

Of the 75 000 calls, 59 000 of them were so-called

`emergency' calls, and 16 000 `urgent' calls. The urgent calls

comprise mainly inter-hospital transportation of patients and

calls by GPs to transport patients to hospital appointments.

Emergency calls receive priority over urgent calls, the latter of

which are generally answered within 2 h. At the time that the

data refer to, emergency calls were not prioritized. However, a

prioritization scheme has since been introduced.

Method

Data

The dataset of the 75 000 calls to the Surrey Ambulance Service

(SAS) consists of detailed information on every call made,

including all relevant times, ambulance call number, name and

address of the patient, name of caller, reason for call, whether

the ambulance was at its own base, at another base or on standby

at the time of the call, and the name of the hospital attended. From

this, activation time, response time and all-round trip time can all

be calculated.

As well as this, at the conclusion of the call, the crew

categorized it as either life threatening (category A) or non life

threatening (category B). Our analysis of response times is of

the emergency calls, although to ®nd out how many ambulances

were being used (and therefore not available for emergency

use) we had to take urgent use into account.

When more than one ambulance has been called, the

response time has been calculated for only the ®rst ambulance

called. This is because sometimes the second ambulance is

called only after the ®rst has arrived, and therefore with a

considerable lag, the time being measured from the ®rst contact

with the ambulance service.

Average and 75th percentile response times

We examine average response times, rather than the response

time of the 75th percentile, to be the new industry standard.

There are four reasons for this: ®rst, the mean contains more

information than the 75th percentile; second, it is arguably

more easily interpreted. The other two reasons are technical:

response times at the time the data were collected were

expressed in whole minutes, so that, for example, both 8 min 0 s

and 8 min 59 s were recorded as 8 min. (These times were

recorded by hand; since then, they have been automatically

recorded to the nearest second.) Thus 75th percentiles were

recorded to the nearest minute over a number of observations,

whereas mean times over a number of observations could be

estimated to the nearest second, with an error of only several

seconds. Fourth, and more importantly, in the regression

equations that follow, the regression of response time (r)

against number of available not-in-use ambulances (n) is

carried out for each of the 55 319 observations with a valid

response time as data points, and not on the 35 mean response

times (r*) for the 1±35 available ambulances. It is not possible

to do this calculation for the 75th percentile on an individual

call basis, and the regression would have to be carried out using

only 35 data points.

Nevertheless, the answers for the mean response times have

been translated into 75th percentile response times using the

regression equation

75M � a � br� 2 < n < 33 �1�

where 75M is the 75th percentile response time and r* is the

mean response time when there are n ambulances available and

not in use.

The effect of an additional ambulance: the Ambulance
Response Curve

The centrepiece of our analysis is what we call the Ambulance

Response Curve (ARC). This shows the relationship between

the response time for an individual call (r) and the number of

ambulances available and not in use (n) at the time the call was

made. For example, let us suppose that 35 ambulances are on

duty and 10 of them are being used. Then n has the value of 25

when the next call is taken. Ceteris paribus, as n increases, we

expect that r will fall.

The data were already in chronological order of receipt of

call. Using only the standard statistical packages Excel and

SPSS, at activation time of an ambulance, a new variable was

created with the value of (ÿ1) to represent its departure from

the not-in-use ¯eet. When the ambulance returned and was once

more available for use, a different new variable was given the

value of (�1) to represent its addition to the not-in-use ¯eet.

The return times were then put into a separate ®le and sorted
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into chronological order. The (�) and (ÿ) ®les were then

merged chronologically, and a running tally was kept of the

number of ambulances being added to and subtracted from the

¯eet of not-in-use ambulances. Similarly, a third ®le containing

the numbers of ambulances beginning and ending their shifts

(� for beginning and ± for ending) was merged with the ®le

that had already been merged, to obtain the numbers of not-in-

use ambulances at all times. In this way, the number of

available ambulances (not in use at the time of the call) was

associated with the response time of the ambulance, for all calls

throughout the year.

We estimated the relationship between r and n by means of

linear regression with and without hour-of-day covariates to

account for traf®c congestion, and then investigated several

non-linear forms. Mathematical modelling of distances that

equally spaced ambulances on a square grid of uniform

population density would travel suggests that, ignoring

ambulances returning from previous assignments, r will be

related to n in the following fashion:

t � r ÿ a ÿ d � bnÿ1
2 �2�

where t is the traf®c-adjusted travel time, a is the activation

time, which is known for each of the 55 000 observations, and d

is the coef®cient of the time dummy already estimated from the

linear regression with hour covariates.

Thus, we undertook a regression of the form

t � r ÿ a ÿ d � bna
�3�

where a is to be determined from the regression equation.3

When n is zero or negative (denoting a queue for the next

ambulance), this equation will not hold. For such values of n,

and to some extent for small positive values of n, the response

time will depend on the rate of return of ambulances currently

being used. For the small number of cases that this applies to, a

linear ARC is thought to be the most likely. (We investigate the

shape of the ARC in a separate paper, currently being written.)

The slope of the ARC tells us the amount by which response

time would improve if there were one additional ambulance at

the time the call were made. This is a measure of the marginal

bene®t of additional resources. What is understood by this is

rather subtle, as it is utilizing the ceteris paribus (`all other

things equal') condition of economics and scienti®c method.

This condition would allow an additional ambulance to be used

in no better or worse a manner than existing ambulances. It

would not be put in an out-of-the-way location where it was

rarely if ever used. It would, however, need to be used as a

single ambulance, day and night, as that would allot the same

marginal resource (one additional ambulance) to all time

periods. However, it is likely that an ambulance service would

allocate the additional hours in a more optimal fashion than this.

For example, if the additional ambulance hours were allocated

in the same way as the existing hours, then there would be about

1.3 additional ambulances allocated to day shifts and 0.7 to

night shifts. This would give an average of one additional

ambulance overall. However, apart from being much more

complicated, it is also unnecessary to consider these things, as

we can consider modelling the exchange of ambulances

between time-slots to effect a better allocation of resources as

a separate exercise. We do this in the subsection after next.

Marginal cost

To determine the marginal cost of running an ambulance

continuously for a year, we found the average number of crew

per ambulance, and the proportions that were paramedics and

technicians.

Ambulances are leased, and the annual leasing cost includes

maintenance and equipment. Fuel costs are only those of idling

time, as demand is assumed not to change when there is an

additional ambulance. Small additional costs of uniforms,

administrative consumables and additional insurance were used

to round up the total ®gure to the nearest £10 000 per year.

Optimally allocating ambulances by time-of-day and
day-of-week

For the Surrey Ambulance Service, let us suppose that we

compare ambulance usage between 4 a.m. and 5 a.m. Tuesdays

with that between 11 p.m. and midnight on Saturday nights.

There were 143 calls in the data period in the Tuesday timeslot,

and 535 calls in the Saturday slot. On Tuesday morning, the

average value of n was 15.9 whereas for Saturday night it was

11.1. From the ARC [see Fig. 1 and equation (8), below] we

estimate that, for n � 15.9, the marginal response time savings

of an ambulance are 9.4 s, whereas for n � 11.1, the time

savings are 14.4 s. The marginal response time savings,

aggregated over all calls, for each period are

Tuesday 4 a.m. to 5 a.m.: 143 ´ 9:4 � 1344 s

Saturday 11 p.m. to 12 p.m.: 535 ´ 14:4 � 7734 s.

A marginal ambulance will save more response time in

aggregate late on Saturday evening than in the early hours of

Tuesday. The formula used to calculate the aggregated

marginal response time savings is given by c.Dt, where c is

the number of calls in the time-period and Dt the slope of the

ARC for the average number of available not-in-use ambu-

lances at that time.

We can use this method to show how to allocate ambulances

at different points in time. If we subtract an ambulance from

Tuesday morning, Dt will rise above 9.4 s, as a result of the

curvature of the ARC. If we add that ambulance to Saturday

evening, the Saturday Dt will fall below 14.4 s. As we continue

to shift ambulances from Tuesday to Saturday, Tuesday

aggregate time savings will increase and the Saturday aggregate

will decrease until they are equilibrated. Any further shifting of

ambulances beyond this point will result in aggregate time

losses, so the process is self-limiting.

This process has been undertaken for each hour of the day

and day of the week. Where c.Dt is below average, resources
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should be subtracted, and, conversely, they should be added

when c.Dt is above average.

Innovations

The ®rst innovation we wished to test was to see whether

there were time savings from sitting the crew in the

ambulance. We estimated from the data the activation time

for crews at base and in lay-bys. This gives us a measure of

gains or losses in r that may be made from sitting the crew

in the ambulance (lay-bys) or not (home base). We estimated

separately the value of r* for ambulances going to home-

base zones from home base, to home-base zones from lay-

bys, and to non-home-base zones from home-base and from

lay-bys.

The second innovation was to examine the effect of having a

faster job turnaround time.

The following equation describes how the average time (T)

between one emergency call and the next is composed:

T � j � u � s �4�

where j is the average overall time for an emergency call, u is

the average time spent on urgent calls between emergency calls,

and s is slack time. A decrease in j of 1 min translates into an

increase of 1 min in s. It is the proportionate increase in s that

matters, as s, the so-called `slack', is the true time resource of

an ambulance service: it is slack time that determines the value

of n.

(It has been suggested by a reviewer that this analysis is too

simplistic, and that the duration of the interval between the calls

`depends entirely on the shapes of the response and interval

distributions'. We have looked at this proposition by dis-

aggregating the data, and have not found that it makes any

difference to our results.)

The third innovation was to examine what response times

would have been if the SAS were only to answer the calls its

crew said were life threatening. Other calls would be left

forever unanswered! (Admittedly, this example is unrealistic,

but it provides an upper limit on the time savings from triage.)

We did this by ®nding the value that n would have been if only

the A-classi®ed calls had been answered. Let us call this

number nA. We then subtracted [r*(n� ÿ r*(nA)] from the value

of r(n) for each of the A calls, where r*(n) is the average value

of the response time when there are n ambulances available and

not in use, and similarly for r*(nA). [For example, let us

suppose n � 21 for a particular A call, and the response time for

that call was 11 min. We suppose the average response times for

all calls when n � 21 was 9 min. If only A calls were being

answered, we suppose that nA � 29, for which r* is assumed to

be 8 min. There is a time saving of (9 ÿ 8 �� 1 min, by having

29 ambulances instead of 21 when the call is made. So we

amend the time of the call from 11 to 10 min. We do this for all

the A calls. If the savings are proportional to the length of the

trip and not ®xed, this will understate the savings in this

example, where the trip is longer than average. But this will be

offset completely by trips that are shorter than average.]
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Figure 1 Predicted mean response time adjusted for traf®c (®lled diamonds and curve) and actual mean response time
adjusted for traf®c (®lled bars) by number of available ambulances.



Results

Average and 75th percentile response times

There was a strong relationship between average and 75th

percentile response times, as given in the equation

75M � 0:136 � 1:163r� 2 < n < 33 R2
� 0:981: �5�

(0.285) (0.030) (SDs in parentheses)

When r� � 9 min, the error on 75M will therefore be 3.2 s.

r* for all calls was 8 min 52 s, or 8.87 min, with a standard

deviation of only 0.99 s. A 75th percentile response time of

10 min 26 s (10.44 min) is implied from equation (5).

Estimating the Ambulance Response Curve

To picture the Ambulance Response Curve, it is instructive to

examine the relationship between the mean response time (r*)

for each n (number of available ambulances not in use). This is

given in Fig. 1. (The relationship between r and n is a scatter of

over 50 000 points and is not informative.) Negative values of n

represent the size of the queue at that time. There were very few

observations with negative n, so the standard error for the mean

response time for each negative value of n is fairly high.

However, for n > 2, the number of observations for each n rises

from over 100 to several thousand when n is between 20 and 30.

(The number of observations on which the mean response time

is based for each n is given at the top of Fig. 1.)

In part because of the large number of observations making

up r* for each n, the graph shows a remarkably steady decline in

r* as n increases, from n � 2 to n � 34.

For the relationship between the 55 000 observations linking

r to n, however, we ®rst list the equation for the simple linear

regression. It should be noted that in this and all other

regression equations, the times are all quoted in minutes.

r � 10:74 ÿ 0:100n R2
� 0:020: �6�

(0.06) (0.003) (SDs in parentheses)

The coef®cient of n shows that there is a decrease in response

time (on average) of 0.100 min, or 6 s, for each additional

ambulance. When time dummies are put into the equation,

however, the coef®cient of n changes sharply from ÿ0.100 (6 s) to

ÿ0.161 (9.7 s). The full equation, where h02 refers to the hour

between 1 a.m. and 2 a.m., etc., is given by

r� � 11:50 ÿ 0:161n � 0:19h02 ÿ 0:01h03 ÿ 0:01h04

ÿ0:10h05 ÿ 0:24h06 ÿ 0:01h07 ÿ 0:20h08 � 0:81h09

�0:41h10 � 0:26h11 � 0:46h12 � 0:68h13 � 0:37h14

�0:55h15 � 0:69h16 � 1:00h17 � 1:20h18 � 1:35h19

�0:84h20 ÿ 0:18h21 ÿ 0:46h22 ÿ 0:41h23 � 0:13h24

R2
� 0:029: �7�

(0.10) (0.0046) (0.11±0.15 for the hour variables)

(SDs in parentheses).

The reason that the n-coef®cient value changes so much is

that, in essence, there are two patterns of ambulance provision.

The value of n during the day hours was almost always above

19, but at night hours was never above 19. This is shown in Fig.

2, where the regression line of response times for different n

during night hours is shown by the curve with triangles (the

hour chosen to represent these times being 6 a.m.), whereas for

day hours (the representative hour being 6 p.m.) it is shown by

the curve with diamonds. The regression line without the

dummy variables is shown in black, and is the line whose slope

is 6 s. It may be thought of as the line that ®ts the scatter of

points of both curves together, but it clearly underestimates the

true slope of either the daytime or night-time ARC. This is an

important point, because it shows that each additional

ambulance provides more bene®t than the simple linear

regression would have us believe.

As the ARC is clearly convex to the origin, however, a linear

curve is not the most appropriate, and we proceeded by

estimating equation (3):

t � r ÿ a ÿ d � 19:028nÿ0:376: �8�

Con®dence limits for the value of the exponent are (ÿ0.364,

ÿ0.388). For n > 4, the curve is an extremely good ®t for the

data, as is shown in Fig. 1. As the slope of equation (8) is

changing, we could not ®nd the average time saving of running

an additional ambulance directly from a coef®cient of equation

(8). To achieve this, we calculated Ãt�n� ÿ Ãt�n � 1� for all 55 000

observations, and averaged them. [Ãt (n) is the value of t(n)

estimated from equation (8).] This gave us 8.90 s. The

importance of this ®gure is that it is what we believe to be

the best estimate of the marginal bene®t of an ambulance. As

we cannot readily determine the error on this estimate, we use

the percentage standard error (of 3 per cent) on the n coef®cient

from equation (7) as a proxy. Equation (7) is not such a good ®t

as equation (8), but is more easily interpretable. However, the

error estimated in this way will be an overestimate.

For n < 5, we estimate

r � 14:013 ÿ 0:397n: �9�

(0.583) (0.181)

At this low level of n, an additional ambulance reduces

response time by 0.4 min = 24 s [con®dence interval (CI) 2±

45]. However, this level of n is associated with only 0.4 per cent

of emergency calls.

Marginal cost

Cost of crew, including on-costs, in 1999 £ per year:

paramedics 146 378

technicians 78 322

Leasing of ambulance 21 000

Other annual costs (to round up total) 4300

Total 250 000

The last amount (£4300) includes an amount of about £1000 (5

per cent of £21 000) to cover for ambulance down-time ± it

takes about 1.05 ambulances to provide one working
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ambulance. [For the purposes of ®nding the error of the cost of a

second of response time, we shall assume that the uncertainty of

the total annual cost (which we shall treat as if it were a

standard error) is 3 per cent, or £7500.]

The price, or opportunity cost, of a second of response
time

We are now in a position to estimate the cost of improving

response time by one second. This is, in effect, the price of a

marginal second of response time. As we know by how much

response time needs to improve to meet the government target,

we can then estimate the cost of doing so, if it is achieved by

increasing resources, ceteris paribus. From the above estimates,

the price of a second of response time is estimated to be £28 000

(uncertainty range4 £25 600±£30 400). It should be noted that

the standard errors on the numerator and denominator are

independent and both equal to 3 per cent, so the standard error

on the £28 000 will be approximately 4.2 per cent.

This now also acts as an opportunity cost when considering

an innovation in ambulance services, because it is the cost of

the best alternative to the innovation.

We answer the ®rst question posed (How many additional

ambulances would be required to meet the government target,

ceteris paribus?). From equation (5), to reduce the 75th

percentile response to 8 min requires us to reduce the average

response to 6.78 min. Thus, the 1997±1998 value of r� � 8.87

min would have to be reduced by 2.07 min. (The standard error

on the 2.07 min consists of components from estimating the

6.78 min and 8.87 min. It is estimated as 3.4 s, or 2.7 per cent.)

As an additional ambulance saves 8.9 s of response time, this

implies 14.0 additional ambulances (CI 12.9±15.1). (This

assumes the errors on numerator and denominator are

independent. As they will be negatively correlated, there will

be some slight overestimation of error.) The annual cost is

estimated to be £3.5 million (uncertainty range £3.16±£3.84).

However, as the value of n increases, the saving of response

time per additional ambulance declines. To account for this, we

must extrapolate our model beyond the limits of our data, so the

answer is only likely to be approximate. Nevertheless, by this

method, we estimate that the number of additional ambulances

required would be 30, at an annual cost of £7.5 million.

Optimally allocating ambulances by time-of-day and
day-of-week

Table 1 shows the change to the shift patterns which equilibrate

c.Dt for each hour of the day and day of the week, given the

constraint that the only change possible in shifts is to split the

12 h shifts into two 6 h shifts. We estimate that these changes

would only reduce average response times by 4.6 s, the equivalent

of about 0.5 additional ambulances, or a saving of about £130 000
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6 p.m. regression; ®lled triangle and curve, 6 a.m. regression; curve without symbols, all hours regression.



a year if achieved by increasing resources. The before and after

shift-change values of c.Dt are given in Table 2.

Innovation 1: sitting in an ambulance

Table 3 shows the activation times and travel times for

ambulances in four different categories.

For those ambulances travelling to a home zone, the time

taken to activate was 0.59 min (35 s) less for those occasions

when the crew was sitting in the ambulance. The equivalent

time difference for ambulances travelling to a non-home zone

was 0.67 min (40 s). The average reduction was 38 s. A 10

percentage point increase in the number of crews sitting in the

ambulance would therefore improve response time by 3.8 s, at

an opportunity cost of £106 000 per year. This bene®t from the

innovation can now be compared with the costs of achieving it,

including any additional salaries required as a trade-off for less

congenial working conditions.

Innovation 2: faster job turnaround

We estimate that j � 45, u � 15 and s � 130 (see equation (4)).

If j could be reduced to 44, then s would increase to 131, or

by 0.77 per cent. An increase of this amount, when the average

value of n = 18 ambulances, amounts to 0.14 ambulances, an

improvement of 1.1 s in average response time or an annual

opportunity cost saving of £31 000. The question now must be

asked: is it worth while to attempt to achieve a 1 min reduction

in overall trip time if that results in only a 1.1 s reduction in r*?

(That is, will it cost more than £31 000 a year to achieve?)

Innovation 3: triage ± answer only category A calls

The ambulance crews categorized only 9.5 per cent of calls as

life threatening. When we ran the system to estimate r* if only

these calls were ever answered, the time reduced by 63 s. By

interpolation, if 30 per cent of calls were to be triaged as either

life threatening or potentially so, and thus were all given an A

categorization, then the reduction would have been only 49 s.

This work may be checked by noting that there were 8.8

ambulances on duty on average in Surrey. If only 9.5 per cent of

these calls were answered, then 8.0 of these 8.8 ambulances would

not be used. As each unused ambulance reduces response time by

8.9 s, the reduction in r* would be 8 ´ 8:9 � 71 s (compared with

63 s previously estimated). (Of course, if the remaining calls were

to be answered at some time as well, the time-reduction on the A

calls would be substantially less. Current work is engaged in

looking at the effect of dedicating a certain number of ambulances

for category A calls, and the effects of doing so on average

response times for A, for B and for all calls. This research will

therefore be more realistic than the case so far considered.)

Demand

If an increase in demand does not alter the variance of

the number of ambulances in use, a 10 per cent increase in
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Table 1 Suggested changes to the current ambulance deployment schedule

Changes to shift pattern
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0.00 2 1 1 1 1 4 7
1.00 2 1 1 1 1 4 7
2.00 ÿ3 ÿ3 ÿ3 ÿ3 ÿ3 0 4
3.00 ÿ3 ÿ3 ÿ3 ÿ3 ÿ3 ÿ2 0
4.00 ÿ3 ÿ3 ÿ3 ÿ3 ÿ3 ÿ2 ÿ2
5.00 ÿ3 ÿ3 ÿ3 ÿ3 ÿ3 ÿ2 ÿ2
6.00 ÿ1 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2
7.00 ÿ1 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2
8.00 0 0 0 0 0 ÿ2 ÿ2
9.00 0 0 0 0 0 0 0

10.00 0 0 0 0 0 0 0
11.00 0 0 0 0 0 0 0
12.00 0 0 0 0 0 0 0
13.00 0 0 0 0 0 0 0
14.00 0 0 0 0 0 0 0
15.00 0 0 0 0 0 0 0
16.00 0 0 0 0 0 0 0
17.00 0 0 0 0 0 0 0
18.00 0 0 0 0 0 0 0
19.00 0 0 0 0 0 0 0
20.00 1 1 1 1 4 3 2
21.00 1 1 1 1 4 5 2
22.00 1 1 1 1 4 7 2
23.00 1 1 1 1 4 7 2



demand would increase the average number of ambulances

in use from 8.8 to 9.68. This would increase average

response time by 0:88 ´ 8:9 s � 7:8 s. A 10 per cent

increase in demand thus increases average response time by

1.5 per cent, an elasticity of 0.15. If the variance of the use

distribution also increases as demand increases, however,

the increase in average response times would be somewhat

larger.
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Table 2 Total savings for an additional ambulance under current schedule and under revised schedule by hour of day and day
of week

Hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Under current schedule

1 ÿ60.06 ÿ56.80 ÿ55.23 ÿ69.16 ÿ52.25 ÿ127.79 ÿ165.23
2 ÿ35.18 ÿ43.50 ÿ40.30 ÿ58.60 ÿ37.88 ÿ81.32 ÿ101.04
3 ÿ31.31 ÿ30.17 ÿ28.09 ÿ41.06 ÿ29.52 ÿ55.59 ÿ78.55
4 ÿ18.16 ÿ22.44 ÿ23.22 ÿ28.63 ÿ24.30 ÿ33.87 ÿ56.03
5 ÿ22.00 ÿ22.47 ÿ20.58 ÿ24.26 ÿ17.84 ÿ26.04 ÿ29.73
6 ÿ23.03 ÿ23.10 ÿ25.03 ÿ23.99 ÿ23.51 ÿ25.02 ÿ29.25
7 ÿ39.12 ÿ38.03 ÿ35.03 ÿ30.61 ÿ38.16 ÿ31.85 ÿ35.76
8 ÿ47.60 ÿ45.91 ÿ31.99 ÿ36.93 ÿ35.49 ÿ34.32 ÿ38.98
9 ÿ40.47 ÿ40.55 ÿ36.37 ÿ40.31 ÿ42.48 ÿ32.83 ÿ31.15

10 ÿ49.37 ÿ47.18 ÿ52.91 ÿ47.75 ÿ53.74 ÿ42.06 ÿ38.87
11 ÿ55.75 ÿ49.12 ÿ49.02 ÿ50.52 ÿ45.77 ÿ51.99 ÿ49.15
12 ÿ45.94 ÿ45.06 ÿ40.93 ÿ41.90 ÿ52.51 ÿ52.68 ÿ50.85
13 ÿ44.61 ÿ39.03 ÿ43.13 ÿ42.58 ÿ48.08 ÿ54.40 ÿ50.52
14 ÿ52.40 ÿ46.33 ÿ50.34 ÿ49.84 ÿ60.18 ÿ55.53 ÿ44.49
15 ÿ52.48 ÿ44.73 ÿ45.30 ÿ47.10 ÿ50.92 ÿ48.53 ÿ43.28
16 ÿ48.31 ÿ36.62 ÿ45.01 ÿ37.78 ÿ46.97 ÿ47.45 ÿ39.01
17 ÿ40.75 ÿ35.49 ÿ40.31 ÿ35.73 ÿ42.17 ÿ50.47 ÿ40.85
18 ÿ36.25 ÿ38.56 ÿ35.83 ÿ37.01 ÿ36.95 ÿ41.51 ÿ41.48
19 ÿ34.86 ÿ36.02 ÿ31.54 ÿ30.19 ÿ37.67 ÿ39.07 ÿ43.40
20 ÿ35.67 ÿ37.27 ÿ31.94 ÿ33.91 ÿ39.36 ÿ38.67 ÿ45.44
21 ÿ71.94 ÿ67.76 ÿ63.92 ÿ64.39 ÿ62.17 ÿ72.47 ÿ79.94
22 ÿ73.45 ÿ71.94 ÿ71.07 ÿ74.05 ÿ83.73 ÿ95.24 ÿ77.01
23 ÿ62.18 ÿ58.58 ÿ66.22 ÿ66.88 ÿ101.92 ÿ99.94 ÿ74.66
24 ÿ67.21 ÿ62.67 ÿ72.78 ÿ61.97 ÿ112.70 ÿ134.66 ÿ74.54

Under revised schedule

1 ÿ48.49 ÿ51.10 ÿ49.67 ÿ61.33 ÿ47.61 ÿ82.34 ÿ75.94
2 ÿ29.17 ÿ39.37 ÿ36.57 ÿ52.39 ÿ34.70 ÿ54.11 ÿ51.38
3 ÿ43.01 ÿ41.60 ÿ38.60 ÿ59.17 ÿ39.84 ÿ55.59 ÿ51.36
4 ÿ24.35 ÿ30.36 ÿ31.34 ÿ39.41 ÿ32.29 ÿ41.62 ÿ56.03
5 ÿ29.41 ÿ30.09 ÿ27.56 ÿ32.51 ÿ23.45 ÿ31.43 ÿ36.53
6 ÿ31.02 ÿ31.19 ÿ33.70 ÿ32.36 ÿ31.01 ÿ30.03 ÿ35.87
7 ÿ43.15 ÿ46.62 ÿ42.67 ÿ37.25 ÿ46.10 ÿ38.53 ÿ43.87
8 ÿ51.93 ÿ54.80 ÿ37.62 ÿ43.68 ÿ41.80 ÿ40.84 ÿ47.01
9 ÿ40.47 ÿ40.55 ÿ36.37 ÿ40.31 ÿ42.48 ÿ37.46 ÿ35.59

10 ÿ49.37 ÿ47.18 ÿ52.91 ÿ47.75 ÿ53.74 ÿ42.06 ÿ38.87
11 ÿ55.75 ÿ49.12 ÿ49.02 ÿ50.52 ÿ45.77 ÿ51.99 ÿ49.15
12 ÿ45.94 ÿ45.06 ÿ40.93 ÿ41.90 ÿ52.51 ÿ52.68 ÿ50.85
13 ÿ44.61 ÿ39.03 ÿ43.13 ÿ42.58 ÿ48.08 ÿ54.40 ÿ50.52
14 ÿ52.40 ÿ46.33 ÿ50.34 ÿ49.84 ÿ60.18 ÿ55.53 ÿ44.49
15 ÿ52.48 ÿ44.73 ÿ45.30 ÿ47.10 ÿ50.92 ÿ48.53 ÿ43.28
16 ÿ48.31 ÿ36.62 ÿ45.01 ÿ37.78 ÿ46.97 ÿ47.45 ÿ39.01
17 ÿ40.75 ÿ35.49 ÿ40.31 ÿ35.73 ÿ42.17 ÿ50.47 ÿ40.85
18 ÿ36.25 ÿ38.56 ÿ35.83 ÿ37.01 ÿ36.95 ÿ41.51 ÿ41.48
19 ÿ34.86 ÿ36.02 ÿ31.54 ÿ30.19 ÿ37.67 ÿ39.07 ÿ43.40
20 ÿ35.67 ÿ37.27 ÿ31.94 ÿ33.91 ÿ39.36 ÿ38.67 ÿ45.44
21 ÿ65.33 ÿ61.57 ÿ58.40 ÿ58.81 ÿ44.35 ÿ55.60 ÿ65.96
22 ÿ66.19 ÿ65.03 ÿ64.06 ÿ66.75 ÿ58.79 ÿ60.68 ÿ63.05
23 ÿ56.53 ÿ53.40 ÿ60.16 ÿ60.72 ÿ69.96 ÿ54.60 ÿ61.34
24 ÿ60.72 ÿ56.83 ÿ65.73 ÿ56.19 ÿ76.31 ÿ68.84 ÿ60.89



Discussion

The model of ambulance usage developed here should help

authorities decide how to allocate resources. It is able to give

fairly accurate estimates of the cost of reducing average

response times by providing additional ambulances. In provid-

ing a framework for comparing innovations against spending

additional money to lower response times, it can lead to a way

of measuring the likely success of an innovation.

It must be noted that the ARC (Ambulance Response Curve)

estimated in this paper, and which is the centrepiece of our

analysis, is speci®c to Surrey. Other ambulance services would

need to estimate their own ARC for themselves, as each ARC

will differ because of geography, demography, scale of

operation, etc.

In the current context, i.e. without innovation of any kind, it

is also implied that response time targets are unlikely to be met

without the spending of substantial additional resources.

In this paper, we have not tried to model changing the nature

of the service, as we have been looking at changes in the status

quo situation. It is an open question as to whether radical

changes can meet response time targets without an increase in

resources, although the orders of magnitude presented here

suggest that they could fall somewhat short. The question

should, however, be amenable to the framework devised

here.

Other questions that can be examined within the framework

we have devised are

(1) How will the introduction of triaging affect response times?

(2) Will changing from manual to automated timing and

recording times to the nearest second rather than minute

affect average response times?

(3) Are some ambulance controllers better than others in

allocating ambulances?

Besides this, the estimates arrived at in this process may be used

to better inform location simulation models.
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Table 3 Activation, travel and response times by category of
journey

Category Activation time Travel time Response time

1 2.44 5.33 7.79
2 1.85 5.94 7.79
3 2.61 8.88 11.49
4 1.94 8.28 10.22

Categories: 1, at home base, going to a home zone; 2, at lay-by, going to a
home zone; 3, at home base, going to a non-home zone; 4, at lay-by, going
to a non-home zone.


