

Dissecting salt stress pathways

Shisong Ma¹, Qingqiu Gong¹ and Hans J. Bohnert^{1,2,*}

¹ Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W Gregory Drive, Urbana, IL 61801, USA

² Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W Gregory Drive, Urbana, IL 61801, USA

Received 24 August 2005; Accepted 14 December 2005

Abstract

Upon salt-stress treatment, Arabidopsis mobilizes a complex set of pathways that includes alterations in the regulation of gene expression and metabolic adjustments that attempt to establish a new energetic and developmental equilibrium. The responses share common elements with reactions to many other stresses, such as challenges by osmotic fluctuations, pathogens, mechanical interference, or cold stress. Also, hormones, such as ABA, ethylene, and jasmonic acid, play important roles in salt-stress signalling and adaptation. Publicly available and our own transcript profiling data are used here to dissect gene regulation under salt stress in A. thaliana Col-0. Applying the clustering method 'fuzzy k-means clustering' on 1500 strongly regulated genes, the salt-stress response could be categorized into distinct segments. Fewer than 25% of the regulated genes are salt stressspecific, while the majority also responded to other stresses and/or hormone treatments. Significantly, roots and shoots showed differences in hormone responsiveness, and early and late responses correlated with different signalling events. A network begins to emerge, revealing the basis of cross-talk between high salinity and other stresses.

Key words: *Arabidopsis thaliana* Col-0, cross-talk, fuzzy k-means clustering, salinity, transcript profiles.

Introduction

Decades of research into the effects of salinity on plant physiology and development have generated a wealth of information, among which the most advanced understanding is based on the detection and analysis of a signalling pathway (SOS) (Zhu, 2003) and engineering of sodium storage by cells (Apse *et al.*, 1999; Blumwald, 2003). Other results also pointed to the importance of the plant hormone ABA, the calcium sensor, calcineurin B-like 1 (CBL1), potassium homeostasis, and MAPK and CDPK genes in salt-stress responses that lead to protection (Hasegawa *et al.*, 2000; Xiong *et al.*, 2002; Albrecht *et al.*, 2003; Cheong *et al.*, 2003; Kim *et al.*, 2004). However, current knowledge is still largely restricted to individual genes and pathways, and the unifying picture remains hidden.

Plants have evolved complex signalling pathways in response to various stimuli, such as salt, drought, cold, wounding, or pathogen invasion, and have acquired plasticity in metabolic functions and developmental switches to cope with changing environmental conditions (Genoud and Metraux, 1999). Cross-talk connecting different pathways appears to be a common feature in plants, as exemplified by biotic defences involving ethylene, salicylic acid, and jasmonic acid (Dong, 1998; Kunkel and Brooks, 2002), or by the DREB/CBF pathway on which signals from several abiotic stress conditions converge (Chinnusamy et al., 2004; Shinozaki and Yamaguchi-Shinozaki, 2000). The understanding of salinity stress will be greatly enhanced by identifying the convergent and divergent pathways between salinity and other abiotic stress responses and the nodes of signalling convergence. Indeed, several studies have addressed cross-talk between abiotic stresses and hormone signalling (Cheong et al., 2002; Kreps et al., 2002; Seki et al., 2002).

Recently, public efforts have been directed to *Arabidopsis* global transcript profiling that monitored the response of the plant under different treatments. Large sets of data have been made publicly available through several databases, such as TAIR, NASC, and Genevestigator (Garcia-Hernandez *et al.*, 2002; Craigon *et al.*, 2004; Zimmermann *et al.*, 2004).

^{*} To whom correspondence should be addressed. E-mail: bohnerth@life.uiuc.edu

[©] The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org

Especially useful has been the AtGenExpress consortium project which had generated standard Affymetrix microarray data for *Arabidopsis* (http://www.arabidopsis.org/ info/expression/ATGenExpress.jsp). Different methods, among them electronic northern and co-regulation analysis tools, have been created to integrate these data (Steinhauser *et al.*, 2004; Zimmermann *et al.*, 2004; Persson *et al.*, 2005; Toufighi *et al.*, 2005).

Salt-stress response pathways in Arabidopsis are dissected using the publicly available AtGenExpress data. In addition, microarray data generated by long oligo (70-mer) glass-array slides monitoring salt-stressed plants are compared with those deposited in AtGenExpress. This analysis revealed a well-defined salt-stress response in Arabidopsis that could be contrasted against reactions in response to other stresses. From the datasets, 1500 salt-regulated genes have been extracted and analysed by the fuzzy k-means clustering method (Gasch and Eisen, 2002). This analysis provided a distinction between genes that responded only to salinity from those that also responded to biotic, osmotic, low temperature stress, and hormone treatments. By assigning specificity and identifying nodes of cross-talk, general patterns of gene regulation in Arabidopsis upon salinity stress can be identified.

Materials and methods

Affymetrix microarray data

The abiotic transcript profile data were downloaded from Weigel World (http://www.weigelworld.org/resources/microarray/AtGenExpress/), which has been processed via gcRMA (Wu et al., 2003). For biotic and hormone treatments, the CEL files for Affymetrix microarray data were downloaded from TAIR and processed into expression estimates using gcRMA implemented in R with default settings. For each experiment, the log2 intensities for individual probe sets were averaged across two replicates for treatment and control, and their differences were used as log2 of fold changes. Among the 12 saltstress experiments (roots or shoots, six time points), the maximum and minimum regulation values were used to extract, for this pilot analysis, the top 1000 up-regulated and top 500 down-regulated genes, which were analysed using the fuzzy k-means clustering method (Gasch and Eisen, 2002), using the parameter k=30. The process generated 22 centroids with each gene linked to every centroid by a membership value. Then, 22 clusters were generated in a way that a gene was assigned to the cluster with which it had the highest membership value. A 0.2 membership cutoff was applied, which resulted in 1143 genes with clear patterns in these 22 clusters. Results were visualized by mapletree (http://rana.lbl.gov/ EisenSoftware.htm) software.

Glass microarray data

A. *thaliana* (Col-0) plants were grown hydroponically in pots filled with isolite artificial soil (Sundine Enterprises, Arvada, CO), supplied with 0.5× Hoagland's nutrient solution with increased (4×) Fe amounts, at 24 °C (16/8 h light/dark; ~150 µmol photons m⁻² s⁻¹). Four-week-old plants before bolting were irrigated with 150 mM NaCl at midday, and remained in the presence of NaCl solution. Control plants were irrigated with nutrient solution. After treatment for 3 h and 24 h, respectively, plants, at least 10 per sample, were

frozen in liquid N_2 . Two biological repeats, grown separately at different times, were used.

From these samples, total RNA was isolated (RNeasy; Qiagen, Carlsbad, CA). Glass microarray slides consisting of 70-mer oligonucleotide probes (http://ag.arizona.edu/microarray/) were used in hybridizations. RNA samples (70 µg each) for control and treatment conditions were reverse transcribed (SuperScript III; Invitrogen, Carlsbad, CA) and hybridization performed according to TIGR (http://atarrays.tigr.org/arabprotocols.shtml). For each time point in each biological repeat three hybridizations were carried out. To avoid bias in microarrays as a consequence of dye-related differences in labelling efficiency, dye labelling for each paired sample (stress/ control) was swapped in one of three independent hybridizations. In total, 12 microarray hybridizations were carried out.

After hybridization, signal intensities for each array element were collected (GenePix 4000B; Axon Instruments, Union City, CA) and images analysed (GenePix Pro 4.0). Spots with intensities lower than local background or aberrant spot shape were flagged by the GenePix software, checked manually, and excluded. The resulting GPR files were analysed by TIGR-TM4 (http://www.tm4.org/) (Saeed *et al.*, 2003). Total intensity normalization, Lowess (Locfit) normalization, standard deviation regulation, and intensity filtering were done for each slide with TIGR-MIDAS, version 2.18. Then, using 'Multiple Experiment Viewer' (MEV, a tool in TM4), version 3.0.3, a class *t* test (P=0.05, permutation=64) was applied to pick up the significantly regulated genes. Adjusted Bonferroni *P*-value correction was used at the same time to reduce FDR (false discovery rate). The *t* test output was then compared with salt stress microarray data from the AtGenExpress consortium projects.

Comparison of results with Affymetrix and glass microarray slides

The list of differentially regulated genes using 70-mer olionucleotide glass slides was compared with the list of genes identified by AtGenExpression as regulated. For this comparison, only the trend of regulation was considered. If the log2 ratio value was less than 0, the gene was considered repressed, otherwise induced.

Results

Arabidopsis oligonucleotide-based microarrays

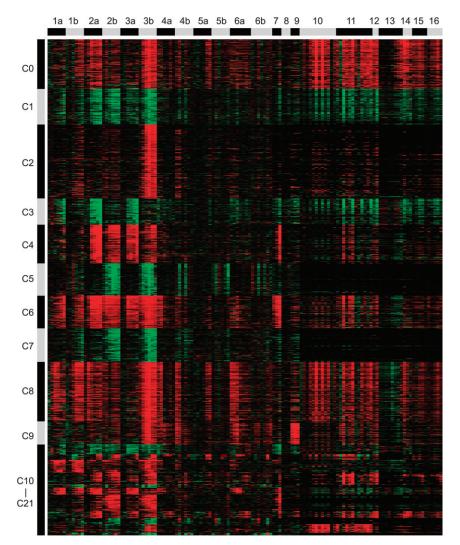
Based on results from previous studies (Kreps *et al.*, 2002; Seki *et al.*, 2002; Taji *et al.*, 2004), a shock treatment of 150 mM NaCl for 3 h and 24 h, respectively, was chosen. This concentration and times represent the maximum tolerable for a specific response without inducing pathological reactions. The gene expression levels were compared with those of untreated controls (see Materials and methods). Each experimental condition was represented by six slides from two biological repeats, including cy3/cy5 dye-swaps with a microarray platform that included 70-mer oligonucleotides, selected to reduce or abolish cross-hybridization, for approximately 26 000 genes.

Normalization and statistical analysis (P < 0.05) resulted in 2419 genes expressed differentially in the 3 h salt-stress experiment compared with the control, and 3930 genes at 24 h. These data were compared to those from AtGenExpress salt-stress experiments, which had been carried out using the Affymetrix ATH1 GeneChip platform. 2109 genes (out of 2419) were found in 3 h experiments in both types of slides, and 3415 genes (out of 3930) at the 24 h time point. While whole plants were used in these experiments, AtGenExpress experiments were done separately for roots and shoots. Considering this, only those genes regulated in the same direction in both roots and shoots were compared with our data. This resulted in 79% of the genes sharing the same trend in the 3 h data, and 84% in the 24 h data (Table 1). The numbers of genes regulated in the opposite direction in roots and shoots are also listed.

A comparison of data for genes represented on both platforms indicated a highly similar trend in gene regulation and significant superimposition in all functional categories (categories not shown). Considering the differences between the tools, technical differences, biological sampling and preparation, it seems reassuring to confirm that salt stress generated stable regulation patterns in *Arabidopsis* wild-type plants that can be replicated, independent of the platform used.

The Affymetrix data collection: Advantages of Affymetrix transcript analysis slides are the inclusion of a standard probe set and well-defined hybridization protocols. With the generous contribution of the AtGenExpress projects, the public databases now include a variety of microarray experiments conducted after different treatments of the plants. The focus was on stress-relevant and hormone-specific AtGenExpress data to harness the high reproducibility of this hybridization platform in comparisons of different treatments. Raw average data were also used without statistical filtering as an acceptable strategy because general trends are the point of interest.

Table 1. Comparing glass array slide to Affymetrix GeneChips


The trends of regulation in both array platforms were compared with each other. Glass arrays used material from root and shoot tissues combined: for the Affymetrix chip experiments these tissues had been separated. At the 3 h time point, 1016 genes (475+541) out of 1284 genes were regulated in the same direction. At 24 h, 1841 genes (692+1,149) out of 2187 were regulated in the same direction. All genes with a negative value were considered down-regulated, and all genes with a positive value were considered up-regulated, irrespective of the degree of regulation.

Time point	Glass array	Affymetrix shoots	Affymetrix roots	Number of genes
3 h	Up	Up	Up	475
	Down	Down	Down	541
	Up	Down	Down	136
	Down	Up	Up	132
	Up	Up	Down	242
	Up	Down	Up	175
	Down	Up	Down	216
	Down	Down	Up	192
24 h	Up	Up	Up	692
	Down	Down	Down	1149
	Up	Down	Down	164
	Down	Up	Up	182
	Up	Up	Down	238
	Up	Down	Up	237
	Down	Up	Down	458
	Down	Down	Up	295

The overall pattern: After extraction of all data from the AtGenExpress database, the analysis focused on 1496 genes, which represent the 1000 most highly up-regulated and 500 most strongly down-regulated salt-responsive genes in *Arabidopsis* Col-0 (see supplementary Table 1 at JXB online). Fuzzy k-means clustering (Gasch and Eisen, 2002) placed 1143 genes into 22 clusters (Fig. 1) (see supplementary Table 2 at JXB online). A total number of 353 genes was removed from further analysis based on their low membership values (see Materials and methods).

Of the remaining 1143 genes 82% assembled into 10 major clusters, which distinguished responses under a selection of experimental conditions that included biotic interactions (viral, bacterial, and fungal), cold, osmotic, salinity, drought, oxidative, and wounding stress treatments, as well as different hormone treatments (clusters CO through C9; Fig. 1). Approximately 18% of the genes were placed into the small clusters 10 through 21, which will not be discussed. Among the large groupings, clusters 0, 2, 4, 6, 8, and 9 include salt-stress up-regulated genes, and clusters 1, 3, 5, and 7 include the down-regulated genes. Interestingly, genes in cluster 0 and 8 were also up-regulated by elicitor treatments, genes in clusters 4 and 6 by ABA treatment, and cluster 9 united salt-responsive and methyljasmonate (MeJA)-induced genes. By contrast, the genes in cluster 2 were up-regulated only by salt-stress and only in roots. Notably, only a small portion of the genes was directly induced by more than one of the treatments by elicitors, ABA, and MeJA. A further distinction emerged in the timing of the response and in hormone-specific correlations that were different in space and time. The remaining clusters 1 and 3 included genes that were downregulated in both abiotic and biotic stresses, while clusters 5 and 6 included genes down-regulated only by abiotic stresses. In the following sections, an analysis of the functionally annotated genes in each centroid will be presented. This provides a basis for dissecting the Arabidopsis salt-stress pathways, and also presents pointers that can guide future analyses into the function of currently unknown genes that appeared in each cluster.

C8: immediate responses: Genes in cluster 8 (141 in total, C8; Fig. 1) showed immediate regulation changes and retained up-regulation in salt-stressed roots, but in shoots the changes were insignificant. Strong up-regulation of this group of genes was also observed following osmotic stress, cold stress, and a variety of biotic stress treatments. Transient induction was seen in drought-stressed roots and shoots, and in wounded shoots. Interestingly, genes in C8 were only minimally induced by exogenous ABA. Onethird of the genes are functionally unknown, while the rest could be categorized. Ethylene appeared to be the dominant hormone here, suggested by the presence of At-ERFs 1, 5, 6, and 11; and the ACC synthase, ACS6. Various calciumdependent signalling pathways seemed to be involved,

Fig. 1. Clustering of 1143 salt-regulated genes. Each row represents a gene, while each column represents an experiment. The code for the experiments are: 1, cold stress; 2, osmotic stress; 3, salt stress; 4, drought stress; 5, oxidative stress; 6 wounding stress. For the experiments 1 to 6, a represent shoots, while b identifies roots. For 1a to 5b, the time points are, from left to right, 0.5, 1, 3, 6, 12, 24 h, while for 6a and 6b, time points are 0.25, 0.5, 1, 3, 6, 12, 24 h. The numbers 7, 8, 9 represent experiments with ABA, ACC, and MeJA treatments, respectively, for 0.5, 1, and 3 h in each case. Number 10: bacteria-derived elicitors treatment, which are MgCl₂+CaCl₂, GST, Harpin Z, GST-necrosis-inducing *Phytophthora* protein 1, flagellin and lipopolysaccaride, for 1 h and 4 h, respectively. Number 11: *Pseudomonas syringae* pv. *tomato* (Pst) DC3000, Pst avrRpm1, Pst DC3000 hrcC- and *Pseudomonas syringae* pv. *phaseolicola*, for 2, 6, and 24 h. Number 12: *Botrytis cinerae* treatment for 18 h and 48 h. Number 13: *Erysiphe orontii* treatment for 6 h, 12 h, 24 h, 2 d, 3 d, 4 d, and 5 d. Number 16: *Pseudomonas syringae* ES4325 treatment for 4, 8, 16, 24, and 48 h. Number 16: *Pseudomonas syringae* ES4325 treatment for 4, 8, 16, 24, and 48 h. C0 through C21 identify clusters 0 through 21 after fuzzy k-means analysis.

exemplified by many calcium-binding proteins, calmodulins, calmodulin-binding proteins, including TCH3, calcineurin CBL1, and calcium-transporting ATPases. The transcription factors found in centroid C8 were mainly zinc finger and WRKY transcription factors such as ZAT10, ZAT12, WRKY 22, and WRKY 53. Finally, included were several disease-resistance protein genes, genes functioning in post-translational modification and protein degradation, and a few MAPKs (MPK 3, 5, and 11).

C6: early responses: Cluster 6 included 76 genes (C6; Fig. 1) that were highly induced by salinity and osmotic

stress treatments, early in roots and 1 h later in shoots, by cold after 6 h, and by drought early in roots. These genes were also early and strongly induced by ABA. Several genes in C6 have been established as key regulators in abiotic stress responses, such as RD29A and DREB2A (Yamaguchi-Shinozaki and Shinozaki, 1994; Liu *et al.*, 1998). Also included were RD20 and KIN1. Not surprisingly, genes functioning in ABA synthesis and signal transduction appeared, including NCED3, ABF3, ABI1, ABI2, and other PP2Cs. A third large group included transcription factors, especially MYBs and NACs. Several have been studied for their involvement in abiotic stress responses,

including ATAF1, ATHB12, NAP, AZF2, HSF2, and ATERF4. Finally, a few genes involved in cell wall biosynthesis and LEAs appeared in centroid C6. Overall, most genes are clearly involved in abiotic stresses, and have been characterized before, in the ABA-dependent or ABA-enhanced early response cascade of abiotic stress.

C4: delayed responses in roots: The 89 genes in C4 (C4, Fig. 1) were strongly up-regulated by salt and osmotic stresses in roots after only a 3 h treatment, and also induced 3 h after ABA treatment, while in shoots up-regulation was observed earlier. Many of the C4-genes identified diverse metabolic pathways, including lipid, for example, LTP3 and LTP4, and carbohydrate metabolism, for example, a sucrose synthase isoform and APL3 and APL4 that are involved in starch biosynthesis.

C0: defence genes shared with biotic stress conditions: Genes in cluster 0 (114 in total, C0; Fig. 1) were strongly induced in roots starting after 1 h of salt stress, but showed no significant change in shoots. Unambiguous induction could also be seen in osmotically stressed shoots, oxidatively stressed shoots, and in cold-treated roots. These genes were also greatly induced by various biotic stress treatments. Significantly, these genes showed only minor fluctuations following ABA, 1-aminocyclopropane-1-carboxylic acid (ACC), or MeJA treatment, and, hence, could not be identified as responsive to the typically invoked stress hormones. Enriched in this cluster were genes involved in redox homeostasis control and post-translational modification, including many GSTs, FAD-linked oxidoreductases, protein kinases and PP2Cs, and oxidoreductin AERO1. A significant number of genes were receptor-like protein kinases, suggesting the existence and involvement of dynamic intercellular signalling events. Defence genes abounded: cell wall proteins including AGP2 and AGP5, lignin synthesis genes including CCR2, P450 genes including PAD3 (phytoalexin biosynthesis), the calcium-transporting ATPase ACA12 and ABC transporters, and disease resistance proteins of various classes appeared in CO. Several WRKY transcription factors (At1g62300, At4g18170, At5g24110, At5g49520), and the ethylene biosynthesis gene ACS2 may be considered as defence-related as well.

C2: the salt- and root-specific response: Cluster 2 included 171 genes (C2; Fig. 1; Table 2) that were only or most strongly up-regulated in salt-stressed roots. Some of these genes showed a moderate induction in osmotic or drought stresses, but no clear pattern could be seen, while ABA seemed to have no impact on their expression levels. Among the genes with functional annotations in C2, several categories emerged. Similar to C6, many ethylene synthesis and signalling genes were observed, including ERF1 and ACS8. More than 10 genes in C2 identified so-called disease resistance proteins (labelled as biotic stress responsive) and an equal number of receptor-like kinases. Also, genes with functions in post-translational modification and

protein degradation were included. Surprisingly, nearly 20% of the genes in C2 were transcription factors. In addition to AP2 genes, that were otherwise almost exclusively found in C2, and a few Mybs and WRKYs, the group included a number of unknown, putative transcription factors, which should become important new targets in salt-stress studies. Finally, approximately 60 genes with unknown functions were C2-specific.

C9: The cluster related to MeJA: C9 comprises a small cluster with 49 genes (C9, Fig. 1) that showed strong induction only in salt-stressed roots, drought-stressed roots and shoots, wounded roots and shoots, and by MeJA. Most annotated members of this centroid are involved in the biosynthesis of various secondary metabolites. Among these, all major JA synthesis genes (AOS, AOC1, and OPR3), amidohydrolase ILL6 (for auxin homeostasis) and a 2-oxoglutarate-dependent dioxygenase (for ethylene synthesis), an anthocyanidin synthase, and two P450s were identified. The remaining genes included the well-known ATMYC2/JIN1 and two other bHLHs, and two annexins, ANNAT3 and ANNAT4.

The down-regulated genes: clusters C1 and C3: Genes in clusters 1 and 3 (142 in total, C1, C3; Fig. 1) were downregulated by salinity and osmotic stress treatment. Compared with roots, shoots showed higher (C3) or similar (C1) but slightly delayed repression that became obvious after the 3 h time point. These genes were also repressed in various biotic stress treatments, and by ABA treatment mainly at the same 3 h time point. Moderate down-regulation was observed in almost all other treatments with a slight bias towards a response in the shoots. An unusually large proportion, approximately 40%, of the genes in these two clusters is annotated as functionally unknown. Most of the remaining genes identified function in growth. Many belonged to transcription factor families such as bHLH, bZIP, and Myb. Also HAT1 and MYC1 were included here. The second group was made up of auxin-responsive genes including SAUR-AC1. A third group, finally, included cell wall modification genes and genes of related function, for instance the GDSL lipases, XTH9 and PEM3.

The down-regulated genes: clusters 5 and 7: In contrast to the genes in clusters 1 and 3, clusters 5 and 7 (151 genes in total, C5, C7; Fig. 1) showed a root-specific pattern of down-regulation, initiated immediately after salt, osmotic, drought, and oxidative stress treatments. ABA moderately repressed their expression as well. However, biotic stress treatments have no effects on the expression of these genes. Unique to these two clusters were a group of peroxidases, metal transporters, and several aquaporins. Similar to C1 and C3 genes, a large number of genes were involved in cell wall modification, including several AGPs, FUT5, and PRP3; and the GDSL lipases and LTPs. A few AP2 transcription factors, bHLH and Mybs were also identified, together with genes involved in development. Finally,

1102 Ma et al.

Table 2.	Genes	exclusively	up-regulated	by	salt	stress	in	roots	(cluster	C2)	
----------	-------	-------------	--------------	----	------	--------	----	-------	----------	-----	--

Gene ID	Annotation (acc. to TAIR)	Gene ontology (Mapman) ^a	Membership value	
At4g18990	Xyloglucan endotransglycosylase, putative	Cell wall, modification	0.475528	
At1g61290	Syntaxin SYP124	Cell, vesicle transport	0.865652	
At4g24170	Kinesin motor family protein	Cell, organization	0.570721	
At4g30430	Senescence-associated protein homologue	Development, unspecified	0.311292	
At5g40260	Nodulin MtN3 family protein	Development, unspecified	0.312566	
At2g36640	Late embryogenesis abundant protein (AtECP63)	Development, unspecified	0.316648	
At1g19025	DNA cross-link repair protein-related	DNA, repair	0.236476	
At1g20390	Hypothetical protein	DNA, gypsy-like retrotransposon	0.34032	
At2g18180	Putative phosphatidylinositol/phophatidylcholine transfer protein	Transporter activity	0.61379	
At2g14960	Putative auxin-regulated protein	Hormone metabolism, auxin, regulated	0.334001	
At3g62100	Auxin-induced protein homologue	Hormone metabolism, auxin, regulated	0.344991 0.323077	
At1g05670	Putative indole-3-acetate β -glucosyltransferase	Hormone metabolism, auxin, synthesis/degradation	0.323077	
At2g44840	Ethylene response element binding protein (EREBP)	Hormone metabolism, ethylene, signal transduction	0.234441	
At3g23240 At3g23230	Ethylene response factor 1 (ERF1) Ethylene responsive element binding protein, putative	Hormone metabolism, ethylene, signal transduction Hormone metabolism, ethylene, signal transduction	0.292020	
At3g23230	Ethylene responsive element binding protein, putative	Hormone metabolism, ethylene, signal transduction	0.530807	
At5g23220	1-aminocyclopropane-1-carboxylate oxidase	Hormone metabolism, ethylene, synthesis/degradation	0.243084	
At4g37770	1-aminocyclopropane-1-carboxylate synthase-like	Hormone metabolism, ethylene, synthesis/degradation	0.392426	
At1g44090	Gibberellin 20-oxidase, putative	Hormone metabolism, gibberellin, synthesis/degradation	0.723534	
At4g31780	Monogalactosyldiacylglycerol synthase-like protein	Lipid metabolism, galactolipid synthesis	0.358765	
At1g21530	Amp-binding protein, putative	Lipid metabolism, galactoripid synthesis acyl CoA ligase	0.474401	
At1g30370	Lipase class 3 family protein, similar to DEFECTIVE IN ANTHER DEHISCENCE1	Lipid metabolism, lipid degradation, lipases	0.234672	
At2g31690	Putative triacylglycerol lipase	Lipid metabolism, lipid degradation, lipases	0.29695	
At4g16820	Lipase class 3 family protein, similar to DEFECTIVE IN ANTHER DEHISCENCE1	Lipid metabolism, lipid degradation, lipases	0.453779	
At3g20520	Glycerophosphoryl diester phosphodiesterase family protein	Lipid metabolism, lipid degradation, lysophospholipases	0.210923	
At3g26190	Cytochrome p450 family	Misc. cytochrome P450	0.296921	
At4g37360	Cytochrome p450 family	Misc. cytochrome P450	0.313713	
At5g52400	Cytochrome p450 family	Misc. cytochrome P450	0.73239	
At3g14225	GDSL-motif lipase/hydrolase family protein, EMB1474	Misc. GDSL-motif lipase	0.340436	
At5g24540	Glycosyl hydrolase family 1	Misc. gluco-, galacto- and mannosidases	0.293076	
At1g14550	Anionic peroxidase, putative	Misc. glutathione S-transferases	0.625433	
At5g60310	Lectin protein kinase, similar to receptor lectin kinase 3	Misc. myrosinases-lectin-jacalin	0.494127	
At1g70130	Receptor-like kinase, putative	Misc. myrosinases-lectin-jacalin	0.771136	
At3g51680	Short-chain alcohol dehydrogenase-like protein	Misc. short chain dehydrogenase/reductase (SDR)	0.25172	
At3g22360	Alternative oxidase 1b precursor	Mitochondrial electron transport/alternative oxidase	0.259509	
At2g20800	Putative NADH-ubiquinone oxireductase	Mitochondrial electron transport/NADH-DH, type II	0.57336	
At3g62380 At3g06433	Putative protein	Not assigned, no ontology Not assigned, no ontology	0.202694 0.210247	
At3g00433 At4g39640	Hypothetical protein	Not assigned, no ontology	0.232161	
At5g40880	Putative y-glutamyltransferase Putative protein	Not assigned, no ontology	0.298378	
At3g51810	Embryonic abundant protein AtEm1	Not assigned, no ontology	0.385323	
At5g66640	LIM domain-containing protein-related	Not assigned, no ontology	0.40961	
At2g32020	Putative alanine acetyl transferase	Not assigned, no ontology	0.416065	
At2g38830	Unknown protein	Not assigned, no ontology	0.419731	
At1g69150	DC1 domain-containing protein	Not assigned, no ontology	0.439032	
At2g28820	Unknown protein	Not assigned, no ontology	0.44632	
At1g08860	Hypothetical protein	Not assigned, no ontology	0.45734	
At4g37710	Putative protein	Not assigned, no ontology	0.473267	
At1g61280	Hypothetical protein	Not assigned, no ontology	0.489152	
At1g51915	Hypothetical protein	Not assigned, no ontology	0.841651	
At1g21850	Pectinesterase (pectin methylesterase), putative	Not assigned, no ontology	0.846657	
At5g58680	Putative protein	Not assigned, no ontology, armadillo/β-catenin repeat	0.376546	
At1g42980	Hypothetical protein	Not assigned, no ontology, formin homology 2 domain	0.86166	
At4g37900	Putative protein	Not assigned, no ontology, glycine-rich proteins	0.290615	
At4g33930	Putative protein	Not assigned, no ontology, glycine-rich proteins	0.738637	
At2g20720	Hypothetical protein	Not assigned, no ontology, pentatricopeptide (PPR) repeat	0.217173	
At1g72240	Hypothetical protein	Not assigned, unknown	0.201859	
At2g28305	Expressed protein	Not assigned, unknown	0.210502	
At5g40180	Putative protein	Not assigned, unknown	0.230106	
At1g12030	Hypothetical protein	Not assigned, unknown	0.236047	
At2g46640	Hypothetical protein Putative protein	Not assigned, unknown	0.243837	
At5g24600		Not assigned, unknown	0.260495	

Gene ID	Annotation (acc. to TAIR)	Gene ontology (Mapman) ^a	Membershij value
At5g22540	Putative protein	Not assigned, unknown	0.262908
At1g70630	Hypothetical protein	Not assigned, unknown	0.270149
At2g23270	Expressed protein	Not assigned, unknown	0.271949
At4g17410	Hypothetical protein	Not assigned, unknown	0.272911
At5g57510	Unknown protein	Not assigned, unknown	0.28043
At1g68330	Hypothetical protein	Not assigned, unknown	0.292341
At2g41730	Hypothetical protein	Not assigned, unknown	0.297847
At1g05060	Expressed protein	Not assigned, unknown	0.314235
At2g05000	Hypothetical protein	Not assigned, unknown	0.319508
At5g47440	Putative protein	Not assigned, unknown	0.338392
At1g68765	IDA, loss of function mutations are defective in ethylene independent floral organ abscission	Not assigned, unknown	0.365902
At1g13310	Expressed protein	Not assigned, unknown	0.382558
At3g04620	Unknown protein	Not assigned, unknown	0.399807
At1g10880	Hypothetical protein	Not assigned, unknown	0.402775
At5g66670	At14a, putative	Not assigned, unknown	0.429151
At2g36650	Hypothetical protein	Not assigned, unknown	0.431538
At2g20625	Hypothetical protein	Not assigned, unknown	0.438484
At5g03270	Lysine decarboxylase-like protein	Not assigned, unknown	0.444432
At4g25330	•	Not assigned, unknown	0.482217
At5g38310	Hypothetical protein Hypothetical protein	Not assigned, unknown	0.482217 0.528565
At3g38310 At4g40020	Putative protein	Not assigned, unknown Not assigned, unknown	0.528565
At5g64450	Putative protein	Not assigned, unknown	0.552543
At3g25655	Expressed protein	Not assigned, unknown	0.55716
At1g07860	Hypothetical protein	Not assigned, unknown	0.578333
At3g54520	Hypothetical protein	Not assigned, unknown	0.580195
At5g60350	Putative protein	Not assigned, unknown	0.589964
At4g27580	Expressed protein	Not assigned, unknown	0.619288
At1g76210	Hypothetical protein	Not assigned, unknown	0.634611
At1g48980	Hypothetical protein	Not assigned, unknown	0.660787
At3g53450	Putative protein	Not assigned, unknown	0.679878
At2g36440	Hypothetical protein	Not assigned, unknown	0.796049
At1g74870	Hypothetical protein	Not assigned, unknown	0.816778
At2g37880	Expressed protein	Not assigned, unknown	0.821758
At3g10830	Hypothetical protein	Not assigned, unknown	0.867859
At1g09800	tRNA pseudouridine synthase family protein	Nucleotide metabolism, deoxynucleotide metabolism	0.341889
At4g15100	Hydroxynitrile lyase-like protein	Protein, degradation	0.29554
At2g31860	Putative poly(ADP-ribose) glycohydrolase	Protein, degradation	0.5312
At3g28600	AAA-type ATPase family protein	Protein degradation, AAA type	0.203079
At3g50940	BCS1 protein-like protein	Protein degradation, AAA type	0.342178
At3g28610	AAA-type ATPase family protein	Protein degradation, AAA type	0.683502
At2g18190	Putative AAA-type ATPase	Protein degradation, AAA type	0.790586
At1g32970	Subtilase, putative	Protein degradation, subtilases	0.253225
At3g08750	F-box family protein	Protein degradation, ubiquitin, E3, SCF, FBOX	0.729372
At1g67000	Protein kinase family protein	Protein, post-translational modification	0.324713
At5g55090	MAPKKK15	Protein, post-translational modification	0.324713
At1g16160	WARKKIJ WAK-like kinase (WLK)		0.333293
		Protein, post-translational modification	
At5g47850	Receptor kinase-like protein	Protein, post-translational modification	0.456693
At1261460	MAPKKK16	Protein, post-translational modification	0.548531
At1g61460	Receptor kinase, putative	Protein, post-translational modification	0.56006
At1g71530	Protein kinase family protein	Protein, post-translational modification	0.673873
At2g24130	Leucine-rich repeat transmembrane protein kinase, putative	Protein, post-translational modification	0.742576
At2g44070	Putative translation initiation factor eIF-2B delta subunit	Protein, synthesis, initiation	0.46894
At2g05720	Putative U4/U6 small nuclear ribonucleoprotein	RNA processing	0.355508
At4g16680	RNA helicase	RNA processing	0.604112
At1g74930	AP2 domain-containing protein, putative	RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element	0.206856
At1g77640	Encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription factor family	binding protein family RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element binding protein family	0.227997
At2g33710	Encodes a member of the ERF (ethylene response factor) subfamily B-4 of ERF/AP2 transcription factor family	RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element	0.261666
At1g19210	AP2 domain-transcription factor, putative	binding protein family RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element binding protein family	0.29746

1104 Ma et al.

 Table 2. (Continued)

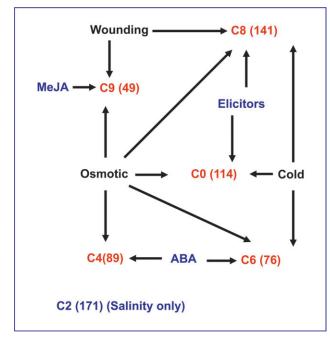
Gene ID	Annotation (acc. to TAIR)	Gene ontology (Mapman) ^a	Membership value
At1g44830	Encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription factor family	RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element	0.306712
At2g46310	Putative AP2 domain transcription factor	binding protein family RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element	0.390719
At1g22810	TINY-like transcription factor	binding protein family RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element	0.504744
At5g07310	Encodes a member of the ERF (ethylene response factor) subfamily B-4 of ERF/AP2 transcription factor family	binding protein family RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element	0.593625
At1g71450	Transcription factor TINY, putative	binding protein family RNA, regulation of transcription, AP2/EREBP, APETALA2/ Ethylene-responsive element	0.59929
	PAZ domain-containing protein/piwi domain-containing protein LOB domain family protein	binding protein family RNA, regulation of transcription, Argonaute-like RNA, regulation of transcription, AS2, Lateral Organ	0.788571 0.501222
At2g22760	Transcriptional factor B3 family protein bHLH protein Dof zinc finger protein	Boundaries Gene Family-Class I RNA, regulation of transcription, B3 transcription factor RNA, regulation of transcription, bHLH, RNA, regulation of transcription, C2C2(Zn) DOF	0.646999 0.210422 0.208299
-	Zinc finger (CCCH-type) family protein, ZFN2	RNA, regulation of transcription, C2C2(21) Dor RNA, regulation of transcription, C2H2 zinc	0.464091
At3g53600	Zinc finger-like protein	finger family RNA, regulation of transcription, C2H2 zinc	0.494576
At5g59450	Scarecrow-like transcription factor 11 (SCL11)	finger family RNA, regulation of transcription, GRAS transcription factor	0.215366
At2g44910	Homeobox-leucine zipper protein, Athb-4	RNA, regulation of transcription, HB, Homeobox transcription factor family	0.301105
	Myb DNA-binding protein (MYB77)	RNA, regulation of transcription, MYB domain transcription factor family	0.280587
	Myb family transcription factor (MYB39)	RNA, regulation of transcription, MYB domain transcription factor family	0.296121
	Myb family transcription factor Myb DNA-binding protein (AtMYB87)	RNA, regulation of transcription, MYB domain transcription factor family RNA, regulation of transcription, MYB domain	0.355075 0.466435
	NF-X1 type zinc finger family protein	transcription factor family RNA, regulation of transcription, putative	0.294611
	Expressed protein	DNA-binding protein RNA, regulation of transcription, putative	0.516112
At5g01380	Transcription factor GT-3a	DNA-binding protein RNA, regulation of transcription, Trihelix, Triple-Helix	0.301192
At5g63740 At1g04500	Zinc finger (AN1-like) family protein Zinc finger protein-related Zinc finger CONSTANS-related CHP-rich zinc finger protein, putative	transcription factor family RNA, regulation of transcription, unclassified RNA, regulation of transcription, unclassified RNA, regulation of transcription, unclassified RNA, regulation of transcription, unclassified	0.201293 0.276842 0.76629 0.822544
-	WRKY family transcription factor, WRKY59 WRKY family transcription factor, WRKY67	RNA, regulation of transcription, WRKY domain transcription factor family RNA, regulation of transcription, WRKY domain	0.246233 0.383213
At1g29860	WRKY family transcription factor, WRKY71	transcription factor family RNA, regulation of transcription, WRKY domain	0.510944
	Cytochrome p450 family, CYP706A2 Receptor lectin kinase 3	transcription factor family Secondary metabolism, flavonoids, dihydroflavonols Signalling, receptor kinases	0.217096 0.255826
	Serine/threonine kinase-like protein	Signalling, receptor kinases	0.577696
At3g63350	Serine/threonine kinase-like protein Heat shock transcription factor-like protein Disease resistance protein (TIR-NBS-LRR class),	Signalling, receptor kinases Stress, abiotic, heat Stress, biotic	0.587375 0.67223 0.220672
U	putative Disease resistance protein (TIR-NBS-LRR class),	Stress, biotic	0.232285
	putative Disease resistance protein (CC-NBS class), putative	Stress, biotic	0.287561
0	Disease resistance protein (TIR-NBS-LRR class), putative Disease resistance protein RPP1-WsB-like (TIR-NBS-LRR class)	Stress, biotic Stress, biotic	0.327981 0.368207

 Table 2. (Continued)

Gene ID	Annotation (acc. to TAIR)	Gene ontology (Mapman) ^a	Membership value
At2g26390	Serpin, putative/serine protease inhibitor, putative	Stress, biotic	0.516773
At5g41550	Disease resistance protein (TIR-NBS-LRR class)	Stress, biotic	0.616406
At1g02530	Multidrug resistance P-glycoprotein, putative	Stress, biotic	0.623524
At2g26380	Disease resistance protien-related (LRR)	Stress, biotic	0.711293
At4g14370	Disease resistance protein (TIR-NBS-LRR class)	Stress, biotic	0.824501
At5g14740	Carbonic anhydrase 2	TCA, carbonic anhydrases	0.278928
At2g04070	MATE efflux family protein	Transport misc.	0.45519
At2g04050	MATE efflux family protein	Transport misc.	0.507313
At1g12950	MATE efflux family protein	Transport misc.	0.702004
At3g17690	Cyclic nucleotide-binding transporter 2/CNBT2 (CNGC19)	Transport, cyclic nucleotide or calcium-regulated channels	0.296605
At4g11730	H ⁺ -transporting ATPase-like protein	Transport, p- and v-ATPases	0.285986
At1g09930	Oligopeptide transporter OPT family protein, ATOPT2	Transport, peptides and oligopeptides	0.879645
At5g46480	Disease resistance protein (TIR class), putative	N/A	0.262639

^a Ontology based on Mapman program (Usadel et al., 2005).

genes with a function in the biosynthesis of amino acids and secondary metabolites (terpene, glucosinolate, cytokinin, gibberellin) were also down-regulated.


Discussion

Among the *Arabidopsis* transcript profiling platforms, the most complete set includes approximately 26 000 DNA elements for known and hypothetical coding regions. It is based on 70-mer oligonucleotides. In several constantly improving versions this array has become a reliable tool (http://www.ag.arizona.edu/microarray) in the hands of skilled experimenters. The Affymetrix GeneChip platform with a slightly lower complexity, approximately 22 000 genes, has become a standard because it represents a closed system, shows ease of use, and includes customized analysis software. This comparison of data for genes represented on both platforms indicated a highly similar trend in gene regulation, where approximately 80% of the transcripts behaved similarly when analysed by the two platforms. In essence, both platforms provide comparable results.

Clustering methods have been widely used to analyse large gene-expression datasets. The most commonly used methods included hierarchical clustering, k-means clustering, and SOM (self-organization map) (Eisen et al., 1998; Sherlock, 2000; Toronen et al., 1999). Here, fuzzy k-means clustering, in combination with principal component analysis (PCA) (Gasch and Eisen, 2002), was used to analyse the publicly available Affymetrix Arabidopsis gene-chip data on abiotic stress, biotic stress, and hormone treatments. Using this clustering method, the most informative expression patterns were captured as centroids. Instead of following the fuzzy k-means protocol where genes belong to multiple clusters, each gene was assigned to the cluster to which it had the highest membership value, because the focus was on the overall regulation pattern instead of the behaviour of individual genes, while discarding genes without significant membership to any cluster in order to reduce chance or false assignments. An important consideration in fuzzy k-means clustering is the selection of the cluster number k. By choosing a higher k, higher distinction is possible. For this study, increasing k from 30 to 120 generated a large number of clusters with very few genes, while the large clusters chosen here split into 2 or 3 smaller clusters (data not shown). Overall, this clustering method was found especially useful when dealing with large microarray data set with multiple time points.

After comparisons across both array platforms, analyses were focused on the Affymetrix data generated by the AtGenExpress consortium. The standardized protocol and data format, together with the strict experimental procedure employed by the consortium team, made it possible to integrate the whole dataset. Using the data without filtering genes with low expression was possible because the expression pattern over multiple treatments with multiple time points, for most of the genes, revealed trends of regulation at all time points that were consistent and without fluctuations within specific treatments (Fig. 1; see supplementary Table 1 at JXB online).

The results, for the ~ 1500 most strongly salt-regulated genes, revealed an unexpectedly complex interaction network between Arabidopsis stress-signalling pathways. Of 680 salt-induced genes, fewer than 25% (171, C2) were strictly salt-specific. Strikingly, most of the remaining genes were also induced by at least two different biotic stress treatments (C0, C6, C8, C9) and, in addition, shared common regulation with other abiotic stresses. Based on this co-induction pattern, the salt-induced signalling pathways in Arabidopsis may be divided into four categories (Fig. 2). One cluster includes salt-responsive genes that are also induced by elicitors (C0 and C8). Then, salt and ABA treatment (C4 and C6), and salt and MeJA exposure (C9) form distinct groupings of genes. Only cluster C2 contains genes that specifically respond to the ionic component of salt stress.

Fig. 2. Clusters of salt induced genes. The salt-induced genes could be divided into six clusters, C0, C2, C4, C6, C8, and C9 with the number of genes affected listed in parentheses. Represented are cross-talks and connections between high salinity and other factors that can represent stress. Induced expression is indicated by arrows connecting treatment and cluster.

The structure of the clusters, the types of genes within each cluster, and their appearance early or late in the timecourses identify functions that unite as well as distinguish different stresses. In cluster 8, for example, calcium signallingrelated genes (e.g. TCH3) and ethylene-related ATERFs may represent early sensing and signalling components (Sistrunk et al., 1994; Fujimoto et al., 2000), as is the case for gene *CBL1*, which has been shown to mediate stress signalling without affecting ABA-related pathways (Cheong et al., 2003). Furthermore, cluster 6 includes ABA biosynthesis and signalling pathways, with high probability representing the general signal transduction chain related to osmotic adjustments. ABA has been recognized as a key regulator in abiotic stress responses (Gazzarrini and McCourt, 2001; Zhu, 2003; Sharp et al., 2004). A MPSS (massively parallel signature sequencing) study identified the ABA up-regulated genes in Arabidopsis (Hoth et al., 2002). Not surprising, the majority of the overlapping genes between the MPSS results and this analysis fell into clusters 2 and 4, the only two clusters that included ABAresponsive genes. Cluster 9 salt-induced genes are also highly induced by MeJA. Apart from the significant involvement of MeJA in biotic stresses, this hormone has also been reported to play a role during potassium starvation, which would make it an additional specific mediator of abiotic stress responses (Armengaud et al., 2004).

Of the 171 genes placed into cluster C2 most were induced only in roots, and they were specifically induced only by salt stress. This set of transcripts had not been observed before; it may constitute the ionic stress component of the *Arabidopsis* transcriptome. The reasons for this exclusivity might be that leaves, compared with roots, have a larger sodium storage capacity, or it may be a consequence of the relative higher concentration of sodium ions in the roots, as it has been reported in the wild type (Volkov *et al.*, 2004), while *sos1* mutants deposit more sodium into the shoot system (Shi *et al.*, 2002).

The SOS system, which has been established as an important defence mechanism potentially leading to salt tolerance (Zhu, 2003), is not represented among the strongly responding genes, because the SOS pathway seems to operate mainly at the protein modification and not the transcript level. However, among the early induced, ionic stress-specific genes in clusters C2 are most likely the components that, upstream of SOS, lead to the initiation and engagement of the SOS pathway. For example, 11 protein kinases of unknown function in this cluster represent a category that could make them candidates of early sensing or signalling.

In summary, it was demonstrated that large-scale microarray data can be used to recognize the cross-talk between different signalling pathways, providing information that will be useful in elucidating unknown signalling networks. Comparisons across different high-throughput transcript profiling platforms are possible and indicate the relative maturity of the procedures, in particular, of the statistical analyses and data representation tools. The general saltstress signalling and response pattern, the multiple input elements, and a reliable, across-platform, identification of the many functionally unknown components, revealed by the analysis can provide guidance for forward genetic analysis of salt stress.

Acknowledgements

We acknowledge members of the AtGenExpress consortium for help (Thomas Altmann, Pascal von Koskull-Döring, Jörg Kudla, Lutz Nover, and Detlef Weigel) and the people in their laboratories for generating the Affymetrix expression profiles. We apologize for not citing the large number of manuscripts and functional studies related to the genes discussed here; their inclusion would have exceeded the allotted space. The work has been funded by NSF (DBI-0223905) and UIUC institutional grants.

References

- Albrecht V, Weinl S, Blazevic D, D'Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J. 2003. The calcium sensor CBL1 integrates plant responses to abiotic stresses. *The Plant Journal* 36, 457–470.
- **Apse MP, Aharon GS, Snedden WA, Blumwald E.** 1999. Salt tolerance conferred by overexpression of a vacuolar Na⁺/H⁺ antiport in *Arabidopsis. Science* **285**, 1256–1258.
- Armengaud P, Breitling R, Amtmann A. 2004. The potassiumdependent transcriptome of *Arabidopsis* reveals a prominent role

of jasmonic acid in nutrient signaling. *Plant Physiology* 136, 2556–2576.

- Blumwald E. 2003. Engineering salt tolerance in plants. *Biotechnology and Genetic Engineering Reviews* 20, 261–275.
- **Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S.** 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in *Arabidopsis. Plant Physiology* **129**, 661–677.
- Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S. 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in *Arabidopsis*. *The Plant Cell* **15**, 1833–1845.
- Chinnusamy V, Schumaker K, Zhu JK. 2004. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. *Journal of Experimental Botany* 55, 225–236.
- Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S. 2004. NASCArrays: a repository for microarray data generated by NASC's transcriptomics service. *Nucleic Acids Research* 32, D575–D577.
- **Dong X.** 1998. SA, JA, ethylene, and disease resistance in plants. *Current Opinion in Plant Biology* **1**, 316–323.
- Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. *Proceedings of the National Academy of Sciences, USA* **95**, 14863–14868.
- Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. The Plant Cell 12, 393–404.
- Garcia-Hernandez M, Berardini TZ, Chen G, et al. 2002. TAIR: a resource for integrated *Arabidopsis* data. *Functional and Integrated Genomics* 2, 239–253.
- **Gasch AP, Eisen MB.** 2002. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. *Genome Biology* **3**, RESEARCH0059.
- Gazzarrini S, McCourt P. 2001. Genetic interactions between ABA, ethylene and sugar signaling pathways. *Current Opinion in Plant Biology* **4**, 387–391.
- Genoud T, Metraux JP. 1999. Crosstalk in plant cell signaling: structure and function of the genetic network. *Trends in Plant Science* **4**, 503–507.
- Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. *Annual Review* of Plant Physiology and Plant Molecular Biology 51, 463–499.
- Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH. 2002. Genome-wide gene expression profiling in *Arabidopsis thaliana* reveals new targets of abscisic acid and largely impaired gene regulation in the *abi1-1* mutant. *Journal of Cell Science* 115, 4891–4900.
- Kim S, Kang JY, Cho DI, Park JH, Kim SY. 2004. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. *The Plant Journal* **40**, 75–87.
- Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF. 2002. Transcriptome changes for *Arabidopsis* in response to salt, osmotic, and cold stress. *Plant Physiology* 130, 2129–2141.
- Kunkel BN, Brooks DM. 2002. Cross talk between signaling pathways in pathogen defence. *Current Opinion in Plant Biology* 5, 325–331.
- Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in droughtand low-temperature-responsive gene expression, respectively, in *Arabidopsis. The Plant Cell* 10, 1391–1406.

- **Persson S, Wei H, Milne J, Page GP, Somerville CR.** 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. *Proceedings of the National Academy of Sciences, USA* **102**, 8633–8638.
- Saeed AI, Sharov V, White J, et al. 2003. TM4: a free, open-source system for microarray data management and analysis. *Biotechniques* 34, 374–378.
- Seki M, Narusaka M, Ishida J, et al. 2002. Monitoring the expression profiles of 7000 *Arabidopsis* genes under drought, cold and high-salinity stresses using a full-length cDNA micro-array. *The Plant Journal* **31**, 279–292.
- Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT. 2004. Root growth maintenance during water deficits: physiology to functional genomics. *Journal of Experimental Botany* 55, 2343–2351.
- Sherlock G. 2000. Analysis of large-scale gene expression data. Current Opinion in Immunology 12, 201–205.
- Shi H, Quintero FJ, Pardo JM, Zhu JK. 2002. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. *The Plant Cell* **14**, 465–477.
- Shinozaki K, Yamaguchi-Shinozaki K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. *Current Opinion in Plant Biology* **3**, 217–223.
- **Sistrunk ML, Antosiewicz DM, Purugganan MM, Braam J.** 1994. *Arabidopsis TCH3* encodes a novel Ca²⁺ binding protein and shows environmentally induced and tissue-specific regulation. *The Plant Cell* **6**, 1553–1565.
- Steinhauser D, Usadel B, Luedemann A, Thimm O, Kopka J. 2004. CSB.DB: a comprehensive systems-biology database. *Bio*informatics 20, 3647–3651.
- Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K. 2004. Comparative genomics in salt tolerance between *Arabidopsis* and *Arabidopsis*-related halophyte salt cress using *Arabidopsis* microarray. *Plant Physiology* 135, 1697–1709.
- Toronen P, Kolehmainen M, Wong G, Castren E. 1999. Analysis of gene expression data using self-organizing maps. *FEBS Letters* 451, 142–146.
- Toufighi K, Brady SM, Austin R, Ly E, Provart NJ. 2005. The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. *The Plant Journal* **43**, 153–163.
- Usadel B, Nagel A, Thimm O, *et al.* 2005. Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. *Plant Physiology* **138**, 1195–1204.
- **Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A.** 2004. *Thellungiella halophila*, a salt-tolerant relative of *Arabidopsis thaliana*, possesses effective mechanisms to discriminate between potassium and sodium. *Plant, Cell and Environment* **27**, 1–14.
- Wu Z, Irizarry R, Gentleman R, Murillo F, Spencer F. 2003. A model based background adjustment for oligonucleotide expression arrays. Johns Hopkins University: Department of Biostatistics Working Papers, 2003.
- Xiong L, Schumaker KS, Zhu JK. 2002. Cell signaling during cold, drought, and salt stress. *The Plant Cell* 14, S165–S183.
- Yamaguchi-Shinozaki K, Shinozaki K. 1994. A novel *cis*-acting element in an *Arabidopsis* gene is involved in responsiveness to drought, low-temperature, or high-salt stress. *The Plant Cell* 6, 251–264.
- Zhu JK. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6, 441–445.
- Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136, 2621–2632.